概率和排列组合

合集下载

管综数学排列组合和概率

管综数学排列组合和概率

一、排列组合排列组合是管综数学中常见的题型,也是非常重要的知识点。

排列组合主要研究从一组元素中选取一定数量的元素,并按一定顺序排列或组合的数学方法。

排列组合的应用非常广泛,例如在统计学、概率论、计算机科学等领域都有着广泛的应用。

排列组合主要包括排列和组合两种。

排列是指从一组元素中选取一定数量的元素,并按一定顺序排列。

排列的计算公式为:P(n, r) = n(n-1)(n-2)...(n-r+1)其中,n为元素总数,r为选取元素的数量。

组合是指从一组元素中选取一定数量的元素,而不考虑元素的顺序。

组合的计算公式为:C(n, r) = frac{P(n, r)}{r!}其中,n为元素总数,r为选取元素的数量,r!表示r的阶乘。

二、概率概率是管综数学中另一个重要的知识点。

概率主要研究随机事件发生的可能性。

概率的计算公式为:P(E) = frac{n(E)}{n(U)}其中,P(E)表示事件E发生的概率,n(E)表示事件E发生的次数,n(U)表示样本空间中所有可能事件的次数。

概率的应用也非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。

三、排列组合和概率在管综考试中的应用排列组合和概率是管综数学中非常重要的知识点,也是管综考试中经常考查的题型。

排列组合和概率的应用非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。

因此,掌握排列组合和概率的知识对于管综考试的成功非常重要。

排列组合和概率在管综考试中的应用主要包括以下几个方面:* 计算排列和组合的数量。

* 计算事件发生的概率。

* 分析排列和组合的规律。

* 解决排列和组合的应用问题。

四、排列组合和概率的学习方法排列组合和概率是管综数学中比较难的知识点,因此需要掌握一定的学习方法才能学好排列组合和概率。

排列组合和概率的学习方法主要包括以下几个方面:* 理解排列组合和概率的基本概念。

* 掌握排列组合和概率的计算公式。

* 熟悉排列组合和概率的应用场景。

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计 数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式①排列数公式:An m(n n! n(n1) (nm1) (m ≤n)m)!A n n=n!=n(n―1)(n ―...2)21.·②组合数公式:Cn mn! n(n 1) (n m 1) (m ≤n).m!(n m)! m (m 1) 2 1③组合数性质:①C n mC n nm(m ≤n). ②C n 0C n 1C n 2C n n2n③Cn 0C n 2C n 4C n 1C n 32n12.二项式定理⑴二项式定理(a+b)n=C n 0a n+C 1n a n -1b+⋯+C n ra n -rb r+⋯+C n n b n,其中各项系数就是组合数C n r,展开r - r b r . 式共有n+1项,第r+1项是T r+1=C n a n⑵二项展开式的通项公式二项展开式的第r+1 项Tr+1=C n r a n -r b r(r=0,1, ⋯叫n)做二项展开式的通项公式。

⑶二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, r n r (r=0,1,2, ⋯,n). 即C n =C n②若n 是偶数,则中间项 (第n n项)的二项公式系数最大,其值为 C n 2;若n 是奇数, 12则中间两项(第n 1项和第n3 n1 n1项)的二项式系数相等,并且最大,其值为C n 2 =C n 2. 2 2③所有二项式系数和等于 2n,即C 0n +C 1n +C 2n +⋯+C nn =2n.④奇数项的二项式系数和等于偶数项的二项式系数和,10213n ―1 即C n +C n +⋯=C n +C n +⋯=2 . 3.概率(1)事件与基本事件:随机事件: 在条件下, 可能发生也可能不发生的事件S事件不可能事件:在条件下,一定不会发生的事件 确定事件 S必然事件:在条件下,一定会发生的事件 S基本事件:试验中不能再分的最简单的 “单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的; 试验中的任意事件都可以用基本事件或其和的形式来表示.( 2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件 的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:事件定义集合角度理解 关系事件 A 与B 不可能同时两事件交集为空事件A 与B 对立,则A互斥事件与B 必为互斥事件;发生事件 A 与B 不可能同时两事件互补 事件A 与B 互斥,但不对立事件一是对立事件 发生,且必有一个发生(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件 ”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的, 但古典概型问题中所有可能出现的 基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式:P(A)A 包含的基本事件的个数 .基本事件的总数构成事件A 的区域长度(面积或体积) 几何概型的概率计算公式: P (A ).试验全部结果构成的区域长度(面积或体积)两种概型概率的求法都是 “求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率P(A)的X 围为:0≤P(A)≤1.②互斥事件A 与B 的概率加法公式: P(AB)P(A) P(B).③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是p kkn―kn的展开式的第k+1 项.n (1 ―p).实际上,它就是二项式[(1 ―p)+p] (k)=C n p2(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为( X k )k k (1)nk(012 )P Cp p,k ,,,,nn.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4、统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,⋯,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k,当N(N为总体中的个体数,n为样本容量)是整数时,nk N;当N不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,n n这时k N;第三步,在第一段用简单随机抽样确定起始个体编号l,再按事先确定的规则n抽取样本.通常是将l加上间隔 k得到第2个编号(l k),将(l k)加上k,得到第3个编号(l 2k),这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.(2)用样本估计总体样本分布反映了样本在各个X围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.3①用样本频率分布估计总体频率分布时, 通常要对给定一组数据进行列表、作图处理.作 频率分布表与频率分布直方图时要注意方法步骤. 画样本频率分布直方图的步骤: 求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点: 一是所有的信息都可以从图中得到; 二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程1 n 2.有时也用标准差的平方———方差来代替标准差,度,其计算公式为s(x i x)ni1两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值, 获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系 时 ,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大致分布在通过散点图中心的一条直线附近, 那么就说这两个变量之间具有线性相关关系, 这 条直线叫做回归直线, 其对应的方程叫做回归直线方程. 在本节要经常与数据打交道, 计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:n n 2;第一步:先把数据制成表,从表中计算出 ,, x i y i , xy x ii1 i1 第二步:计算回归系数的 a ,b ,公式为n n nn x i y i ( x i )( y i ) b i 1 i1 i 1 , n 2 n x i )2n x i (i 1 i 1a y ;bx第三步:写出回归直线方程y bxa . (4)独立性检验①22 列联表:列出的两个分类变量 X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2}的 样本频数表称为 2 2列联表1分类y1 y2 总计x1 a b a bx2cdc d总计 a c b da bcd构造随机变量K2(an(ad bc)2d)(其中n ab cd)b)(c d)(a c)b4得到K2的观察值k常与以下几个临界值加以比较:如果k 2.706,就有9000的把握因为两分类变量X和Y是有关系;如果k 3.841 就有9500的把握因为两分类变量如果k 6.635 就有9900的把握因为两分类变量如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:X和Y是有关系;X和Y是有关系;X和Y是有关系.①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

数学中的排列组合与概率计算

数学中的排列组合与概率计算

数学中的排列组合与概率计算排列组合与概率计算是数学中重要的概念和工具,广泛应用于各个领域,包括统计学、物理学、计算机科学等。

本文将介绍排列组合与概率计算的基本概念和方法,并探讨它们在实际问题中的应用。

一、排列组合的基本概念1.1 排列排列是从一组元素中选取若干元素按一定顺序排列的方式。

对于n 个不同的元素,从中选取m个元素进行排列,可以表示为P(n,m)。

排列的计算公式为:P(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。

1.2 组合组合是从一组元素中选取若干元素不考虑顺序的方式。

对于n个不同的元素,从中选取m个元素进行组合,可以表示为C(n,m)。

组合的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、概率计算的基本原理概率是用来描述事件发生可能性的数值,它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。

概率计算基于排列组合的概念和原理,通过对事件的样本空间和事件的发生情况进行计数和分析,来得出事件发生的概率。

2.1 样本空间样本空间是指一个随机试验的所有可能结果的集合。

例如,掷一枚普通的硬币,它的样本空间包括正面和反面两个可能的结果。

2.2 事件事件是样本空间的子集,表示我们关心的某种结果。

例如,掷一枚硬币出现正面是一个事件。

2.3 概率概率是事件发生的可能性。

对于一个随机试验和事件,概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的发生情况数,n(S)表示样本空间的元素个数。

三、排列组合与概率计算的应用排列组合和概率计算在各个领域都有广泛的应用。

下面以几个具体的例子说明它们的具体应用。

3.1 组合在概率计算中的应用在扑克牌游戏中,计算一个牌型的概率就可以使用组合的概念。

掌握简单的排列组合和概率计算

掌握简单的排列组合和概率计算

掌握简单的排列组合和概率计算排列组合和概率计算是数学中非常重要的概念和方法,它们在实际生活和各个领域中都有广泛的应用。

本文将介绍简单的排列组合和概率计算的概念、原理和应用,并提供一些练习题供读者巩固所学知识。

1. 排列的概念和计算方法排列是指从给定的一组对象中,选取若干个对象按照一定的顺序排列组合的方式。

在排列中,每个对象只能使用一次。

例如,有3个不同的字母A、B、C,从中选取2个字母排列,可以得到以下6种排列:AB、AC、BA、BC、CA、CB。

计算排列的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象排列,计算公式为P(n, r) = n!/(n-r)!,其中n!表示n的阶乘。

2. 组合的概念和计算方法组合是指从给定的一组对象中,选取若干个对象按照任意顺序排列组合的方式。

在组合中,每个对象只能使用一次。

例如,有3个不同的字母A、B、C,从中选取2个字母组合,可以得到以下3种组合:AB、AC、BC。

计算组合的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象组合,计算公式为C(n, r) = n!/(r!(n-r)!)。

3. 概率的概念和计算方法概率是指某个事件发生的可能性大小。

概率的计算方法可以通过排列组合的方式得到。

对于一个随机事件A,其概率的计算公式为P(A) = 事件A发生的总数/总的可能发生的事件数。

例如,从一副扑克牌中取出5张牌,计算其中4张是红心牌的概率。

首先计算红心牌的总数,扑克牌中共有52张牌,其中红心总数为13张,因此红心牌的总数为C(13, 4)。

然后计算总的可能取牌的事件数,即从52张牌中取出5张牌,其计算公式为C(52, 5)。

最后,将红心牌的总数除以总的可能取牌的事件数即可得到概率。

4. 应用案例排列组合和概率计算在现实生活中有许多应用。

以下是几个常见的案例:a. 彩票中奖概率计算:彩票中奖概率的计算就是应用了排列组合和概率计算的原理。

通过计算选中的号码在所有可能的号码组合中所占的比例,得到中奖的概率大小。

高考数学排列组合与概率计算重点清单

高考数学排列组合与概率计算重点清单

高考数学排列组合与概率计算重点清单一、背景介绍在高考数学中,排列组合和概率计算是不可忽视的重要内容。

掌握了这两个知识点,可以帮助学生在考试中获得更好的成绩。

本文将为大家列出高考数学排列组合与概率计算的重点清单,帮助大家快速掌握这些知识点。

二、排列组合的重点1. 排列的定义和运算法则- 不重复元素的全排列:n!- 重复元素的全排列:n!/(n1!×n2!×...)- 部分相同元素的排列:n!/(n1!×n2!×...),其中n1、n2等表示重复出现的元素个数2. 组合的定义和运算法则- 不重复元素的组合:C(n, k) = n!/(k!(n-k)!)- 重复元素的组合:C(n+k-1, k-1)- 全部选或全不选的方案数:2^n3. 排列组合的应用- 在几何问题中,通过排列组合可以确定数量关系、判断位置关系等- 在概率问题中,通过排列组合可以计算事件发生的概率- 在工程问题中,通过排列组合可以计算不重复的方案数三、概率计算的重点1. 事件的概率定义- 事件发生的概率:P(A) = n(A)/n(S),其中n(A)为事件A发生的可能性,n(S)为样本空间中的所有可能性数- 事件的对立事件:P(A') = 1-P(A)- 事件的必然事件:P(S) = 1,其中S为样本空间2. 概率的运算性质- 事件的和事件概率:P(A∪B) = P(A) + P(B) - P(A∩B)- 事件的积事件概率:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率3. 条件概率与独立事件- 条件概率的计算:P(A|B) = P(A∩B)/P(B)- 事件的独立性:如果P(A∩B) = P(A) × P(B),则事件A与事件B 相互独立4. 一些常见的概率问题- 排列组合与概率计算相结合的问题- 球与盒子问题、扑克牌问题等四、总结通过本文的介绍,我们了解到高考数学中排列组合与概率计算的重点知识点,这些内容对于考生来说至关重要。

排列组合、概率问题)

排列组合、概率问题)

(排列组合、概率问题)一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。

四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。

2.解排列、组合题的基本策略(1)两种思路:①直接法:②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

这是解决排列组合应用题时一种常用的解题方法。

分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为全集。

(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。

在处理排列组合问题时,常常既要分类,又要分步。

其原则是先分类,后分步。

(4)两种途径:①元素分析法;②位置分析法。

3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2) 特殊元素优先考虑、特殊位置优先考虑;例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48.例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?解一:间接法:即解二:(1)分类求解:按甲排与不排在最右端分类.(3)相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

数学中的组合、排列与概率问题

数学中的组合、排列与概率问题
加密算法
密码学中的很多加密算法也与组合数学密切相关。例如,RSA算法中的素数选择、AES算 法中的S盒设计等,都涉及到组合数学的知识。这些算法通过运用组合数学的原理,提高 了加密算法的安全性和效率。
CHAPTER 03
概率论基础
概率的定义与性质
随机试验与样本空间
概率论研究随机现象,通过随机试验来描述。样本空间是随机试验所有可能结果的集合。
CHAPTER 05ห้องสมุดไป่ตู้
组合、排列与概率的综合问 题
基础综合问题解析
基础概念辨析
首先,要明确组合、排列的定义及其区别,理解概率的基本概念与 计算方法。
公式与定理应用
掌握组合数公式、排列数公式,以及加法原理、乘法原理等基本原 理,能熟练运用这些公式和原理解决基础问题。
典型例题解析
通过解析典型例题,如抽签问题、分房问题等,进一步加深对组合 、排列与概率基础知识的理解。
几何概型
试验的样本空间是某个几何区域,事件对应为区域中的子区域。通过计算子区域的几何度量(如面积 、体积)与全区域的几何度量之比,得到事件的概率。
条件概率与独立性
条件概率
在已知某事件发生的条件下 ,另一事件发生的概率。通 过条件概率,可以研究事件
之间的相互依赖关系。
独立性
若两事件的发生概率等于各 自发生概率的乘积,则称这 两事件独立。独立事件互不 影响,一个事件的发生不会
在经济学中,期望效用理论是描述个体在面对不 确定性时如何做决策的重要理论,其基础就是概 率论。
风险度量
概率论提供了度量风险的方法,如方差、标准差 等,这些方法在经济学中被广泛应用。
3
计量经济学
计量经济学是经济学的一个分支,它用统计方法 对经济数据进行处理和分析,概率论是其不可或 缺的理论基础。

高中数学公式大全排列组合与概率计算公式

高中数学公式大全排列组合与概率计算公式

高中数学公式大全排列组合与概率计算公式高中数学公式大全:排列组合与概率计算公式一、排列组合1. 排列公式排列是指从一个有限元素集合中选取若干元素按照一定的顺序进行排列的方法。

当从n个不同元素中选取r个元素进行排列时,排列数可以用以下公式表示:P(n, r) = n! / (n-r)!其中,P(n, r)表示从n个元素中选取r个元素进行排列的总数,n!表示n的阶乘。

2. 组合公式组合是指从一个有限元素集合中选取若干元素,不考虑元素的顺序进行组合的方法。

当从n个不同元素中选取r个元素进行组合时,组合数可以用以下公式表示:C(n, r) = n! / [r! * (n-r)!]其中,C(n, r)表示从n个元素中选取r个元素进行组合的总数。

二、概率计算1. 概率公式概率是指某个事件在所有可能事件中发生的可能性大小。

一般用P(A)表示事件A的概率。

当事件 A、B 互斥且独立时,可以使用以下概率公式:P(A ∪ B) = P(A) + P(B)其中,P(A ∪ B)表示事件 A 或事件 B 发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。

2. 条件概率公式条件概率是指在已知事件 B 发生的条件下,事件 A 发生的概率。

可以使用以下条件概率公式计算:P(A|B) = P(A ∩ B) / P(B)其中,P(A|B)表示在事件 B 发生的条件下,事件 A 发生的概率,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B)表示事件 B 发生的概率。

3. 乘法定理乘法定理是指在一系列独立事件中,它们同时发生的概率等于每个事件发生的概率的乘积。

可以使用以下乘法定理计算:P(A ∩ B) = P(A) * P(B)其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。

4. 加法定理加法定理是指当两个事件互斥时,它们其中一个事件发生的概率等于两个事件发生概率的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 2014-2015学年度???学校4月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .192种 B .216种 C .240种 D .288种 2.从3名语文老师、4名数学老师和5名英语老师中选派5人组成一个支教小组,则语文、数学和英语老师都至少有1人的选派方法种数是( ) A .590 B .570 C .360 D .210 3.已知6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( ) (A )240种 (B )360种 (C )480种 (D )720种 4.有七名同学站成一排照毕业纪念照,其中小明必须站在正中间,并且小李、小张两位同学要站在一起,则不同的站法有( ) (A )192种 (B )120种 (C )96种 (D )48种
第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) 5.若用1,2,3,4,5,6,7这七个数字中的六个数字组成没有重复数字,且任何相邻两个数字的奇偶性不同的六位数,则这样的六位数共有 个(用数字作答). 6.用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,则涂色的方法共有 种。

7.如图,自然数列按正三角形图顺序排列,如数9排在第4行第3个位置;设数2015排在第m 行第n
三、解答题(题型注释)
8.甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满8局时停止.设甲在每局中获胜的概率为P (且各局胜负
相互独立.
(1)求P 的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望ξE .
9.为适应2012年3月23日公安部交通管理局印发的《加强机动车驾驶人管理指导意见》,某驾校将小型汽车驾照考试科目二的培训测试调整为:从10个备选测试项目中随机抽取4个,只有选中的4个项目均测试合格,科目二的培训才算通过.已知甲对108个测试项目完全有合格把握,而另2
个测试项目却根本不会.
(1)求甲恰有2个测试项目合格的概率;
(2)记乙的测试项目合格数为ξ,求ξ的分布列及数学期望()ξE .
10.某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累
. (1)求选手甲进入复赛的概率; (2)设选手甲在初赛中答题的个数为X ,试求X 的分布列和数学期望. 11.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,各局比赛结果相互独立. (Ⅰ)求甲在3局以内(含3局)赢得比赛的概率; (Ⅱ)记为比赛决出胜负时的总局数,求的分布列和数学期望. 12.抛掷A ,B ,C 三枚质地不均匀的纪念币,它们正面向上的概率如下表所示)10(<<a ; 将这三枚纪念币同时抛掷一次,设ξ表示出现正面向上的纪念币的个数. (1)求ξ的分布列及数学期望; (2)在概率)3,2,1,0)((==i i P ξ中,若)1(=ξP 的值最大,求a 的最大值 四、新添加的题型
参考答案
1.B
【解析】 试题分析:完成这件事件,可分两类:第一类,最前排甲,其余位置有12055=A 中不同的
排法;第二类,最前排乙,最后有4种排法,其余位置有2444=A 种不同的排法;所以共有
21644455=+A A 种不同的排法.
考点:1.分类加法计数原理;2.分步乘法计数原理;3.排列知识.
2.A
【解析】 试题分析:设语文老师人数为x ,数学老师人数为y ,英语老师人数为z ,则符合条件的各科人数有以下几种情况:(1,1,3),(1,3,1),(3,1,1),(1,2,2),(2,1,2),(2,2,1),选派方法种数为113131311122212221345345345345345345120602018012090590C C C C C C C C C C C C C C C C C C +++++=+++++=,选A.
考点:计数原理.
3.C
【解析】先排甲,有4种剩余5人全排列是120种,所以不同的就是4*120=480
4.A
【解析】 试题分析:令小李,小王在小明左侧,先排小李、小张两人,有22A 种站法,再取一人站左侧有1242
C A ⨯种站法,余下三人站右侧,有33A 种站法,同时小李,小王在小明右侧方法种数同左侧,综上所有的方法种数为:212324232192A C A A ⨯⨯⨯⨯=,所以答案为:A.
考点:1.特殊元素优先考虑;2.相邻元素捆绑法.
5.288
【解析】 试题分析:奇数字有1,3,5,7,偶数字有2,4,6,为使六个数字组成没有重复数字,且任何相
邻两个数字的奇偶性不同的六位数,应首先从1,3,5,7中任选3个排好,有3424A =种方法;
然后将2,4,6排入所造空中,有33212A =种方法,根据分步计数原理得
334322412288.A A ⨯=⨯=
考点:1.分步计数原理;2.简单排列问题.
6.240
【解析】
试题分析:先涂(3)有5种方法,再涂(2)有4种方法,再涂(1)有3种方法,最后涂
(4)有4种方法,所以共有5×4×3×4=240种涂色方法。

考点:排列、组合.
7. 125
【解析】 试题分析:由题设图中第n 行第n 个数为,当63n =时,所以2015排在第63行第62个,所以63,62,125m n m n ==+=
所以答案应填:125.
考点:合情推理.
8.(1)(2【解析】(1)依题意,当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛结束
12p > (2)依题意知,ξ的所有可能值为2,4,6,8
设每两局比赛为一轮,若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响
∴随机变量ξ的分布列为:
9【解析】
试题分析:(1)数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,二项分布的期望和方差:若()p n B ,~ξ,则()()()p np D np E -==1,ξξ;(2)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(3)求出分布列后注意运用分布
列的两条性质检验所求的分布列是否正确;(4)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算.
试题解析:解:(1)设甲的测试项目合格数为X,则(4,0.8)
X B, 1分
甲恰有2

(2)ξ的可能取值为2,3,4,ξ服从超几何分布, 5分



ξ
∴的分布列为

考点:1、求随机事件的概率;2、离散型随机变量的分布列和数学期望.
10.(1
【解析】
试题分析:(1)通过分析得出能通过复赛的条件是:答了3题都对,或答了4个题,前3个2对1错,第4次对;或答了5个题,前4个2对2错,第5次对.这三种情形都能进入复赛,知道这,就不难得出其概率了;(2)设选手甲在初赛中答题的个数为X,根据比赛规则答了X道题以后,结果有两种淘汰或进入复赛,这样如果X道中累计先达到对3条即进入复
赛,如果X 道中累计先达到错3条即遭淘汰,再根据解决(1)的方法,即可计算出X 的分布列和数学期望.
试题解析:(1)设选手甲答对每个题的概率为p ,则A ,则选手甲答了3题都对进入复赛概率为:或选手甲答了4个题,前3个2对1错,第4次对进入复赛或选手甲答了5个题,前4个2对2错,
第5次对进入复赛.所以选手甲进入复赛的概率
(2)X 的可能取值为3,4,5,对应X 的每个取值,选手甲被淘汰或进入复赛的概率
考点:独立重复实验的二项分布及期望计算.
11.(12【解析】
试题分析:(1)数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,二项分布的期望和方差:若()p n B ,~ξ,则()()()p np D np E -==1,ξξ;(2)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(3)求出分布列后注意运用分布列的两条性质检验所求的分布列是否正确;(4)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算.
试题解析:解:用事件i A 表示第i 局比赛甲获胜,则i A 两两相互独立 1


5,4,3,2 5(Ⅱ)的取值分别为,


.
考点:(1)求随机变量的概率;(2)求随机变量的分布列和数学期望.
12.(1)
(2
【解析】
试题分析:(1)由题意知本题是一个独立重复试验,先观察出随机变量ξ的所有可能取值,然后根据独立重复试验的概率公式写出随机变量ξ取不同值时的概率,进而写出分布列和期望.
(2)由题意知本题要使的P(ξ=1)的值最大,由题目最容易考虑到的一种方法是把P(ξ=1)的值同其他几个变量的概率值进行比做差比较,使得差大于零,解不等式组,得到a的取值范围,从而可得a的最大值.
∴ξ的数学期望为

考点:1.离散型随机变量及其分布列;2. 离散型随机变量的期望与方差;3.比较大小.。

相关文档
最新文档