2015-2016学年浙江省温州市绣山中学九年级上学期期末数学试卷
温州市九年级上册期末数学数学试卷

温州市九年级上册期末数学数学试卷一、选择题1.已知3sin2α=,则α∠的度数是()A.30°B.45°C.60°D.90°2.若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.3cm B.6cm C.12cm D.24cm3.已知△ABC,以AB为直径作⊙O,∠C=88°,则点C在()A.⊙O上B.⊙O外C.⊙O内4.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个B.2个C.3个D.4个5.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A.B.C.D.6.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.3m C.150m D.37.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A .3B .33C .6D .98.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( )A .y =2(x+1)2+4B .y =2(x ﹣1)2+4C .y =2(x+2)2+4D .y =2(x ﹣3)2+49.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 10.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大.A .2x <B .2x >C .0x <D .0x >11.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )A .摸出黑球的可能性最小B .不可能摸出白球C .一定能摸出红球D .摸出红球的可能性最大 12.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80° 13.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 14.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 15.如图,点P (x ,y )(x >0)是反比例函数y=k x(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题16.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.17.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.18.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.19.数据2,3,5,5,4的众数是____.20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.21.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;22.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.23.点P 在线段AB 上,且BP AP AP AB=.设4AB cm =,则BP =__________cm . 24.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.25.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.26.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.27.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.29.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
浙江省温州市九年级(上)期末数学试卷

第 2 页,共 19 页
A. 点 C
B. 点 D
C. 点 E
二、填空题(本大题共 8 小题,共 24.0 分)
D. 点 F
11.
已知������
������
=
4,则������−������=______.
3
������
12. 将抛物线 y=x2+2 向上平移 1 个单位后所得新抛物线的表达式为______.
18. 如图,四边形 ABDC 内接于半圆 O,AB 为直径,AD 平分∠CAB,AB-AC=4,AD=3 7,作 DE⊥AB 于点 E, 则 BE 的长为______,AC 的长为______.
三、解答题(本大题共 6 小题,共 46.0 分) 19. 有 4 张卡片,正面分别写上 1,2,3,4,它们的背面都相同.现将它们背面朝上,
D. ������ < ������ < ������
8. 如图,圆上有两点 A,B,连接 AB,分别以 A,B 为 圆心,AB 的长为半径画弧,两弧相交于点 C,D,CD 交 AB 于点 E,交������������于点 F.若 EF=1,AB=6,则该 圆的半径长是( )A. 4来自B. 5C. 6
先从中任意摸出一张,卡片不放回,再任意摸出一张. (1)请用树状图或列表法表示出所有可能的结果. (2)求摸出的两张卡片上的数之和大于 5 的概率.
20. 如图,△ABC 内接于⊙O,请用直尺和圆规按要求作图(保留作图痕迹). (1)在图 1 中画出一个圆心角,所作角的度数是∠ACB 的 2 倍. (2)在图 2 中画出一个圆周角,所作角的度数是∠ACB 的 2 倍.
23. 小张准备给长方形客厅铺设瓷砖,已知客厅长 AB=8m,宽 BC=6m,现将其划分成 一个长方形 EFGH 区域 I 和环形区域Ⅱ,区域Ⅰ用甲、乙瓷砖铺设,其中甲瓷砖铺 设成的是两个全等的菱形图案,区域Ⅱ用丙瓷砖铺设,如图所示,已知 N 是 GH 中 点,点 M 在边 HE 上,HN=3HM,设 HM=x(m). (1)用含 x 的代数式表示以下数量. 铺设甲瓷砖的面积为______m2. 铺设丙瓷砖的面积为______m2. (2)若甲、乙、丙瓷砖单价分别为 300 元/m2,200 元/m2,100 元/m2,且 EF≥FG+2,铺设好整个客厅,三种瓷砖总价至少需要多少钱?
初三上数学期末试卷及答案(K12教育文档)

(完整word)初三上数学期末试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)初三上数学期末试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)初三上数学期末试卷及答案(word版可编辑修改)的全部内容。
)))2018—2019学年度第一学期期末考试九年级数学(试题卷)2016.1一、选择题(本大题共10小题,每题3分,共30分.)1.如果一个一元二次方程的根是x1=x2=1,那么这个方程是……………………………………(▲)A.(x+1)2=0 B.(x-1) 2=0 C.x2=1 D.x2+1=02.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是(▲) A.平均数是80 B.极差是15 C.中位数是75 D.方差是253。
已知⊙O的半径是5,直线l是⊙O的切线,P是l上的任一点,那么下列结论正确的是……(▲)A. 0<OP<5 B.OP=5 C.OP>5 D.OP≥54。
二次函数y=x2-2x+3的图像的顶点坐标是………………………………………………………(▲) A.(1,2)B.(1,6) C.(-1,6) D.(-1,2)5。
已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是…………………………………(▲)A.30πcm2B.15πcm2 C.15π2cm2D.10πcm26.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是………………………(▲)A.k>-1 B.k≥-1 C.k<-1 D.k≤-17.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,下列结论正确的是……………………(▲) A.sin A=错误!B.tan A=错误!C.cos B=错误!D.tan B=错误!8。
浙江省温州市九年级上学期期末数学试卷

浙江省温州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A . 正方体B . 球C . 圆锥D . 圆柱体2. (2分) (2017九上·鄞州月考) 下列事件是必然事件的是()A . 三点确定一个圆B . 三角形内角和180度C . 明天是晴天D . 打开电视正在放广告3. (2分)(2014·遵义) 如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A .B .C .D .4. (2分) (2019八下·苏州期中) 在反比例函数的图像上有三点(,),(,),(,)若>>0>,则下列各式正确的是()A . >>B . >>C . >>D . >>5. (2分)(2017·深圳模拟) 下列命题为真命题的是A . 有两边及一角对应相等的两个三角形全等B . 方程x2+2x+3=0有两个不相等的实数根C . 面积之比为1∶2的两个相似三角形的周长之比是1∶4D . 顺次连接任意四边形各边中点得到的四边形是平行四边形6. (2分)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD 的值等于()A . OM的长B . 20M的长C . CD的长D . 2CD的长7. (2分)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A . BC,∠ACBB . DE,DC,BCC . EF,DE,BDD . CD,∠ACB,∠ADB8. (2分)如图所示图形中,是由一个矩形沿顺时针方向旋转90°后所形成的图形的是()A . (1)(4)B . (2)(3)C . (1)(2)D . (2)(4)9. (2分)一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A . 记B . 观C . 心D . 间10. (2分)一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为()A . 2B . 3C . 4D . 511. (2分)(2019·赤峰模拟) 某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确是()A . 289(1﹣x)2=256B . 256(1﹣x)2=289C . 289(1﹣2x)2=256D . 256(1﹣2x)2=28912. (2分) (2017八下·武进期中) 在菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A . 13B . 52C . 120D . 24013. (2分)(2018·道外模拟) 点A(-1,y1),B(-2,y2)在反比例函数y=的图象上,则y1 , y2的大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 不能确定14. (2分) (2020九上·厦门期中) 已知抛物线y=ax2+bx+c(a≠0)是由抛物线y=﹣x2+x+2先作关于y 轴的轴对称图形,再将所得到的图象向下平移3个单位长度得到的,点Q1(﹣2.25,q1),Q2(1.5,q2)都在抛物线y=ax2+bx+c(a≠0)上,则q1 , q2的大小关系是()A . q1>q2B . q1<q2C . q1=q2D . 无法确定二、填空题 (共5题;共5分)15. (1分)(2020·重庆模拟) 计算: ________.16. (1分) (2020九上·越城月考) 一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4 s落地,则足球距地面的最大高度是________m.17. (1分)(2018·苏州模拟) 如图,正五边形的边长为2,连接对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,给出下列结论:①∠AME=108°;② ;③MN= ;④ .其中正确结论的序号是________.18. (1分)点A(x1 , y1)、B(x2 , y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是________.19. (1分)(2019·颍泉模拟) 如图,CD=4,∠C=90°,点B在线段CD上,,沿AB所在的直线折叠△ACB得到△AC′B,若△DC′B是以BC'为腰的等腰三角形,则线段CB的长为________.三、解答题 (共7题;共48分)20. (5分)已知x=1是关于x的方程ax2+bx﹣3=0(a>0)的一根.(1)求a+b的值;(2)若b=2a,x1和x2是方程的两根,求x1+x2的值.21. (6分) (2020九上·苏州期末) 在一个不透明的口袋中有标号为1,2,3,4的四个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球(1)摸出一个球,摸到标号为偶数的概率为________.(2)从袋中不放回地摸两次,用列表或树状图求出两球标号数字为一奇一偶的概率.22. (5分)如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)CG=BH,(2)FC2=BF·GF,(3)=.23. (7分)【阅读理解】对于任意正实数a、b,∵ ≥0,∴a﹣≥0,∴a+b≥2 ,只有当a=b时,等号成立.(1)【获得结论】在a+b≥2 (a、b均为正实数)中,若ab为定值p,则a+b≥2 ,只有当a=b 时,a+b有最小值2 .根据上述内容,回答下列问题:若m>0,只有当m=________时,m+ 有最小值________.(2)【探索应用】如图,已知A(﹣3,0),B(0,﹣4),P为双曲线上的任意一点,过点P 作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.24. (5分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.25. (10分) (2019九上·宝应期末) 如图,点E、F分别是正方形ABCD的边BC、CD上的动点,连结AE、EF.(1)若点E是BC的中点,CF:FD=1:3,求证:△ABE∽△ECF;(2)若AE⊥EF,设正方形的边长为6,BE=x,CF=y.当x取什么值时,y有最大值?并求出这个最大值.26. (10分) (2017九上·东台期末) 如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.(1)求这个二次函数的解析式(2)设该二次函数的对称轴与轴交于点C,连结BA、BC,求△ABC的面积。
2015学年第一学期期末试卷(浙教九年级,含答案)

2015学年第一学期期末试卷《九年级数学》(时间:90分钟 满分:120)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 一.选择题(每小题3分,共30分)1.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ▲ ) A .8 B .8 C .10 D .5 2.若两个相似三角形的面积之比为1:4,则它们的周长之比为( ▲ )A .1:2B .1:4C .1:5D .1:16 3.对于反比例函数xy 1=,下列说法正确的是( ▲ )A .图象经过(1,-1)B .图象位于第二,四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.如果P 1(-1, y 1),P 2(1, y 2) 和P 3(2, y 3)在函数xy 2=的图象上,那么( ▲ )A .y 1<y 2< y 3B .y 3<y 2<y 1C .y 2<y 1< y 3D .y 1< y 3<y 25.如图,45°<A <90°,则下列各式中成立的是( ▲ )A .sin A =cos AB .sin A >cos AC .sin A > tan AD .sin A <cos A6.已知二次函数y =x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是( ▲ ) A .(1,0) B .(2,0) C .(-2,0) D .(-1,0) 7.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是( ▲ ) A .6 cm B .5 cm C .4cm D .3cm 8.如图,AC 是矩形ABCD 的对角线,E 是边BC 的延长线上一点, AE 与CD 相交于点F ,则图中的相似三角形共有( ▲ ) A .2对 B .3对 C .4对 D .5对C BA FED CBA9.已知抛一枚均匀硬币正面朝上的概率是21,下列说法错误的是( ▲ ) A .连续抛一枚均匀硬币2次,必有1次正面朝上 B .连续抛一枚均匀硬币10次,有可能正面都朝上C .大量反复抛一枚均匀硬币,平均每100次出现50次正面朝上D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的10.在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得的抛物线的解析式是( ▲ )A .y =-(x +1)2 +2B .y =-(x -1)2 +4C .y =-(x -1)2 +2D .y =-(x +1)2 +4 二.填空题(每小题3分,共30分) 11.sin30°的值等于 .12.某商场开展购物抽奖促销活动,抽奖箱中有200张抽奖券,其中的一等奖5张,二等奖10张,三等奖25张,其余无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取1张,则中奖的概率是 .13.二次函数y =x 2+2x -5的最小值是 .14.已知双曲线xk y 2-=在其象限内y 随x 的增大而增大,则k 的取值范围是 . 152y 的对应值如下表:由表可知,下列说法中,正确的是 (填写序号)①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2+bx +c 的最大值为6;③抛物线的对称轴是直线21=x ;④在对称轴左侧,y 随x 的增大而增大. 16.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,若∠A =40°,则∠C = 度. 17.如图,⊙O 的弦CD 与直径AB 相交,若∠BAD=50°,则∠ACD = 度.第16题 第17题 第18题 第19题 第20题DBCBA BACE DC18.如图,△ABC 中,DE //BC ,AD =5,BD =10,DE =4,则BC = .19.如图,在△ABC 中,D 是AB 边上一点,连结CD ,要使△ADC 与△ABC 相似,应添加的条件是 (只需要写出一个条件)20.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,且AE =6,EF =8,FC =10,三.解答题(每小题10分,共60分)21.已知反比例函数的图象与一次函数42-=x y 的图象都经过点A (a , 2),请求出该反比例函数的解析式.22.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致:小明认为如果两次分别从1~6六个整数中任取一个数(可重复取),分别作为点P (m , n )的横坐标和纵坐标,则点P(m, n )在反比例函数x y 12=的图象上的概率一定大于在反比例函数xy 6=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点? (1)试用列表或画树状图的方法列举出所有点P (m, n )的情形;(2)分别求出点P(m, n )在两个反比例函数的图像上的概率,并说明谁的观点正确.23.如图,有一段斜坡BD 的长为10m ,坡角∠CBD =12°,为了方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到0.1m ) (参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09)22.如图,BD 是⊙O 的直径,A ,C 在⊙O 上,AB =AC ,AD 与BC 的延长线交于点E . (1)求证:△ABD ∽△AEB ;(2)若AD =1,DE =3,求BD 的长.5︒12︒D C BA25.如图,在△ABC中,∠B=90°,∠C=30°,BC=53,点D从点C出发,沿CA方向以每秒2个单位长的速度匀速运动,同时点E从点A出发,沿AB方向以每秒1个单位的速度向点B匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(t>0),作DF⊥BC于点F,连结EF,(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)四边形AEFD的面积S有最大值吗?如果有,求出相应的t值;如果没有,说明理由.A26.如图,将抛物线x x y 23412+-=向上平移h 个单位后分别与x 轴,y 轴交于点A , B , C ,抛物线的对称轴与x 轴的交于点D ,与抛物线交于点E . (1)用h 表示下列各点的坐标:C ,E ,A ,B ; (2)若∠ACB =90°,求此时抛物线的解析式;(3)以AB 为直径作⊙D ,在(2)的条件下,判断直线CE 与⊙D 的位置关系,并说明理由.2012学年第一学期九年级数学期末试卷参考答案一.选择题(每小题3分,共30分)DACDB CCCAB二.填空题(每小题3分,共30分)11.21 12.5113.-6 14.k <2 15.①③④ 16.25 17.4018.12 19.∠B=∠ACD 或∠BCA=∠ADC 或AC 2=AB ·AD 20.80π-160 三.解答题(每小题10分,共60分)21.把A(a , 2)代入42-=x y ,得2=2a -4,a =3, ------------------------5分设反比例函数为xk y =,把A(3, 2)代入得32k =,k =6,所求的反比例函数为xy 6=. ------------------------5分------------------------4分(2)由表格可知,点P(m , n )共有36种可能,且每种结果出现的可能性相等,点(2,6) ,(6,2) ,(3,4) ,(4,3)在x y 12=图像上,点(1,6) ,(6,1), (2,3) ,(3,2)在xy 6=图像上, -----------------------4分故点P(m , n )在两个函数图像上的概率相等,都是91364=, 所以小芳的观点是正确的. -----------------------2分 23.(1)CD=BDsin12°≈10×0.21=2.1(m ) -----------------------4分(2)AB=AC-BC=︒5tan DC -BD cos12°≈09.01.2-10×0.98≈23.3-9.8=13.5(m ) --------6分24.(1)∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ACB=∠ADB ,∴∠ABC=∠ADB ,而∠A 是公共角,∴△ABD ∽△AEB . -----------------------5分(2)由△ABD ∽△AEB 得,ABAEADAB=∴AB 2=AD ·AE=1×(1+3)=4, ∵BD 是直径,∴∠BAD=Rt ∠,∴BD=522=+AD AB . -----------------------5分25.(1)∵DF ⊥BC ,∠C=30°,∴DF=21DC=t =AE ; -----------------------3分(2)∵∠B=90°,DF ⊥BC ,∴AE//DF ,又AE=DF ,∴四边形AEFD 是平行四边形,∴当AE=AD 时,四边形AEFD 是菱形,此时t =10-2t ,t =310. -----------------------4分(3)S=AE ·BF=()()503532335≤≤+-=-t t t t t ,34253225342525=+-==最大值时,当S t . -----------------------3分26.(1)()()()0,493;0,493;49,3;,0h B h A h E h C +++-+⎪⎭⎫⎝⎛; ---------------------4分 (2)由∠ACB=90°可得△AOC ∽△COB ,∴OC 2=OA ·OB ,∴()()h h h h 43493492=++-+=,∴h =4,∴此时抛物线的解析式为423412++-=x x y ; -----------------------3分 (3)由∠ACB=90°可知,CD 是⊙D 的半径,∵()();425,3,4,0,0,3⎪⎭⎫ ⎝⎛E C D ∴41544253,543,4252222=-+==+==⎪⎭⎫ ⎝⎛CE CD DE , ∵222222,5415425CD CE DE =-=-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛即, ∴CE 与⊙D 相切. -----------------------3分。
浙江省温州市九年级上学期期末数学试卷

浙江省温州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020九下·碑林月考) 已知4a=5b(ab≠0),下列变形错误的是()A .B .C .D .2. (2分) (2017九上·鄞州月考) 抛物线的对称轴是直线()A .B .C .D .3. (2分)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是()A .B .C .D .4. (2分) (2019九上·黄浦期末) 已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是()A . 18米B . 4.5米C . 9 米D . 9 米.5. (2分)将抛物线y=3x2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为()A .B .C .D .6. (2分) (2017九上·温江期末) 如图,l1∥l2∥l3 ,直线a,b与l1 , l2 , l3分别相交于A,B,C 和点D,E,F,若 = ,DE=6,则EF的长是().A .B .C . 10D . 67. (2分)下面的图形都可以看作某种特殊的“细胞”,它们分裂时能同时分裂为全等的4个小细胞,分裂的小细胞与原图形相似,则相似比为()A . 1:4B . 1:3C . 1:2D . 1:8. (2分) (2016九上·牡丹江期中) 已知二次函数y=﹣ x2﹣7x+ ,若自变量x分别取x1 , x2 ,x3 ,且0<x1<x2<x3 ,则对应的函数值y1 , y2 , y3的大小关系正确的是()A . y1>y2>y3B . y1<y2<y3C . y2>y3>y1D . y2<y3<y19. (2分)如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与△ABC 相似,则AE的长为()A .B .C . 3D . 或10. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A . a>0B . 当x>1时,y随x的增大而增大C . c<0D . 3是方程ax2+bx+c=0的一个根11. (2分)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A . 7sin35°B .C . 7cos35°D . 7tan35°12. (2分) (2017八下·福州期末) 如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△BAF=4:25,则DE:AB =().A . 2∶5B . 2∶3C . 3∶5D . 3∶2二、填空题 (共6题;共6分)13. (1分) (2019九上·浙江期末) 计算:sin30°tan60°=________.14. (1分) (2018九上·崇明期末) 已知,那么 ________.15. (1分)(2017·岳阳模拟) 如图所示,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=56°,∠E=32°,则∠F=________.16. (1分) (2018八上·阿城期末) 如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是________.17. (1分) (2016九上·莒县期中) 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是________ cm.18. (1分)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于________ 米.三、解答题 (共8题;共76分)19. (5分)(2019·岐山模拟) 计算: -(π-1)0-2cos45°+()-2.20. (6分) (2019九上·万州期末) 已知△ABC和△CDE都为等腰直角三角形,∠ACB=∠ECD=90°.(1)探究:如图①,当点A在边EC上,点C在线段BD上时,连结BE、AD.求证:BE=AD,BE⊥AD.(2)拓展:如图②,当点A在边DE上时,AB、CE交于点F,连结BE.若AE=2,AD=4,则的值为________.21. (15分)(2017·磴口模拟) 如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.22. (5分)(2017·青岛模拟) 如图,轮船沿正南方向以33海里/时的速度匀速航行,在m处观测到灯塔p 在西偏南69°方向下,航行2小时后到达n处,观测灯塔p在西偏南57°方向上,若该船继续向南航行至离灯塔最近位置,求此时轮船离灯塔的距离约为多少海里?(结果精确到整数,参考数据:tan33°≈ ,sin33°≈ ,cos33°≈ ,tan21°≈ ,sin21°≈ ,c0s21°≈ )23. (10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)小明和小红玩摸球游戏,规定每人摸球后再将摸到的球放回去为一次游戏.若摸到黑球小明获胜,摸到黄球小红获胜,这个游戏对双方公平吗?请说明你的理由;(2)现在裁判想从袋中取出若干个黑球,并放入相同数量的黄球,使得这个游戏对双方公平,问取出了多少黑球?24. (10分)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?25. (10分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD= AD,AC=3,求CD的长.26. (15分)(2017·江都模拟) 如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y 轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(﹣5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E 恰好在该二次函数的图象上时,求t的值;(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共76分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
九年级上册温州数学期末试卷测试卷(解析版)

九年级上册温州数学期末试卷测试卷(解析版)一、选择题1.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .192.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .223.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,04.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >5.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠BB .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 6.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .47.一元二次方程x 2﹣3x =0的两个根是( ) A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣38.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个10.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2311.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++12.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题13.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.14.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.15.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.16.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.17.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.18.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____. 19.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.20.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.21.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是.22.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)23.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.24.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S,且乙22S S,则队员身高比较整齐的球队是_____.甲乙三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.27.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .28.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?29.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.30.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.31.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB 是⊙O 的切线;(2)若AB =3,求直线AB 对应的函数表达式.32.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例.2.C解析:C 【解析】 【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴BD=2222+=22,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.3.C解析:C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.4.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】222(1)1y x x x=-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x1<时,y随着x的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a0a0<时,对称轴左增右减,当>时,对称轴左减右增. 5.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可. 【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误; B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误; C 、AD DEAB BC=不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AEAC AB =,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C . 【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.6.B解析:B 【解析】 【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.7.B解析:B 【解析】 【分析】利用因式分解法解一元二次方程即可. 【详解】 x 2﹣3x =0,x (x ﹣3)=0, x =0或x ﹣3=0, x 1=0,x 2=3. 故选:B . 【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.9.C解析:C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10.C解析:C【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12; 故选:C .【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数, 11.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 12.D解析:D【解析】【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算.设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.15.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.16.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.17.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.18.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x2﹣2x+1=0是一元二次方程,∴m -2≠0,∴m≠解析:2m ≠【解析】【分析】根据一元二次方程的定义ax 2+bx+c=0(a ≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m ≠2.故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.19.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.20.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.21.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1. 22.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 24.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题25.该段运河的河宽为303m .【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500, 当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000, ∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值, 当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.27.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.28.(1)48-12x ;(2)x 为1或3;(3)x 为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF 、EC 以外的线段用x 表示出来,再用96减去所有线段的长再除以2可得DF 的长度;(2)将区域③图形的面积用关于x 的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S ,得出x 关于S 的表达式,得到关于S 的二次函数,求出二次函数在x 取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x (48-12x )=180,解得x 1=1,x 2=3答:x 为1或3时,区域③的面积为180平方米(3)设区域③的面积为S ,则S =5x (48-12x )=-60x 2+240x =-60(x -2)2+240 ∵-60<0,∴当x =2时,S 有最大值,最大值为240答:x 为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.29.(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.30.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7, ∴3437DB BD =++, ∴BD =9,BF =9+3=12, ∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.31.(1)见解析;(2)323 y x=-+【解析】【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得OB AB CO AO=,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得k、b的值即可.【详解】(1)证明:连接OB.∵OA2=AB•AC∴OA AB AC OA=,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直线AB是⊙O的切线;(2)解:∵∠ABO=90°,3AB=OB=1,。
2015-2016年浙教版九年级上数学期末测试题附答案解析

期末测试题(本试卷满分120分,时间:120分钟)一、选择题(每小题3分,共36分)1.若29ab=,则a bb+=()A.119B.79C.911D.79-2.(2014·四川泸州中考)一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9 cmB.12 cmC.15 cmD.18 cm3.如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且,则∠()A.100°B.110°C.120°D.135°第4题图4.(2015·浙江宁波中考)如图,用一个半径为30 cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5 cmB.10 cmC.20 cmD.5π cm5.(2014·四川宜宾中考)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是()A. 19B.13C.12D.236.(2014·天津中考)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶27.如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD 相似的三角形有()A.3个B.2个C.1个D.0个8.(2015·浙江金华中考)如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则的值是( ) A.B.C.D.2第8题图9.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁绕一圈到点的距离..为,则关于的函数图象大致为( )10.(陕西中考)如图,是两个半圆的直径,∠ACP =30°,若,则 PQ 的值为( ) A. B. C.a 3D.a 3211.(2014·哈尔滨中考)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A.y =-2(x +1)2-1 B.y =-2(x +1)2+3 C.y =-2(x -1)2+1 D.y =-2(x -1)2+312. (2015·宁波中考)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的处,称为第1次操作,折痕DE 到BC 的距离记为;还原纸片后,再将△ADE 沿着过AD 中点的直线折叠,使点A 落在DE 边上的处,称为第2次操作,折痕到BC 的距离记为;按上述方法不断操作下去……经过第2015次操作后得到的折痕到BC的距离记为,若=1,则的值为( )A. B. C.1- D.2-第12题图二、填空题(每小题3分,共30分)13.若,则yx yx +-=_____________. 14(2015·兰州中考)已知△ABC 的边BC =4 cm ,⊙O 是其外接圆,且半径也为 4 cm ,则∠A 的度数是 .15.(2014·山东烟台中考)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是14,那么袋子中共有球_________个. 16.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (3,0),且对称轴为直线1x =,给出下列四个结论:①;②0bc <;③20a b +=;④0a b c ++=,其中正确结论的序号是___________.(把你认为正确的序号都写上)17.如图,四边形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2 cm ,CD =4 cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是 cm. 18.(2014·山东烟台中考)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则阴影部分的面积等于 .19.(江苏中考)如图,四边形为正方形,图(1)是以AB 为直径画半圆,阴影部分面积记为,图(2)是以O 为圆心,OA 长为半径画弧,阴影部分面积记为,则的大小关系为_________. 20.将一副三角板按如图所示叠放,则△AOB 与△DOC 的面积之比等于_________.4cm,一只蚂蚁由A点出发绕侧面一周后21.如图所示的圆锥底面半径OA=2 cm,高PO=2回到A点处,则它爬行的最短路程为________.22.(2014·山东潍坊中考)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,第22题图则建筑物的高是米.三、解答题(共54分)23.(6分)一段圆弧形公路弯道,圆弧的半径为2 km,弯道所对圆心角为10°,一辆汽车从此弯道上驶过,用时20 s,弯道有一块限速警示牌,限速为40 km/h,问这辆汽车经过弯道时有没有超速?(π取3)24.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.25.(6分)已知二次函数的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?26.(7分)已知抛物线的部分图象如图所示.(1)求的值;(2)分别求出抛物线的对称轴和的最大值;(3)写出当时,的取值范围.27.(7分)如图,在△ABC中,AC=8 cm,BC=16 cm,点P从点A出发,沿着AC边向点C以1 cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2 cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?28.(6分)(2014·武汉中考)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.29.(6分)(2015·浙江金华中考)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求EG的长.30.(10分)(2015·浙江金华中考)如图,抛物线+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a,c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.图①图②期末测试题参考答案一、选择题1.A 解析:22,,99aa bb=∴=2111199=.9b b ba bb b b++∴==2.B 解析:设圆锥的母线长为l,∴180180·l=2×π×6,∴l=2×π×6×180180=12(cm).3.C 解析: ∵,∴,∴弦三等分半圆,∴弦、、对的圆心角均为60°,∴∠=.4. B解析:扇形的半径R=30 cm,面积S=300πcm2.根据S扇形=12lR可得扇形的弧长l=260030SRπ=20π(cm).根据题意,得2πr=20π,∴r=10 cm.5. B 解析:因为袋子中装有6个黑球和3个白球,所以摸到白球的概率是363=13.6.D 解析:∵ AD ∥BC ,∴ DEF BCF ∠=∠,EDF CBF ∠=∠, ∴ △DEF ∽△BCF ,∴EF EDCF BC =. 又∵AD BC =,∴12ED BC =,∴ EF ︰FC =1︰2.7.B 解析: 由∠BAE =∠EAC , ∠ABC =∠AEC ,得△ABD ∽△AEC ; 由∠BAE =∠BCE ,∠ABC =∠AEC ,得△ABD ∽△CED .共两个.8.C 解析:如图所示,连结OC ,OF ,OD ,∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴AB =,,BC CD DA AE EF AF ∴,AE AB AF AD∴,,BEFD BCBECDFD 即,EC CF ∴ OC ⊥EF .设垂足为点M .∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴ ∠COD =90°,∠COF =60°.∵ OC =OD ,∴ ∠OCD =45°,∴ MH =MC .在Rt △OMF 中,设OM =a ,则OF =2a ,∴ MC =a ,MF ==a .又∵ OC ⊥EF ,∴ GH =2MH =2a ,EF =2MF =2a , ∴ ==,故选C.第8题答图9.C解析:蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过OA 这一段,蚂蚁到O 点的距离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离s 不变,走另一条半径时,s 随t 的增大而减小,故选C .10.C 解析:如图,连接AP 、BQ .∵ AC ,BC 是两个半圆的直径,∠ACP =30°,∴ ∠APC =∠BQC =90°.设,在Rt △BCQ 中,同理,在Rt △APC 中,,则,故选C .11.D解析:根据抛物线的平移规律:上加下减,左加右减,平移只改变其顶点.抛物线y =-2x 2+1平移以后的解析式为y =-2(x -1)2+1+2=-2(x -1)2+3,故选D.12. D 解析:如图,连接AA 1,由已知可得DE 是△ABC 的中位线,∴ AA 1=2h 1=2,点A 与D 1E 1的距离为12,∴ h 2=2-12;点A 到D 2E 2的距离为,∴ h 3=2-2,h 4=2-3,…,h 2 015=2-第12题答图2 014=2-201412 .二、填空题13.31-解析:设,∴3122-=+-=+-kk k k y x y x .14. 30︒或150︒解析:由已知条件得到△OBC 是等边三角形,所以∠BOC =60︒,当点A 在优弧BC 上时,30A ∠=︒,当点A 在劣弧BC 上时,150A ∠=︒. 15.12解析:设袋中共有球x 个,∵有3个白球,且摸出白球的概率是14,∴31=4x ,解得x =12. 16.①③ 解析:因为图象与轴有两个交点,所以, ①正确;由图象可知开口向下,对称轴在轴右侧,且与轴的交点在轴上方,所以,所以, ②不正确;由图象的对称轴为,所以,即,故, ③正确;由于当时,对应的值大于0,即,所以④不正确.所以正确的有①③. 17. 解析:如图,过点O 作OF ⊥AD ,已知∠B =∠C =90°, ∠AOD =90°,所以.又,所以.在△ABO 和△OCD 中,所以△≌△.所以=.根据勾股定理得.因为△AOD 是等腰直角三角形,所以,即圆心O 到弦AD 的距离是.18.163π解析:如图,连接OC 、OD 、OE ,OC 交BD 于点M ,OE 交DF 于点N ,过点O 作OZ ⊥CD 于点Z ,∵ 六边形ABCDEF 是正六边形,∴ BC =CD =DE =EF ,∠BOC =∠COD =∠DOE =∠EOF =60°. 由垂径定理得OC ⊥BD ,OE ⊥DF ,BM =DM ,FN =DN . ∵ 在Rt △BMO 中,OB =4,∠BOM =60°, ∴ ∠OBM =30°∴ OM = 2.由勾股定理得BM=23,∴BD=2BM=43,∴△BDO的面积是12·BD·OM=12×43×2=43,同理△FDO的面积是43.∵∠COD=60°,OC=OD=4,∴△COD是等边三角形.∴∠OCD=∠ODC=60°. ∴∠COZ=∠DOZ=30°.∴CZ=DZ=2.由勾股定理得OZ=23.同理可得∠DOE=60°,∴S弓形CD=S弓形DE.S弓形CD=S扇形COD-S△COD=2604360-12×4×23=83-43.∴S 阴影=43+43+2(83-43)=163π.19.解析:设正方形OBCA的边长是1,则,∴,,故.20.1︰3 解析:∵∠ABC=90°,∠DCB=90°,∴AB∥CD,∴△AOB∽△COD.又∵AB︰CD=BC︰CD=1︰,∴△AOB与△DOC的面积之比等于1︰3.21.36cm解析:圆锥的侧面展开图如图所示,设∠,由OA=2 cm,高PO=24cm,得P A=6 cm,弧AA′=4cm,则,解得.作,由,得∠.又cm,所以cm,∴所以cm.22.54 解析:∵△ABG∽△CDG,∴CD∶AB=DG∶BG.∵CD=DG=2,∴AB=BG.又△EFH∽△ABH,∴EF∶AB=FH∶BH.∵EF=2,FH=4,∴BH=2AB,∴BH=2BG=2GH.∵GH=DH-DG=DF+FH-DG=52+4-2=54,∴AB=BG=GH=54.三、解答题23. 解:∵,∴汽车的速度为(km/h),∵ 60 km/h>40 km/h,∴这辆汽车经过弯道时超速.24.证明:(1)因为AB为⊙O的直径,所以∠ADB=90°,即AD⊥BC.又因为AB=AC,所以D是BC的中点.(2)因为AB为⊙O的直径,所以∠AEB=90°.因为∠ADB=90°,所以∠ADB=∠AEB.又∠C=∠C,所以△BEC∽△ADC.25.解:(1)将点A(2,-3),B(-1,0)分别代入函数解析式,得解得所以二次函数解析式为322--=x x y .(2)由二次函数的顶点坐标公式,得顶点坐标为,作出函数图象如图所示,可知要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移4个单位. 26. 解:(1)由图象知此二次函数过点(1,0),(0,3), 将点的坐标代入函数解析式,得解得(2)由(1)得函数解析式为,即为,所以抛物线的对称轴为的最大值为4.(3)当时,由,解得,即函数图象与轴的交点坐标为(),(1,0).所以当时,的取值范围为.27.解:设经过t s △PQC 和△ABC 相似,由题意可知P A =t cm ,则CQ =2t cm. (1)若PQ ∥AB ,则△PQC ∽△ABC ,∴CB CQ CA CP =,∴ 16288tt =-,解得4=t .(2)若B CPQ ∠=∠,则△PQC ∽△BAC ,∴CA CQ CB CP =,∴ 82168t t =-,解得58=t .答: 经过4 s 或58s △PQC 和△ABC 相似.28.分析:(1)①先将两种颜色的球进行标号,然后列表或画树状图得出所有等可能的结果数,找出第一次摸到绿球,第二次摸到红球的结果数,根据概率计算公式求出其概率;②找出两次摸到的球中有1个绿球和1个红球的结果数,根据概率计算公式求出其概率.(2)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:从表格中可以看出所有等可能的结果数为12,其中两次摸球中有1个绿球和1个红球的结果为8种,根据概率计算公式求出其概率为82=123. 解:(1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:由上表可知,有放回地摸2个球共有16种等可能结果.①∵其中第一次摸到绿球,第二次摸到红球的结果有4种,∴第一次摸到绿球,第二次摸到红球的概率P= 41= 164.②∵其中两次摸到的球中有1个绿球和1个红球的结果有8种,∴两次摸到的球中有1个绿球和1个红球的概率P=81= 162.(2)2 3 .29. (1)证明:∵DE⊥AF,∴∠AED=90°.又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°.∴∠DAE=∠AFB,∠AED=∠B=90°.又∵AF=AD,∴△ADE≌△F AB(AAS),∴DE=AB.(2)解:∵BF=FC=1,∴AD=BC=BF+FC=2.又∵△ADE≌△F AB,∴AE=BF=1,∴在Rt△ADE中,AE=AD,∴∠ADE=30°.又∵DE===,∴EG的长===π.30.解:(1)∵△ABC为等腰直角三角形,∴OA=BC.又∵△ABC的面积=BC×OA=4,即=4,∴OA=2,∴A(0,2),B(-2,0),C(2,0),∴c=2,∴抛物线的函数表达式为+2.把C(2,0)代入+2中得4a+2=0,解得a=-,∴a=-,c=2.(2)△OEF是等腰三角形.理由如下:图③如图③,设直线AB的函数表达式为y=kx+b,把A(0,2),B(-2,0)代入y=kx+b中得,k=1,b=2,∴直线AB的函数表达式为y=x+2.又∵平移后的抛物线顶点F在直线BA上,∴设顶点F的坐标为(m,m+2),∴平移后的抛物线的函数表达式为y=-+m+2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-
2016学年浙江省温州市绣山中学九年级上学
期期末数学试卷
一、选择题
1.已知2x=3y(x≠0),则下列比例式成立的是(??)
A、B、C、D、
+
2.抛物线y=2(x+1)2﹣1的顶点坐标是(??)
A、(﹣1,1)
B、(1,﹣1)
C、(﹣1,﹣1)
D、(1,1)
+
3.
现有背面完全相同的四张扑克牌,牌面数字分别是2,3,4,5,洗匀后背面朝上,则从中任意翻开一张是2的倍数的概率为(??)
A、B、C、
D、
+
4.如图,在△ABC中,点D,E分别是AC,AB上的两点,且= =
,若△ADE的面积为1cm2,则四边形EBCD的面积为(??)cm2.
A、2
B、3
C、4
D、5
+
如图,已知直线l∥m∥n,直线a分别与l,m,n交于点A,B,C,过点B作直线b交直线l,n于点D,E,若AB=2,BC=1,BD=3,则BE的长为(??)
A、4
B、2
C、
D、
+
6.
如图,边长为1的小正方形构成的网格中,半径为2的⊙O的圆心O在格点上,
则∠BDE的正切值等于(??)
A、B、C、D、
2
+
7.
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,EA是⊙O的切线.若∠EAC= 120°,则∠ABC的度数是(??)
A、80°
B、70°
C、60°
D、50°
8.若抛物线y=ax2经过A(1,﹣3),则下列各点中,在此抛物线上的是(??)
A、(﹣3,1)
B、(1,3)
C、(﹣1,3)
D、(﹣1,﹣3)
+
9.
如图,在等边△ABC中,BC=2,⊙A与BC相切于点D,且与AB,AC分别交于
点E,F,则的长是(??)
A、B、
C、
D、π
+
10.
如图,在平面直角坐标系xOy中,点A,B的坐标分别为(4,0),(2,0),现以B 为圆心,1为半径在第一象限内画半圆,M,N是此半圆的三等分点,点P在上,射线AP交y轴于点Q,当点P从点M运动到点N时,点Q相应移动的路径长为()
A、
+
B、C、2﹣D、2 ﹣2
二、填空题
11.抛物线y=x2﹣2x﹣3与y轴的交点坐标是.
12.如图,已知等边△ABC内接于⊙O,AB=2,则△ABC的外接圆半径为
?cm.
+
13.
一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中
摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复实验后发现,摸到红球的频率稳定在0.3左右,则m的值约为.
+
14.
如图,C,D是半圆O上的点,弦AC,BD相交于点E,连接CD,若直径AB=2,C E= BC,则阴影部分面积为.
+
15.
如图,△ABC的中线AE,BD交于点G,过点D作DM∥BC交AE于点M,则△AM D,△DMG和△BEG的面积之比为.
+
16.如图,已知二次函数y= x2﹣
x﹣3的图象与x轴交于A,B两点(点A在点B的左侧),与y轴的负半轴交于点C ,顶点为D,作直线CD,点P是抛物线对称轴上的一点,若以P为圆心的圆经过A,B两点,并且和直线CD相切,则点P的坐标为
+
三、解答题
17.计算:sin30°﹣tan60°tan30°+2cos230°.
+
18.
在一个不透明的盒子中,共有“一红二白”三个球,它们除颜色外其余都相同.
(1)、从盒子中摸出1个球,是白球的概率是多少?
(2)、从盒子中摸出1个球,不放回再摸出1个球,请用画树状图或列表的方式
表示出所有可能的结果,并求出摸出的恰好是“一红一白”的概率.
+
19.如图,在四边形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.
(1)、求证:AC2=BC?DC;
(2)、若BC=5,DC=1,求线段AD的长.
+
20.
如图,为了测量某建筑物CE的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是45°,然后在水平地面上向建筑物前进了20m,此时自B处测得建筑物顶部的仰角是60°,已知测角仪的高度是1m,请你计算出该建筑物的
高度(取≈1.732,结果精确到1m).
+
21.
如图,已知抛物线的顶点在第四象限,顶点到x轴的距离为3,抛物线与x轴交于原点O(0,0)及点A,且OA=4.
(1)、求该抛物线的解析式;
(2)、若线段OA绕点O顺时针旋转45°到OA′,试判断点A′是否在该抛物线上,并说明理由.
+
22.
如图,⊙O是△ABC的外接圆,过点A作⊙O的切线与直径CD的延长线交于点E,已知AE=AC.
(1)、求∠B的度数;
(2)、若ED=1,求AE的长.
+
23.
小明经过市场调查,发现某种鼠标在第x天的售价和相关信息如下表:已知鼠
标每件进价50元,设销售该商品的每天的利润为w元.
时间x(天)1≤x≤30
售价(元/件)x+60
当天销售(件)100﹣2x
(1)、求w与x的函数关系式;
(2)、销售鼠标第几天时,当天的鼠标销售利润最大?最大销售利润为多少?
(3)、小明在销售这种鼠标的过程中,共有
天的日销售利润不低于1350元.
+
24.
如图,抛物线y=ax2﹣4ax+3a(a>0),与y轴交于点A,在x轴的正半轴上取一点B ,使OB=2OA,抛物线的对称轴与抛物线交于点C,与x轴交于点D,与直线AB 交于点E,连接BC.
(1)、求点B,C的坐标(用含a的代数式表示);
(2)、若△BCD与△BDE相似,求a的值;
(3)、连接OE,记△OBE的外心为M,点M到直线AB的距离记为h,请探究h的值是否会随着a的变化而变化?如果变化,请写出h的取值范围;如果不变,请求出h的值.
+。