一道数列例题的点评与探究

合集下载

高中数学数列经典题型及解析

高中数学数列经典题型及解析

高中数学数列经典题型及解析1. 求数列的通项公式:题目描述:已知数列的前几项为1,4,9,16,...,求该数列的通项公式。

解析:观察该数列可以发现,每一项都是前一项的平方加1,所以可以得到通项公式为an =n^2 + 1。

2. 求数列的和:题目描述:已知数列的前几项为2,5,8,11,...,求前100项的和。

解析:观察该数列可以发现,每一项都是前一项加3,所以可以得到通项公式为an = 3n - 1。

根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前100项的和为S100 = (100/2)(2 + a100),代入通项公式,得到S100 = (100/2)(2 + (3*100 - 1)) = 10100。

3. 求等差数列的前n项和:题目描述:已知数列的前几项为3,7,11,15,...,求前20项的和。

解析:观察该数列可以发现,每一项都是前一项加4,所以可以得到通项公式为an = 4n - 1。

根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前20项的和为S20 = (20/2)(3 + (4*20 - 1)) = 820。

4. 求数列的极限:题目描述:已知数列的前几项为1,1/2,1/3,1/4,...,求该数列的极限值。

解析:观察该数列可以发现,每一项都是前一项的倒数,即an = 1/n。

当n趋向于无穷大时,an趋向于0,所以该数列的极限值为0。

5. 求数列的递推关系:题目描述:已知数列的前几项为1,2,4,7,11,...,求该数列的递推关系。

解析:观察该数列可以发现,每一项都是前一项加一个递增的数,递增的数可以依次为1,2,3,4,...,所以可以得到递推关系为an = an-1 + (n-1)。

以上是高中数学中数列的经典题型及解析,希望对你有帮助!。

对一道高考题的反思和探究

对一道高考题的反思和探究

{ } 是递减数列.
1 + 2

j1 二

(当 :时l・ I{一 吉结 成 ; 2 n1 , + _ : , 立 ) 一 t 论 l
当 n 2时 , 知 0< ≥ 易




= 则 = +k , l

Z 十
<1 0<1+ ,
< , = 2


1+ 2


进 = 1 击 I 而— I 一 }

n 1一 l+ -
2 一2
1 ! 一 3 + 2+ 2 ‘ 一
l 十 2 3 n

二 : ! !
( + ) 1+ 一 ) 1 ( 1
设 : = 0 = f
令 。 , =1 则 = 1

=2 了



, , =
詈 = 际上 ,1 当 0< 。<L , ()
近 于 ; Βιβλιοθήκη 旦 …… 1 3’
时 数列 { } 是递增 数列 , 趋

即, 数列 {
} 是单 调递减 的 , 数列 { 是单调 递 :}
增 的. 正好 与 。 情 况 相 反 ! =1
(证 : 一l12 . 2 明I ≤ I) )
基 本 解 法 如下
当 n=1 ,3 命题成立 ; 时 >。 假设 当 n=.时 命 题 成 立 , j } 即
> , 0 有
> . 知 : 易
1+ I 1 2

证 ( 由 -寺 + 明 1 及n ) t

( )( ) _ 一一 一
( 2

高考数列试题的分类点评和解析

高考数列试题的分类点评和解析

高考数列试题的分类点评和解析作者:余海长来源:《师道》2014年第06期数列,既是高中数学必修内容,又是高等数学的重要基石,各个省、市的高考都把它作为最重要的考查内容。

从近几年的高考试题看,有关数列的试题在每年的高考试题中一般是一大一小,所占比例较大,这是因为数列知识是考查学生转化和化归、分类讨论、推理论证及探索问题能力的重要题源,容易命制背景新颖的试题,较好地体现高考的选拔功能。

很多考生在备考时,总觉得数列试题很难、好乱,不知道如何复习和总结。

其实,总结近几年的高考考点可知,数列试题基本可分为以下三大类。

第一大类只考查数列本身的知识,此类题目又可分为四个类型A型:考查考生对等差数列和等比数列的概念、性质、通项公式、求和公式以及其它求和方法的掌握情况,题目容易,基本不用拐弯,大部分考生都可轻松完成。

此类题目属于容易题,也是高考出现频率最高的题。

备考时,一定要加强对等差数列和等比数列的概念的理解,对通项公式、求和公式充分掌握;对分组求和法、错位相减法、裂项相消法、倒序相加法、并项求和法等求和要熟练掌握;对教材中推导通项公式的累加法、累乘法要做到灵活运用。

B型:考查公式:an=S1,(n=1)Sn-Sn-1,(n≥2)例1.(2013年高考广东卷(文))设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=[an+1][2]-4n-1,n∈N∗且a2,a5,a14构成等比数列.(1)证明:a2=;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+【解析】(略)点评:此类题目所给的条件是和“Sn”与通项“an”混合的式子,属于中档题。

解题的关键在于对变量的统一,即根据关系式an=S1,(n=1)Sn-Sn-1,(n≥2),把“和”化为“通项”或把“通项”化为“和”,一般若是求an,就先消去Sn;若是求Sn,就先消去an,然后对已知等式作等价变形,把问题转化为等差、等比数列或其它特殊数列来求解,就可以完成题目的解答。

数列,通项公式方法,求前n项 和例题讲解和方法总结

数列,通项公式方法,求前n项    和例题讲解和方法总结

的前n项和为

为等比数列,且
(Ⅰ)求数列
和 的通项公式; (Ⅱ)设 ,求数列 的前 项和 .
例2.已知数列的首项,,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)数列的前项和.
2.设数列 的前n项和为 , 为等比数列,且
(Ⅰ)求数列 和
的通项公式; (Ⅱ)设 ,求数列 的前 项和
. 三、分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适 当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其 合并即可. 2、已知数列的通项公式为,则它的前n项的和 3:求数列的前n项和。
数列求和练习
1、已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和. (1)求通项an及Sn; (2)设{bn-an}是首项为1,公差为3的等差数列,求{bn}的通项公式及 前n项和Tn.
3、已知等差数列{an}中,a5+a9-a7=10,记Sn=a1+a2+…+an,
则S13的值为( )
5、已知数列 是等差数列,且 , 是数列 的前
项和. (Ⅰ)求数列
的通项公式 及前 项和 ;
(Ⅱ) 若数列 满足 ,且 是数列 的前 项和,求 与 .
6. 设是正数组成的数列,其前n项和为 并且对于所有的自然数与2 的等差中项等于与2的等比中项. (1)求数列的通项公式; (2)令 求证:
7、已知数列 是等差数列, ;数列 的前n项和是 ,且 .
(1)公式法
①等差数列前n项和Sn=____________=________________,推导方 法:____________; ②等比数列前n项和Sn=推导方法:乘公比,错位相减法. ③常见数列的前n项和: a.1+2+3+…+n=________________; b.2+4+6+…+2n= _________________; c.1+3+5+…+(2n-1)=_____________;d. e.

专题13 数列(解答题)(教师版)

专题13 数列(解答题)(教师版)

专题13 数列(解答题)1.【2022年全国甲卷】记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【答案】(1)证明见解析;(2)−78.【解析】【分析】(1)依题意可得2S n+n2=2na n+n,根据a n={S1,n=1S n−S n−1,n≥2,作差即可得到a n−a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a1,即可得到{a n}的通项公式与前n项和,再根据二次函数的性质计算可得.(1)解:因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n−1+(n−1)2=2(n−1)a n−1+(n−1)②,①−②得,2S n+n2−2S n−1−(n−1)2=2na n+n−2(n−1)a n−1−(n−1),即2a n+2n−1=2na n−2(n−1)a n−1+1,即2(n−1)a n−2(n−1)a n−1=2(n−1),所以a n−a n−1=1,n≥2且n∈N*,所以{a n}是以1为公差的等差数列.(2)解:由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以a n=n−13,所以S n=−12n+n(n−1)2=12n2−252n=12(n−252)2−6258,所以,当n=12或n=13时(S n)min=−78.2.【2022年新高考1卷】记S n为数列{a n}的前n项和,已知a1=1,{S na n }是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×n n−2×n+1n−1=n (n+1)2,显然对于n =1也成立, ∴{a n }的通项公式a n =n (n+1)2;(2)1a n=2n (n+1)=2(1n −1n+1),∴1a 1+1a 2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n −1n+1)]=2(1−1n+1)<23.【2022年新高考2卷】已知{a n }为等差数列,{b n }是公比为2的等比数列,且a 2−b 2=a 3−b 3=b 4−a 4. (1)证明:a 1=b 1;(2)求集合{k |b k =a m +a 1,1≤m ≤500}中元素个数. 【答案】(1)证明见解析; (2)9. 【解析】 【分析】(1)设数列{a n }的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得m =2k−2,即可解出. (1)设数列{a n }的公差为d ,所以,{a 1+d −2b 1=a 1+2d −4b 1a 1+d −2b 1=8b 1−(a 1+3d ) ,即可解得,b 1=a 1=d2,所以原命题得证. (2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k−1=a 1+(m −1)d +a 1,即2k−1=2m ,亦即m =2k−2∈[1,500],解得2≤k ≤10,所以满足等式的解k =2,3,4,⋯,10,故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10−2+1=9.4.【2021年甲卷文科】记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列{}n S 是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】21S S {}n S 的公差d ,进一步写出{}n S 的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列{}n S 是等差数列,设公差为d 212111a a a a S S +111(1)n S a n a a n =-,()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列. 【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.5.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列{}n S 是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】n S ,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.n S 选②③作条件证明①时,n S an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式 (0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d ,等差数列{}n S 的公差为1d , 11(1)n S a n d -,将1(1)2n n n S na d -=+11(1)n S a n d -, 化简得())222221111111222d d n a n d n a d d n a d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有2121111112,2440,d d a d a d d a d ⎧=⎪⎪-=-⎨=,解得111,2d a d a =.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=1n S a n =, )11111n n S S a n a n a +=+ 所以{}n S 是等差数列. 选②③作条件证明①: [方法一]:定义法(0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列; 当43a b =-4=3n S an b an a =+-103aS =-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =11S a =21212S a a a +{}n S 也为等差数列,所以公差1211d S S a ()1111n S a n d n a -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系11d a =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S n S 进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数n S 1211d S S a ==nS 的通项公式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n n S n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n nn nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【解析】 【分析】 (1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】 (1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =. 所以数列{}n b 是以32为首项,12为公差的等差数列. [方法三]: 由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列. [方法四]:数学归纳法 由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列. (2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】 (1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解; 方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;8.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.9.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.10.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. 【解析】 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论. 【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.11.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.12.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果. 【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =, 【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.13.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S . 【答案】(1)2n n a =;(2)100480S =. 【解析】 【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍), 所以2n n a =,所以数列{}n a 的通项公式为2n n a =. (2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以 1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2; 8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15],则89153b b b ====,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31],则1617314b b b ====,即有42个4; 323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63],则3233635b b b ====,即有52个5; 6465100,,,b b b 对应的区间分别为(0,64],(0,65],,(0,100],则64651006b b b ====,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =. 【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.14.【2020年新高考2卷(海南卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +-- 【解析】 【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列(){}111n n n a a -+-的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可. 【详解】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, 整理可得:22520q q -+=, 11,2,2q q a >==,数列的通项公式为:1222n nn a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----. 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础. 15.【2019年新课标1卷文科】记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n *≤≤∈N . 【解析】 【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于1a 和d 的方程组,求得1a 和d 的值,利用等差数列的通项公式求得结果;(2)根据题意有50a =,根据10a >,可知0d <,根据n n S a >,得到关于n 的不等式,从而求得结果. 【详解】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n *≤≤∈N 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.16.【2019年新课标2卷理科】已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列; (2)求{an }和{bn }的通项公式. 【答案】(1)见解析;(2)1122nn a n,1122nnb n.【解析】 【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【详解】(1)由题意可知1434n n n a a b +-=+,1434n n n b b a +-=-,111a b ,111a b -=, 所以1144323442n n n n n n n n a b a b b a a b ,即1112n n n n a b a b ,n n 22n n 因为11443434448n n n n n n n n a b a b b a a b ,所以112n n n n a b a b ,数列{}n n a b -是首项1、公差为2的等差数列,21n na b n .(2)由(1)可知,112n n n a b ,21n na b n ,所以111222nnn n n na ab a b n,111222nn n n n nb a b a b n.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.17.【2019年新课标2卷文科】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】 【分析】(1)本题首先可以根据数列{}n a 是等比数列将3a 转化为21a q ,2a 转化为1a q ,再然后将其带入32216a a 中,并根据数列{}n a 是各项均为正数以及12a =即可通过运算得出结果;(2)本题可以通过数列{}n a 的通项公式以及对数的相关性质计算出数列{}n b 的通项公式,再通过数列{}n b 的通项公式得知数列{}n b 是等差数列,最后通过等差数列求和公式即可得出结果. 【详解】(1)因为数列{}n a 是各项均为正数的等比数列,32216a a ,12a =, 所以令数列{}n a 的公比为q ,2231=2a a q q ,212a a qq ,所以22416q q =+,解得2q =-(舍去)或4,n n (2)因为2log n n b a =,所以21n b n =-,+121n b n ,12n nb b , 所以数列{}n b 是首项为1、公差为2的等差数列,21212n n S nn .【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.18.【2018年新课标1卷文科】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】 【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =;(2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列; (3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅. 【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果.19.【2018年新课标2卷理科】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)an =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得n S 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{an }的通项公式为an =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.20.【2018年新课标3卷理科】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =. 【解析】 【详解】分析:(1)列出方程,解出q 可得;(2)求出前n 项和,解方程可得m .详解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nn S --=.由63m S =得()2188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.点睛:本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.。

数列子数列探究

数列子数列探究

等差数列中等比数列子数列的探究一、【问题提出】从数列}{n a 中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列}{n a 的一个子数列.等差数列和等比数列是高中数学的重要内容,也是高考说明中的两个C 级考点,其难度水平不言而喻.通过对数列考题的梳理,发现在等差数列中探究等比子数列是常考问题之一.本文力求给出解决该类问题的一般思路和方法,供大家参考.二、【问题解决】例1 等差数列}{n a 的通项为*,23N n n a n ∈-=,数列}{n a 中是否存在不同的三项(按原来的顺序)成等比数列?数列}{n a 中是否存在无穷等比数列子数列?【解题分析】写出数列的一些项:1,4,7,10,13,16,19,……,观察可以发现,其中1,4,16成等比数列,即1a ,2a ,6a 成等比数列,且公比为4.是否存在无穷等比数列子数列,只要判断在上面的等比数列,即首项为1,公比为4的等比数列中任意一项都是等差数列的项.【解法】由23-=n a n 得11=a ,42=a ,166=a ,所以存在不同的三项成等比数列,且公比为4.下证等比数列的第4项也是等差数列中的项,记1n a 是数列的第四项,则42661==a a a a n ,而43)26(3)6(126626611=⨯-⨯-=--==n a a a a a aa a n n ,所以)26(461-⨯+=n ,同理,可以算得等比数列的第五项2n a ,其中)6(4112-⨯+=n n n ,……,依次可以得到下一项,从而一定存在无穷等比数列子数列.【点评】1.探究数列问题常常从写出数列的前几项观察开始;2.说明等差数列中存在无穷等比数列子数列是通过构造等比数列的后一项,来说明该项一定在等差数列中,其中用到比例的性质,也可以从等比数列的通项入手,说明等比数列中的任意一项都在等差数列中,即由等比数列的第n 项是等差数列的第m 项列出等式,说明用n 表示出的m 一定是正整数,说明过程中需要用二项式定理.3.从构造等比数列的过程可以发现,只要等差数列中存在两项,其后项与前项的比为整数,则一定存在等比数列子数列.结论:一个公差非零的无穷等差数列}{n a 中, 如果存在两项1n a ,2n a (21n n <),使12n n a a 为正整数,则该数列中一定存在无穷等比数列子数列.例2 等差数列}{n a 的通项为*,23N n n a n ∈-=,试确定等比数列子数列公比的最小值.【解题分析】数列}{n a 的每一项都是正整数,且是递增数列,所以先确定其等比数列子数列的公比一定是不小于2的整数,再运用子数列中项的双重性建立等量关系,确定公比的最小值.【解法】由*,23N n n a n ∈-=知,*N a n ∈,n n a a >+1,记其等比数列子数列}{n k a 的公比为q ,首项为1k a ,则2≥q 且*N q ∈,否则,一定存在*N n ∈使Z q a n k ∉-11.由n k a 是等差数列的第n k 项,同时又是等比数列的第n 项,得3)(11⨯-+=k k a a n k k n ,11-=n k k q a a n ,所以11113)(-=⨯-+n k n k q a k k a ,*11)1(31N q a k k n k n ∈-=--由于1k a 不是3的倍数,所以当*N n ∈时11--n q 必是3的倍数.当*,2N n n ∈≥时,)1)(1(1321++++-=----q q q q qn n n ,其中132++++--q q q n n 的公约数为1,从而1-q 必是3的倍数,所以公比q 的最小值为4.【点评】1.等差数列中的等比数列子数列问题,特别要关注子数列的项在不同数列中的表示; 2. 在解决问题的过程中,用到了等差等比数列的基本性质,还涉及整除、因式分解等数论相关基础知识,本题中等差数列的各项均为整数,易得等比数列子数列的公比为正整数,实际上,一般等差数列若存在等比数列子数列,其公比也是正整数.结论:等差数列的公差非零,如果存在等比数列子数列,则其公比是大于1的整数. 例3 在等差数列}{bn a +)0(≠ab 中是否存在无穷等比数列子数列?【解法分析】先从数列中存在等比数列子数列入手,探究b a ,应该满足的条件,再考虑所得条件是否充分,从而确定等差数列}{bn a +)0(≠ab 中存在无穷等比数列子数列条件.【解法】设}{bn a +中存在一个等比数列子数列:1bn a +,2bn a +,3bn a +,…,其中<<<321n n n ,由前三项成等比数列可知23131222n n n n n n b a -+-=,显然Q n n n n n n ∈-+-23131222,从而有Q ba∈是存在一个等比数列子数列的必要条件; 反过来,如果Q ba∈,不妨设Z b a ∈,且0>b ,取自然数1n ,使011>+=bn a c ①,设q c bn a 12=+②,223q c bn a =+③,由②-①知:)1()(112-=-q c n n b ,取b q =-1,则1+=b q ,112c n n +=,由③-②知:bq c q q c n n b 1123)1()(=-=-,q c n n 123+=.由归纳法知11-=+k k q c bn a ,其中1+=b q ,111-++=k k k q c n n .所以子数列}{k bn a +成等比数列.【点评】探究存在性问题,一般先从存在入手,寻找结论的必要性,特别是从前三项去确定条件是一种自然的思路,但必须确定条件的充分性.本题中,充分性的确定也是采用的构造法,实际上是从同号的项开始,确定两项,使得两项之比为整数.结论:1.等差数列}{bn a +)0(≠ab 中存在一个无穷等比数列子数列的充要条件是Q ba∈. 2.公差为d (0≠d )非零等差数列}{n a 中Q da ∉1,则其一定不存在等比数列子数列. 三、【真题链接】1.已知{}n a 是等差数列,{}n b 是公比为q 的等比数列,11221,a b a b a ==≠,(1)若3(i b a i =是某一正整数),求证:q 是整数,且数列{}n b 中每一项都是数列{}n a 中的项;(2)是否存在这样的正数q ,使等比数列{}n b 中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由;2.求证:对于给定的正整数n (4n ≥),存在一个各项及公差均不为零的等差数列12b b ,,,n b ,其中任意三项(按原来的顺序)都不能组成等比数列. 四、【练习】1.在公差不为0的等差数列}{n a 中,1a ,3a ,9a ,m a 恰好为等比数列的前四项,则m =___.2.若等差数列}{n a 中,公差*N d ∈,65=a ,求所有的公差d 的值,使3a ,5a ,1n a ,2n a ,…,i n a ,…成等比数列,其中5>i n )(*N i ∈.3.设等差数列}{n a 的通项公式为3432+=n a n ,若从}{n a 中抽取一个公比为q 的等比数列}{n k a ,其中11=k ,且 <<<<n k k k 21,*N k n ∈,求当q 取最小值时,}{n k 的通项公式. 参考解答: 1.m=27;2.由2531a a a n =⋅得36])5(6)[26(1=-+-d n d ,化简得d dn -=-+3)5(6181*1,5N d n ∈> d ∴的可能取值为2,1.当1=d 时,81=n ,Z n a n ∈+=∴122,另一方面,Z a a a a n ∉=⋅=227)(23552,矛盾,故1=d 不成立.(此时Z a a ∉35) 同理,2=d 成立.3.32)1(1⨯-+=n k k a a n ,11-=n k q a a n , 11132)1(-=⨯-+∴n n q a k a ,231-=-n n q k 由前面的讨论可知,公比q 的最小值为2,所以2231-⨯=-n n k .。

2012年湖南高考文科数学数列题点评

2012年湖南高考文科数学数列题点评

2012年湖南高考文科数学数列题点评20.某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开 始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元.(1)用d 表示12,,a a 并写出1n a +与n a 的关系式;(2)若公司希望经过(3)m m ≥年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).解:(1)由题意得12000(150%)3000a d d =+-=-,21135(150%)450022a a d a d d =+-=-=-, 13(150%).2n n n a a d a d +=+-=- 点评:高考复习中关注数列应用题的考查,是复习的一个基本准则,考查应用题能够很好地考查学生理解实际问题情境,处理信息的能力,构建数学模型的水平,所以应用题的考查功能肯定是很齐全的。

第(1)问难度不大,主要考查增长率和基本数量关系,难度不大。

(2)由(1)得212233333()()22222n n n n a a d a d d a d d ---=-=--=--= 12213333()[1()()]2222n n a d --=-++++. 整理得111333()(3000)2[()1]()(30003)2222n n n n a d d d d ---=---=-+. 点评:已知132n n a a d +=-,可以得到132(2)2n n a d a d +-=-,即{}2n a d -是以1230003a d d -=-为首项,32为公比的等比数列,所以132(30003)()2n n a d d --=-⋅,与上面得到的结论相同,相比较而言,这种写法更简洁一些,而上面的解法只是给出了一种不完全归纳。

一道三角数表型数列题的探究讲评

一道三角数表型数列题的探究讲评

一道三角数表型数列题的探究讲评发表时间:2012-08-08T09:24:53.140Z 来源:《时代报告》2012年6月供稿作者:杨斌[导读] 教室里的气氛热烈起来,大家都觉得这个题目理解深刻了.一道三角数表型数列题的探究讲评杨斌湖北省恩施市第一中学湖北恩施 445000中图分类号:G4 文献标识码:A课例背景数表数列题近年来频繁出现在各类试卷上的一类新型考题.这类题既能考查学生的基础知识,又能考查学生观察问题、收集信息、处理数据、归纳推理、解决问题的能力. 问题的解决体现了研究性学习的特点,对学生的创新能力也有较高的要求.其中常见的三角数表型数列是指将已知的数列按照一定规则生成的数并按自上而下的顺序排列成三角形状.由于三角数表行与列交叉的多样性导致可以构造出许多子数列,其实研究其中某个子数列的性质就可以找到问题的突破口,可实际上大多数学生面对此类图表往往不易发现其中所含的“玄妙”.今年湖北高考模拟试卷中出现这样一道题:给定正整数按下图构成倒立的三角形数表,第一行依次写上数1,2,,在第一行的每相邻的两个数正中间的下方写上这两个数之和,得到第二行的数(比上一行少一个数),依次类推,最后一行(第n行)只有一个数,例如n=6时数表如图所示,则当n=2009时最后一行的数是 .1 2 3 4 5 63 5 7 9 118 12 16 2020 28 3648 64112试卷考完后,我做试卷分析时发现全班只有3个人做对,在询问一部分做错的学生后发现:绝大部分同学根本找不到“下手”之处,有的即使略有发现,也不能对所发现的规律中蕴涵的信息进行整理再加工,解题同样失误.这给我深入的思考:作为一名年轻教师,在平时的教学过程中,“引导”的意义何在?而学生的主体地位该怎样保证?怎样才能提高学生的数学能力?在这个想法的驱使下,我在讲解这道题目的过程中,做了有益的尝试.一、回顾解法师:同学们,日常生活中在我们碰到问题时,大家会针对我们碰到的问题做什么举动呢?生1:随机应变.师:很好,这位同学说的随机应变,我想他是这样来理解的,针对当时的问题分析出对我们有用的信息,然后在我们的“工具”中寻找可以派上用场的来处理这些信息,这也就是我们说的:“做自己力所能及的事.”师:那同学们不妨用刚刚的态度来看看这个题,你从这问题中能读出多少相关信息呢?生2:如果我们将每一行看成一个数列,那么这些数列都是等差数列.师:不错.既然你能发现这是等差数列,那还有什么可以补充的吗?生2:第一行的公差是1,第二行的公差是2,第3行的公差是4,(恍然大捂)哦,从上而下地把每一行的公差看成数列的话,它是以1为首项,公比为2的等比数列.师:非常好,那老师还想再问一问,你还能观察出什么其他的特征吗?数列间有联系吗?生2:后一个数列的首项是前一个数列的第一项与第二项和,可是我就是在这个地方有点不明白该怎么用?师:其实大家只要细心来观察就能找出这道题的关键信息,这些相关信息都很明确的把目标指向了数列,所以这题就需要用数列的解题思想.但是真正的难点并不是解题,而是题在“何处”,之前这位同学应该也是在这点出了问题.大家说这是数列题,我就想问一问:你们眼里这道数列题是怎么样的呢?做对的同学甲:我拿到数列题的时候习惯先观察规律所以我将每一行的第一个数都拿出来按顺序排成数列1,3,8,20,48等,发现这即不是等差也不是等比,有可能是我们经常碰到的一种类似等差等比数列对应项乘积的形式的数列.所以很轻松就观察出:这个数列从前到后可写成猜测通项公式为故二、挖掘信息师:真不错!可以看的出这位同学是一位善于总结的同学,将平时学习中经常出现的数列有了一些相关结论,在碰到问题的时候可以直接用,这是一个好的习惯值得大家学习.在他的眼里认识数列他习惯用归纳法找规律,这是我们认识事物很好的方式.可是,对于有的同学来说,凭前几个数来猜想通项会很困难,那该怎么办?做对的同学乙:我先观察图中的数,在同一纵列上的数成等比数列,其中第2行,第4行,第6行(最后一行)中,偶数行中间的项上的各个数成等比数列,首项为7,公比为4.那么n=2009时,我还是看中轴线上的项,第一行中间项为1005,第三行为4020,第五行为16080,这时就能看出奇数行的中间项为等比数列,并且能给出证明,所以得到结论师:太棒了!这位同学找出了图中隐含的一个非常漂亮的等比数列,利用等比数列的通项公式马上使问题得到了解决.这种方法的得出使其他同学兴奋不已,都感受到了数学美的震撼力.学生的思维开始活跃,另一位做对的同学丙跃跃欲试,其他同学也议论起来.于是我先请丙说了他的解法.丙:我觉得所求数是数列中的项,就可以先找中间的递推关系.我发现每行数都是等差数列,公差依次为1,2,4,8,并且每个数是它肩上两个数的和,记各行第一师:很清楚!这位同学的解法体现了一个一般思路,我们先将数表转化为我们熟知的数列后,从研究第n项和第 n-1项的关系入手,找到问题的突破口.这也是求解这类数表型数列问题的常用方法.这里也体现了一个化归的思想,在读图后,根据图的特征,在“工具”中搜索,化归为数列的问题,实现图与数列中已知条件的互相转化接轨,达到解决问题的目的.还有一些同学看起来还有别的想法.于是,讨论进行下去.三、类比联想生3:我觉得这个图表类似于杨辉三角,我想它们应该有相通的地方.其实所求数看作是由第一行的数不断的叠加而来,中间关键要找每个数叠加的次数就可以了.只是我还没找到规律(不好意思状).师:(鼓励)想法很好.找规律,我们通常都是从特殊到一般,也就是先观察特例,找出规律,再归纳猜想,给出证明.不妨先从上图中最小的数开始找找看.叠加的次数有什么规律吗?学生思考.生3有所启发.(师生共同完成)依次类推:第2009行的数为倒序相加求和得:师:问题解决了.大家注意到没有,这是一个填空题,一般不要花太多时间,最好是采用最优解法,减少计算.生4:老师,我是在乙同学的想法的基础上,发现当n=2009时,其实各行首末两项和依次为2010,4020,8040 ,为公比为2的等比数列,直接可得第2009行之数即为第2008行首末两数之和,即师:好!合理的用到了等差中项的性质.这样就可以不用考虑n的奇偶性的问题了.教室里的气氛热烈起来,大家都觉得这个题目理解深刻了.我抓住契机,进行总结.四、课后反思教师的主要任务不是简单地将自己所知道的解题方法告诉学生,而应该以问题为导向,互动决策.教学过程中,老师应在提出问题后,在学生的认知发展水平和已有的知识经验之上适时引导,并注意捕捉学生的思维火花,展示学生的思维成果,扩大学生的参与面等.让学生通过再学习,对问题再认识,再整合,再构建,使学生的思维在“再创造”中发展.让学生真正成为课堂的主人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档