排列组合与概率

合集下载

管综数学排列组合和概率

管综数学排列组合和概率

一、排列组合排列组合是管综数学中常见的题型,也是非常重要的知识点。

排列组合主要研究从一组元素中选取一定数量的元素,并按一定顺序排列或组合的数学方法。

排列组合的应用非常广泛,例如在统计学、概率论、计算机科学等领域都有着广泛的应用。

排列组合主要包括排列和组合两种。

排列是指从一组元素中选取一定数量的元素,并按一定顺序排列。

排列的计算公式为:P(n, r) = n(n-1)(n-2)...(n-r+1)其中,n为元素总数,r为选取元素的数量。

组合是指从一组元素中选取一定数量的元素,而不考虑元素的顺序。

组合的计算公式为:C(n, r) = frac{P(n, r)}{r!}其中,n为元素总数,r为选取元素的数量,r!表示r的阶乘。

二、概率概率是管综数学中另一个重要的知识点。

概率主要研究随机事件发生的可能性。

概率的计算公式为:P(E) = frac{n(E)}{n(U)}其中,P(E)表示事件E发生的概率,n(E)表示事件E发生的次数,n(U)表示样本空间中所有可能事件的次数。

概率的应用也非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。

三、排列组合和概率在管综考试中的应用排列组合和概率是管综数学中非常重要的知识点,也是管综考试中经常考查的题型。

排列组合和概率的应用非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。

因此,掌握排列组合和概率的知识对于管综考试的成功非常重要。

排列组合和概率在管综考试中的应用主要包括以下几个方面:* 计算排列和组合的数量。

* 计算事件发生的概率。

* 分析排列和组合的规律。

* 解决排列和组合的应用问题。

四、排列组合和概率的学习方法排列组合和概率是管综数学中比较难的知识点,因此需要掌握一定的学习方法才能学好排列组合和概率。

排列组合和概率的学习方法主要包括以下几个方面:* 理解排列组合和概率的基本概念。

* 掌握排列组合和概率的计算公式。

* 熟悉排列组合和概率的应用场景。

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计

高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计 数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式①排列数公式:An m(n n! n(n1) (nm1) (m ≤n)m)!A n n=n!=n(n―1)(n ―...2)21.·②组合数公式:Cn mn! n(n 1) (n m 1) (m ≤n).m!(n m)! m (m 1) 2 1③组合数性质:①C n mC n nm(m ≤n). ②C n 0C n 1C n 2C n n2n③Cn 0C n 2C n 4C n 1C n 32n12.二项式定理⑴二项式定理(a+b)n=C n 0a n+C 1n a n -1b+⋯+C n ra n -rb r+⋯+C n n b n,其中各项系数就是组合数C n r,展开r - r b r . 式共有n+1项,第r+1项是T r+1=C n a n⑵二项展开式的通项公式二项展开式的第r+1 项Tr+1=C n r a n -r b r(r=0,1, ⋯叫n)做二项展开式的通项公式。

⑶二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, r n r (r=0,1,2, ⋯,n). 即C n =C n②若n 是偶数,则中间项 (第n n项)的二项公式系数最大,其值为 C n 2;若n 是奇数, 12则中间两项(第n 1项和第n3 n1 n1项)的二项式系数相等,并且最大,其值为C n 2 =C n 2. 2 2③所有二项式系数和等于 2n,即C 0n +C 1n +C 2n +⋯+C nn =2n.④奇数项的二项式系数和等于偶数项的二项式系数和,10213n ―1 即C n +C n +⋯=C n +C n +⋯=2 . 3.概率(1)事件与基本事件:随机事件: 在条件下, 可能发生也可能不发生的事件S事件不可能事件:在条件下,一定不会发生的事件 确定事件 S必然事件:在条件下,一定会发生的事件 S基本事件:试验中不能再分的最简单的 “单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的; 试验中的任意事件都可以用基本事件或其和的形式来表示.( 2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件 的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:事件定义集合角度理解 关系事件 A 与B 不可能同时两事件交集为空事件A 与B 对立,则A互斥事件与B 必为互斥事件;发生事件 A 与B 不可能同时两事件互补 事件A 与B 互斥,但不对立事件一是对立事件 发生,且必有一个发生(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件 ”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的, 但古典概型问题中所有可能出现的 基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式:P(A)A 包含的基本事件的个数 .基本事件的总数构成事件A 的区域长度(面积或体积) 几何概型的概率计算公式: P (A ).试验全部结果构成的区域长度(面积或体积)两种概型概率的求法都是 “求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率P(A)的X 围为:0≤P(A)≤1.②互斥事件A 与B 的概率加法公式: P(AB)P(A) P(B).③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是p kkn―kn的展开式的第k+1 项.n (1 ―p).实际上,它就是二项式[(1 ―p)+p] (k)=C n p2(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为( X k )k k (1)nk(012 )P Cp p,k ,,,,nn.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4、统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,⋯,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k,当N(N为总体中的个体数,n为样本容量)是整数时,nk N;当N不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,n n这时k N;第三步,在第一段用简单随机抽样确定起始个体编号l,再按事先确定的规则n抽取样本.通常是将l加上间隔 k得到第2个编号(l k),将(l k)加上k,得到第3个编号(l 2k),这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.(2)用样本估计总体样本分布反映了样本在各个X围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.3①用样本频率分布估计总体频率分布时, 通常要对给定一组数据进行列表、作图处理.作 频率分布表与频率分布直方图时要注意方法步骤. 画样本频率分布直方图的步骤: 求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点: 一是所有的信息都可以从图中得到; 二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程1 n 2.有时也用标准差的平方———方差来代替标准差,度,其计算公式为s(x i x)ni1两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值, 获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系 时 ,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大致分布在通过散点图中心的一条直线附近, 那么就说这两个变量之间具有线性相关关系, 这 条直线叫做回归直线, 其对应的方程叫做回归直线方程. 在本节要经常与数据打交道, 计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:n n 2;第一步:先把数据制成表,从表中计算出 ,, x i y i , xy x ii1 i1 第二步:计算回归系数的 a ,b ,公式为n n nn x i y i ( x i )( y i ) b i 1 i1 i 1 , n 2 n x i )2n x i (i 1 i 1a y ;bx第三步:写出回归直线方程y bxa . (4)独立性检验①22 列联表:列出的两个分类变量 X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2}的 样本频数表称为 2 2列联表1分类y1 y2 总计x1 a b a bx2cdc d总计 a c b da bcd构造随机变量K2(an(ad bc)2d)(其中n ab cd)b)(c d)(a c)b4得到K2的观察值k常与以下几个临界值加以比较:如果k 2.706,就有9000的把握因为两分类变量X和Y是有关系;如果k 3.841 就有9500的把握因为两分类变量如果k 6.635 就有9900的把握因为两分类变量如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:X和Y是有关系;X和Y是有关系;X和Y是有关系.①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

数学中的排列组合与概率计算

数学中的排列组合与概率计算

数学中的排列组合与概率计算排列组合与概率计算是数学中重要的概念和工具,广泛应用于各个领域,包括统计学、物理学、计算机科学等。

本文将介绍排列组合与概率计算的基本概念和方法,并探讨它们在实际问题中的应用。

一、排列组合的基本概念1.1 排列排列是从一组元素中选取若干元素按一定顺序排列的方式。

对于n 个不同的元素,从中选取m个元素进行排列,可以表示为P(n,m)。

排列的计算公式为:P(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。

1.2 组合组合是从一组元素中选取若干元素不考虑顺序的方式。

对于n个不同的元素,从中选取m个元素进行组合,可以表示为C(n,m)。

组合的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、概率计算的基本原理概率是用来描述事件发生可能性的数值,它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。

概率计算基于排列组合的概念和原理,通过对事件的样本空间和事件的发生情况进行计数和分析,来得出事件发生的概率。

2.1 样本空间样本空间是指一个随机试验的所有可能结果的集合。

例如,掷一枚普通的硬币,它的样本空间包括正面和反面两个可能的结果。

2.2 事件事件是样本空间的子集,表示我们关心的某种结果。

例如,掷一枚硬币出现正面是一个事件。

2.3 概率概率是事件发生的可能性。

对于一个随机试验和事件,概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的发生情况数,n(S)表示样本空间的元素个数。

三、排列组合与概率计算的应用排列组合和概率计算在各个领域都有广泛的应用。

下面以几个具体的例子说明它们的具体应用。

3.1 组合在概率计算中的应用在扑克牌游戏中,计算一个牌型的概率就可以使用组合的概念。

高考数学排列组合与概率计算重点清单

高考数学排列组合与概率计算重点清单

高考数学排列组合与概率计算重点清单一、背景介绍在高考数学中,排列组合和概率计算是不可忽视的重要内容。

掌握了这两个知识点,可以帮助学生在考试中获得更好的成绩。

本文将为大家列出高考数学排列组合与概率计算的重点清单,帮助大家快速掌握这些知识点。

二、排列组合的重点1. 排列的定义和运算法则- 不重复元素的全排列:n!- 重复元素的全排列:n!/(n1!×n2!×...)- 部分相同元素的排列:n!/(n1!×n2!×...),其中n1、n2等表示重复出现的元素个数2. 组合的定义和运算法则- 不重复元素的组合:C(n, k) = n!/(k!(n-k)!)- 重复元素的组合:C(n+k-1, k-1)- 全部选或全不选的方案数:2^n3. 排列组合的应用- 在几何问题中,通过排列组合可以确定数量关系、判断位置关系等- 在概率问题中,通过排列组合可以计算事件发生的概率- 在工程问题中,通过排列组合可以计算不重复的方案数三、概率计算的重点1. 事件的概率定义- 事件发生的概率:P(A) = n(A)/n(S),其中n(A)为事件A发生的可能性,n(S)为样本空间中的所有可能性数- 事件的对立事件:P(A') = 1-P(A)- 事件的必然事件:P(S) = 1,其中S为样本空间2. 概率的运算性质- 事件的和事件概率:P(A∪B) = P(A) + P(B) - P(A∩B)- 事件的积事件概率:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率3. 条件概率与独立事件- 条件概率的计算:P(A|B) = P(A∩B)/P(B)- 事件的独立性:如果P(A∩B) = P(A) × P(B),则事件A与事件B 相互独立4. 一些常见的概率问题- 排列组合与概率计算相结合的问题- 球与盒子问题、扑克牌问题等四、总结通过本文的介绍,我们了解到高考数学中排列组合与概率计算的重点知识点,这些内容对于考生来说至关重要。

[数量关系] 排列组合与概率问题

[数量关系] 排列组合与概率问题

[数量关系] 排列组合与概率问题[数量关系]排列组合与概率问题排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。

公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。

在现实生活中我们经常会遇到排座次、分配任务等问题,用到的都是排列组合原理,即便是最简单的概率问题也要利用排列组合原理计算。

与此同时,排列组合中还有很多经典问题模型,其结论可以帮助我们速解该部分题型。

一、基础原理二、基本解题策略面对排列组合问题常用以下三种策略解题:1.合理分类策略①类与类之间必须互斥(互不相容);②分类涵盖所有情况。

2.准确分步策略①步与步之间互相独立(不相互影响);②步与步之间保持连续性。

3.先组后排策略当排列问题和组合问题相混合时,应该先通过组合问题将需要排列的元素选择出来,然后再进行排列。

【例题1】班上从7名男生和5名女生中选出3男2女去参加五个竞赛,每个竞赛参加一人。

问有多少种选法?A.120B.600C.1440D.42000中公解析:此题答案为D。

此题既涉及排列问题(参加五个不同的竞赛),又涉及组合问题(从12名学生中选出5名),应该先组后排。

三、概率问题概率是一个介于0到1之间的数,是对随机事件发生可能性的测度。

概率问题经常与排列组合结合考查。

因此解决概率问题要先明确概率的定义,然后运用排列组合知识求解。

1.传统概率问题2.条件概率在事件B已经发生前提下事件A发生的概率称为条件概率,即A在B条件下的概率。

P(AB)为AB同时发生的概率,P(B)为事件B单独发生的概率。

【例题3】小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。

小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。

问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?排列组合与概率问题在国家公务员考试中出现频率较大,几乎每年都会考查该类题型。

公务员的日常工作更多涉及到统计相关知识,因此这部分题型会愈加被强调。

高中数学研究数学中的排列组合与概率

高中数学研究数学中的排列组合与概率

高中数学研究数学中的排列组合与概率在高中数学课程中,排列组合与概率是重要的概念,它们在实际生活中有着广泛的应用。

本文将深入探讨排列组合与概率的概念、性质和应用,并展示它们在解决问题中的实际意义。

一、排列组合1. 排列的概念排列是指从给定的元素中选取一部分进行排列,按照一定的顺序进行排列。

在排列中,元素的顺序是重要的。

对于n个不同的元素,选择r个进行排列的方法数可以用P(n,r)来表示。

排列的计算公式为:P(n,r) = n! / (n-r)!其中,!表示阶乘,即n! = n×(n-1)×(n-2)×...×2×1。

2. 组合的概念组合是指从给定的元素中选取一部分进行组合,元素的顺序不重要。

对于n个不同的元素,选择r个进行组合的方法数可以用C(n,r)来表示。

组合的计算公式为:C(n,r) = n! / (r!(n-r)!)3. 排列组合的性质排列和组合有一些重要的性质,可以利用这些性质简化计算和问题的解决。

(1)互补原则:P(n,r) = n! / (n-r)! = n × (n-1) × (n-2) × ... × (n-r+1),C(n,r) = n! / (r!(n-r)!) = P(n,r) / r!(2)相同元素的排列:如果有n个元素中有m1个相同,m2个相同,...,mk个相同,那么排列的方法数可表示为P(n, n) / (m1! × m2! × ... × mk!)。

(3)0的阶乘:0! 等于1。

二、概率1. 概率的概念概率是研究随机事件发生可能性或可能性大小的数学方法。

概率的范围在0-1之间,事件发生的概率越高,其值越接近于1;事件发生的概率越低,其值越接近于0。

随机事件的概率可以用P(A)来表示,其中A表示随机事件。

2. 概率的计算(1)古典概型:对于有限个样本点的等可能概率试验,事件A发生的概率可以通过计算满足事件A的样本点的数量除以总样本点的数量来计算。

概率与排列组合问题的求解思路

概率与排列组合问题的求解思路

概率与排列组合问题的求解思路概率与排列组合是初中数学中的重要内容,也是中学生常常遇到的难点。

在解决这类问题时,我们需要掌握一些基本的思路和方法。

本文将通过具体的例子,详细介绍概率与排列组合问题的求解思路,帮助中学生和他们的父母更好地理解和应用这些知识。

一、概率问题的求解思路概率问题是我们在日常生活中经常遇到的,比如抛硬币、掷骰子等。

在解决概率问题时,我们需要明确事件的总数和有利事件的总数,从而计算出概率。

举个例子,假设有一个装有10个红球和5个蓝球的袋子,从中随机取出一个球。

求取到红球的概率。

解题思路:1. 确定事件的总数:袋子中共有15个球,所以事件的总数为15。

2. 确定有利事件的总数:袋子中有10个红球,所以有利事件的总数为10。

3. 计算概率:概率等于有利事件的总数除以事件的总数,即10/15=2/3。

通过上述例子,我们可以看到解决概率问题的关键在于确定事件的总数和有利事件的总数,并进行相应的计算。

二、排列组合问题的求解思路排列组合问题是数学中的经典问题,涉及到对一组元素进行排列或组合的方式。

在解决排列组合问题时,我们需要根据问题的具体要求,选择合适的方法进行求解。

举个例子,假设有5个人参加比赛,其中有3个奖项,求获奖的可能性。

解题思路:1. 确定问题的类型:根据题目要求,这是一个组合问题,因为我们只关心获奖的人,而不关心他们获得奖项的顺序。

2. 确定元素的总数和要选择的个数:参赛人数为5人,要选择的个数为3个。

3. 使用组合公式进行计算:组合公式为C(n,m)=n!/(m!(n-m)!),其中n为元素的总数,m为要选择的个数。

代入数据计算得到C(5,3)=10。

4. 得出结论:获奖的可能性有10种。

通过上述例子,我们可以看到解决排列组合问题的关键在于确定问题的类型,选择合适的方法进行计算,并根据具体的要求得出结论。

综上所述,概率与排列组合问题的求解思路需要掌握一些基本的方法和技巧。

在解决概率问题时,我们需要确定事件的总数和有利事件的总数,并进行相应的计算;在解决排列组合问题时,我们需要确定问题的类型,选择合适的方法进行计算,并根据具体的要求得出结论。

排列组合与概率

排列组合与概率

第十三章 排列组合与概率一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。

4.N 个不同元素的圆周排列数为nA n n =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)kn k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三: 排列、组合及二项式定理一、排列、组合与二项式定理【基础知识】1.分类计数原理(加法原理)12n N m m m =+++.2.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.3.排列数公式 m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m ≤n). 4.组合数公式 mn C =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m ≤n). 5.组合数的两个性质:(1) m n C =m n nC - ; (2) m n C +1-m nC =m n C 1+ (3)1121++++=++++r n r n r r r r r r C C C C C .6.排列数与组合数的关系是:m m n n A m C =⋅! .7.二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式:r r n r n r b a C T -+=1)210(n r ,,, =.【题例分析】例1、从6名短跑运动员中选4人参加4×100米接力,如果其中甲不跑第一棒,乙不跑第四棒,问共有多少种参赛方法?解法:问题分成三类:(1)甲乙二人均不参加,有44A 种;(2)甲、乙二人有且仅有1人参加,有234C (44A -33A )种;(3)甲、乙二人均参加,有24C (44A -233A +22A )种,故共有252种.点评:对于带有限制条件的排列、组合综合题,一般用分类讨论或间接法两种.例2: 有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生.(2)某女生一定要担任语文科代表.(3)某男生必须包括在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先取后排,有13452335C C C C +种,后排有55A 种,共有5513452335)(A C C C (C+=5400种.(2)除去该女生后先取后排:8404447=A C 种.(3)先取后排,但先安排该男生:3360441447=A C C 种.(4)先从除去该男生该女生的6人中选3人有36C 种,再安排该男生有13C 种,其余3人全排有33A 种,共331336A C C =360种.例3、、有6本不同的书(1)甲、乙、丙3人每人2本,有多少种不同的分法?(2)分成3堆,每堆2本,有多少种不同的分堆方法?(3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少不同的分配方法?(5)分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法?(6)摆在3层书架上,每层2本,有多少种不同的摆法?解:(1)在6本书中,先取2本给甲,再从剩下的4本书中取2本给乙,最后2本给丙,共有90222426=⋅⋅C C C (种)。

(2)6本书平均分成3堆,用上述方法重复了33A 倍,故共有15332426=⋅A C C (种)。

(3)从6本书中,先取1本做1堆,再在剩下的5本中取2本做一堆,最后3本做一堆,共有60332516=⋅⋅C C C (种)(4)在(3)的分堆中,甲、乙、丙3人任取一堆,故共有36033332516=⋅⋅⋅A C C C (种)。

(5)平均分堆要除以堆数的全排列数,不平均分堆则不除,故共有15221516=⋅A C C (种)。

(6)本题即为6本书放在6个位置上,共有72066=A (种)。

例4、如果在n x x ⎪⎪⎭⎫ ⎝⎛+421 的展开式中,前三项的系数成等差数列,求展开式中的有理项。

解:展开式中前三项的系数分别为1,2n ,8)1(-n n , 由题意得:2×2n =1+8)1(-n n 得n =8。

设第r+1项为有理项,43168121r r r r x c T -+⋅⋅=,则r 是4的倍数,所以r=0,4,8。

有理项为295412561,835,xT x T x T ===。

【巩固训练】一.选择题:每小题给出的四个选项中只有一项是符合题目要求的,把它选出填在题后的括号内.1、设k =1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是A 10B 40C 50D 80.2、某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分.一球队打完15场,积33分.若不考虑顺序,该队胜、负、平的情况共有A 3种B 4种C 5种D 6种.二.填空题:把正确答案填写在题中的横线上.3、将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)4、设()()()()()9922105433321+++++++=++x a x a x a a x x 则()286420a a a a a ++++―()=++++297531a a a a a 三.解答题:(解答应写文字说明,证明过程或演算步骤)5、(1)10个优秀指标分配给6个班级,每班至少一个,共有多少种不同的分配方法?(2)10个优秀名额分配到一、二、三3个班,若名额数不少于班级序号数,共有多少种不同的分配方法?6、若()432-x =44332210x a x a x a x a a ++++,求(1)()2420a a a ++―()231a a +的值。

(2)3210a a a a +++的值。

二、等可能事件的概率【基础知识】 等可能性事件的概率()m P A n=. 【题例分析】例1、 某班有学生36人,血型分别为A 型12人,B 型10人,AB 型8人,O 型6人,现从中抽出2人,求这两人血型不相同的概率.解:P(两人血型相同)=P(两人血型均为A 型)+P(两人血型均为B 型)+P(两人血型均为AB 型)+P(两人血型均为O 型)=45112362628210212=+++C C C C C . 所以,P(两人血型不同)=1-45344511=. 点拨:从四种血型中抽出2种有C 24=6种,依次分类则情形较复杂,所以本题用间接法较简便.例2、从男、女学生共有36名的班级中,任意选出两名委员,任何人都有同样的机会当选,如果选得同性委员的概率等于21,求男、女相差几名? 解:设男生有x 名,则女生有36-x 名,选得2名委员都是男性的概率为2362C C x =3536)1(⨯-x x .选得两名委员都是女性的概率为236236C C x-=3536)35)(36(⨯--x x . 以上两种选法是互斥的,所以选得两名委员是同性委员的概率等于其概率和. 依题意3536)1(⨯-x x +3536)35)(36(⨯--x x =21.解得x =15或x =21. 即该班男生有15名,女生有36-15=21人或者男生有21人,女生有36-21=15人,总之,男女相差6名.例3、在袋中装30个小球,其中彩球有n 个红色,5个蓝色,10个黄色,其余为白色,求:(1)如果已经从中取定了5个黄球和3个蓝球,并将它们编上了不同的号码后排成一排,那么使蓝色小球不相邻的排法有多少种?(2)如果从袋中取出3个都是颜色相同的彩球(不含白色)的概率是40613,且n ≥2,计算红球有几个?(3)根据(2)的结论,计算从袋中任取3个小球至少有一个红球的概率?解:(1)将5个黄球排成一排共有A 55种排法,将3个蓝球放在5个黄球所形成的6个空位上,有A 36种排法.∴所求的排法为A 55·A 36=14400(种).(2)取3个球的种数为C 330=4060,设“3个球全是红色”为事件A ,“3个球全是蓝色”为事件B.“3个球都是黄色”为事件C ,则P(B)=40601033035=C C ,P(C)=4060120330310=C C . ∵A 、B 、C 彼此互斥,∴P(A +B +C)=P(A)+P(B)+P(C),即40613=P(A)+4060120406010+.∴P(A)=0,即取3个球,是红球的个数小于或等于2. 又∵n ≥2,故n =2.(3)记“3个球至少有一个是红球”为事件D ,则D 为“3个球中没有红球”,则 P(D)=1-P(D )=1-330328C C =14528. 例4、一种电器控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入一箱,为了找出该箱中的二等品,我们把该箱中产品逐一取出进行测试.(1)求前两次取出都是二等品的概率;(2)求第二次取出的是二等品的概率;解:(1)四件产品逐一取出方式共有A 44种不同方式.前两次取出都是二等品的方式共有A 22·A 22种不同方式.所以前两次取出都是二等品的概率为: 61442222=A A A(2)第二次取出是二等品共有:3312A C ,所以第二次取出是二等品的概率是:21443312=A A C【巩固训练】一.选择题:每小题给出的四个选项中只有一项是符合题目要求的,把它选出填在题后的括号内.1、数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ) 12519D 12518C 12516B 12513A 、 、 、 、 2、将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是(A)5216 (B)25216 (C)31216 (D)91216二.填空题:把正确答案填写在题中的横线上.3、袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .4、一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇。

若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________三.解答题:(解答应写文字说明,证明过程或演算步骤)5、8支球队中有3支弱队,以抽签的方式将这8支球队分为A、B两组,每组4支,求:(1)A、B两组中有一组恰有两支弱队的概率;(2)A组中至少有两支弱队的概率.6、有一个表面都涂有红颜色的正方体,被均匀地锯成了1000个小正方体,将这些正方体混合后,放入一个口袋内.(1)从该袋中任抽取一个正方体,恰有两个面涂有红色的概率是多少?(2)从袋中任取两个正方体,其中至少有一个面上有红色的概率是多少?三、互斥事件的概率【基础知识】1、 (1)互斥事件:不可能同时发生的两个事件叫互斥事件.(2)对立事件:两个事件必有一个发生的互斥事件叫对立事件.2.重点公式(1)如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).(2)对立事件的概率和等于1.P(P)+P(A)=P(A+A)=1.【题例分析】例1、甲、乙二人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个.甲、乙二人各抽一题:(1)求甲抽到选择题,乙抽到判断题的概率;(2)求甲、乙两人中至少一人抽到选择题的概率.解:(1)甲抽到选择题、乙抽到判断题的可能结果有C16·C14个,又甲、乙依次抽到一题的可能结果有C110C19个,所以,所求概率为:199101416CCCC=154.(2)甲、乙二人依次都抽到判断题的概率为191101314C C C C ,故甲、乙二人中至少有一人抽到选择题的概率为:1-191101314C C C C =1-9012=1-152=1513. 例2、某射手在一次射击中命中9环的概率是0.28,命中8环的概率是0.19,不够8环的概率是0.29.计算这个射手在一次射击中命中9环或10环的概率.解:设这个射手在一次射击中命中10环或9环为事件A ,命中10环、9环、8环以及不够8环的事件分别记为A 1、A 2、A 3、A 4.∵A 2、A 3、A 4彼此互斥,∴P (A 2+A 3+A 4)=P(A 2)+P(A 3)+P(A 4)=0.28+0.19+0.29=0.76.又∵A 1=432A A A ++,∴P(A 1)=1-P (A 2+A 3+A 4)=1-0.76=0.24.∵A 1与A 2互斥,∴P (A )=P (A 1+A 2)=P (A 1)+P (A 2)=0.24+0.28=0.52.故这个射手在一次射击中命中10环或9环的概率为0.52.例3、袋中放有3个伍分硬币,3个贰分硬币和4个壹分硬币,从中任取3个,求总值超过8分的概率.解:记“总值超过8分”为事件A ,它应有四种情况:(1)“取到3个伍分硬币”为事件A 1;(2)“取到2个伍分和一个贰分硬币”为事件A 2;(3)“取到2个伍分和一个壹分硬币”为事件A 3;(4)“取到一个伍分硬币和2个贰分硬币”为事件A 4.则P(A 1)=31033C C =1201. P(A 2)=3101323C C C =403. P(A 3)=3101423C C C =101. P(A 4)=3102313C C C =403. 依题意,A 1、A 2、A 3、A 4彼此互斥,∴P(A)=P(A 1+A 2+A 3+A 4)=P(A 1)+P(A 2)+P(A 3)+P(A 4)=12031 例(Ⅱ)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问该商场是否需要增加结算窗口?解:(I )每天不超过20人排队结算的概率为:P=0.1+0.15+0.25+0.25=0.75,即不超过20人排队结算的概率是0.75.(Ⅱ)每天超过15人排队结算的概率为:0.25+0.2+0.05=21, 一周7天中,没有出现超过15人排队结算的概率为707)21(C ; 一周7天中,有一天出现超过15人排队结算的概率为617)21)(21(C ; 一周7天中,有二天出现超过15人排队结算的概率为5227)21()21(C ; 所以有3天或3天以上出现超过15人排队结算的概率为:75.012899])21()21()21)(21()21([152********>=++-C C C , 所以,该商场需要增加结算窗口.【巩固训练】一.选择题:每小题给出的四个选项中只有一项是符合题目要求的,把它选出填在题后的括号内.1、如果A 、B 两个事件互斥,那么( )A.A+B 是必然事件B.A +B 是必然事件C.A 与B 一定互斥D.A 与B 一定不互斥2、在第3、6、16路公共汽车的一个停靠站,假定这个车站只能停靠一辆汽车,有一位乘客需5分钟之内赶到厂里,他可乘3路或6路车到厂里,已知3路车,6路车在5分钟内到此车站的概率分别为0.2和0.6,则此乘客在5分钟内能乘到所需车的概率为( )A.0.2B.0.6C.0.8D.0.12二.填空题:把正确答案填写在题中的横线上.3、甲、乙两人下成和棋的概率为21,乙获胜的概率为31,则乙不输的概率为_______. 4、有两个口袋,甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,现从两袋中各取一只球,则两球颜色相同的概率为_______.三.解答题:(解答应写文字说明,证明过程或演算步骤)5、已知袋中装有红色球3个、蓝色球2个、黄色球1个,从中任取一球确定颜色后再放回袋中,取到红色球后就结束选取,最多可以取三次,求在三次选取中恰好两次取到蓝色球的概率.6、掷两个骰子,出现点数之和为4点或5点或偶数点的概率是多少?四、独立事件的概率【基础知识】1.独立事件A ,B 同时发生的概率P(A ·B)= P(A)·P(B).2.n 个独立事件同时发生的概率 P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).3.(不要求记忆)n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n k n n P k C P P -=-【题例分析】例1、某产品检验员检查每一件产品时,将正品错误地鉴定为次品的概率为0.1,将次口错误地鉴定为正品的概率为0.2,如果这位检验员要鉴定4件产品,这4件产品中3件是正品,1件是次品,试求检验员鉴定成正品,次品各2件的概率.解:有两种可能:将原1件次品仍鉴定为次品,原3件正品中1件错误地鉴定为次品;将原1件次品错误地鉴定为正品,原3件正品中的2件错误地鉴定为次品. 概率为P =9.01.02.09.01.08.0223213⨯⨯⨯+⨯⨯⨯C C =0.1998例2、已知两名射击运动员的射击水平,让他们各向目标靶射击10次,其中甲击中目标7次,乙击中目标6次,若在让甲、乙两人各自向目标靶射击3次中,求:(1)甲运动员恰好击中目标2次的概率是多少?(2)两名运动员都恰好击中目标2次的概率是多少?(结果保留两位有效数字)解. 甲运动员向目标靶射击1次,击中目标的概率为7/10=0.7乙运动员向目标靶射击1次,击中目标的概率为6/10=0.6(1)甲运动员向目标靶射击3次,恰好都击中目标2次的概率是44.0)7.01(7.01223=-⨯⨯c(2)乙运动员各向目标靶射击3次,恰好都击中目标2次的概率是[][]19.0)6.01(6.0)7.01(7.012231223=-⋅⋅⋅-⋅⋅c c 例3、冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等.(Ⅰ)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率;(Ⅱ)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率.解:(I )12821)1()5(25577=-=P P C P . (II )P 6(5)+P 5(5)+P 4(4) =C 65P 5(1-P)+C 55P 5+C 44P 4=163 例4、有一批产品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂,已知每项指标抽检是相互独立的,每项指标抽检出现不合格品的概率都是0.2。

相关文档
最新文档