《第11章 全等三角形》2011年综合复习测试卷(五)
第11章《全等三角形》测试卷

第11章《全等三角形》全章测试班级: 姓名:一.选择题(3×10=30分) 1.下列说法正确的是( )A .形状相同的两个三角形是全等三角形B .面积相等的两个三角形是全等三角形C .三个角对应相等的两个三角形是全等三角形D .三条边对应相等的两个三角形是全等三角形2.如图,点C 落在AOB ∠边上,用尺规作OA CN //,其中弧FG 的( ) A .圆心是C ,半径是OD B .圆心是C ,半径是DMC .圆心是E ,半径是ODD .圆心是E ,半径是DM3.如右图,已知AC AB =,AE AD =,若要得到“ACE ABD ∆∆≌”,必须添加一个条件,则下列所添条件不.恰当..的是( ) A .CE BD = B .ACE ABD ∠=∠ C .CAE BAD ∠=∠ D .DAE BAC ∠=∠4.如图,DEF ABC ∆∆≌,点A 与D ,B 与E 分别是对应顶点,且测得cm BC 5=,cm BF 7=,则EC长为( )A. cm 1B. cm 2C. cm 3D. cm 45.在第4题的图中,若测得o D A 90=∠=∠,3=AB ,1=DG ,2=AG ,则梯形CFDG 的面积是( )A. 5B. 6C. 7D. 86.如图,ABC ∆中,o C 90=∠,AD 平分BAC ∠,过点D 作AB DE ⊥于E ,测得9=BC ,3=BE ,则BDE ∆的周长是( ) A .15 B .12 C .9 D .67.根据下列各图中所作的“边相等、角相等”标记,其中不.能.使该图中两个三角形全等的是( )AAB C D E A D G α8. 如图,ABC ∆中,AC AB =,AD 平分CAB ∠,则下列结论中:①BC AD ⊥;②BC AD =; ③C B ∠=∠;④CD BD =。
正确的有( ) A .①②③ B .②③④ C .①②④ D .①③④9.如图, AC AB =,AE AD =,BE 、CD 交于点O ,则图中全等三角形共有( )A .四对B .三对C .二对D .一对10.如图,ABC ∆中,BM 、CM 分别平分ABC ∠和ACB ∠, 连接AM,已知o MBC 25=∠,o MCA 30=∠,则MAB ∠ 的度数为( )A. o 25B. o 30C. o 35D. o 40二.填空题(2×12=24分)11.如图,某同学将三角形玻璃打碎,现要到玻璃店 配一块完全相同的玻璃,应带 去。
第11章 全等三角形单元复习测试卷(含答案)

第十一章全等三角形单元复习测试卷题号一1 二2 三3 四4 五5 六6 七7 八8 得分的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级姓名座号成绩一、选择题(每题5分,共25分)1.如图,△ABC≌△BAD,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4cmB.5cmC.6cmD.无法确定第1题第2题2.如图,△ABE≌△ACD,∠B=50,∠AEC=120,则∠DAC的度数等于()A.120°B.70°C.60°D.50°3.下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的高线对应相等的两个三角形全等D.有两边对应相等的两个直角三角形全等4.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=30C.∠A=30,∠B=45,AB=4D.∠C=90,AB=65.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.①②③都带去二、填空题(每题5分,共25分)6.如图,AC、BD相交于点O,△AOB≌△COD,则AB与CD的位置关系是.7.如图,在△ABC中,∠C=90,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离为.第6题第7题第8题8.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是. (填上你认为适当的一个条件即可).9.如图,把一张长方形的纸片ABCD沿BD对折,使C点落在E点处,BE 与AD相交于点O,图中除了△ABD≌△CDB外,请写出其他一组全等三角形.10.如图,直线1l、2l、3l表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有处.三、解答与证明(共50分)11.(10分)如图,D、E在BC上,且BD=CE,AD=AE,∠ADE=∠AED.求证AB=AC.A BC第5题12.(13分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.13.(13分)如图BF⊥AC,CE⊥AB,CE、BF相交于D,BD=CD.求证点D在∠BAC的平分线上.14.(14分)如图,工人师傅要检查模型中的∠A和∠B是否相等,但他手边没有量角器,只有一把刻度尺,请你设计一个方案来说明∠A和∠B是否相等.参考答案一、选择题(每题5分,共25分)1.如图,△ABC≌△BAD,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是( A )A.4cmB.5cmC.6cmD.无法确定第1题第2题2.如图,△ABE≌△ACD,∠B=50,∠AEC=120,则∠DAC的度数等于( B )A.120°B.70°C.60°D.50°3.(07天津)下列判断中错误的是( B )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的高线对应相等的两个三角形全等D.有两边对应相等的两个直角三角形全等4.根据下列已知条件,能唯一画出△ABC的是( C )A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=30C.∠A=30,∠B=45,AB=4D.∠C=90,AB=65.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去A BC第5题配一块完全一样的玻璃,那么最省事的方法是( C )A.带①去B.带②去C.带③去D.①②③都带去二、填空题(每题5分,共25分)6.如图,AC、BD相交于点O,△AOB≌△COD,则AB与CD的位置关系是平行.7.如图,在△ABC中,∠C=90,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离为4.第6题第7题第8题8.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(答案不唯一) . (填上你认为适当的一个条件即可)9.如图,把一张长方形的纸片ABCD沿BD对折,使C点落在E点处,BE与AD相交于点O,图中除了△ABD≌△CDB外,请写出其他一组全等三角形△BCD≌△BED或△BED≌△DAB或△AOB≌△EOD.10.如图,直线1l、2l、3l表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有4处.三、解答与证明(共50分)11.(10分)如图,D、E在BC上,且BD=CE,AD=AE,∠ADE=∠AED.求证AB=AC.证明:∵∠ADE=∠AED∴∠ADB=∠AEC在△ABD和△ACE中=⎧⎪∠=∠⎨⎪=⎩AD AEADB AECBD CE∴△ABD≌△ACE(SAS)∴AB =AC12.(13分)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BE =CF . (1)图中有几对全等的三角形?请一一列出; (2)选择一对你认为全等的三角形进行证明. 解:(1)图中全等三角形共有3对,分别是:△ABD ≌△ACD ;△ADE ≌△ADF ;△BDE ≌△CDF . (2)选择:△BDE ≌△CDF 证明:∵DE ⊥AB ,DF ⊥AC ∴∠BED =∠CFD =90 ∵D 是BC 的中点 ∴BD =CD在Rt △BDE 和Rt △CDF =⎧⎨=⎩BD CDBE CF∴Rt △BDE ≌Rt △CDF (HL )13.(13分)如图BF ⊥AC ,CE ⊥AB ,CE 、BF 相交于D ,BD =CD .求证点D 在∠BAC 的平分线上. 证明:∵BF ⊥AC ,CE ⊥AB∴∠BED =∠CFD =90 在△BED 和△CFD 中12∠=∠⎧⎪∠=∠⎨⎪=⎩BED CFD BD CD∴△BED ≌△CFD (AAS ) ∴DE =DF又∵BF ⊥AC ,CE ⊥AB ∴点D 在∠BAC 的平分线上14.(14分)如图,工人师傅要检查模型中的∠A和∠B是否相等,但他手边没有量角器,只有一把刻度尺,请你设计一个方案来说明∠A和∠B是否相等.解:方案如下:(1)分别在AB上取两点E、G,使AE=BG;(2)分别在AC和BD上取两点F、H,使AF=BH(3)量出EF和GH的长度.若EF=GH,则根据“SSS”证明△AEF≌△BGH,从而得到∠A=∠B;若EF≠GH,则∠A≠∠B.This document is collected from the Internet, which is convenient for readers to use. If there is any infringement, please contact the author and delete it immediately.可以编辑的试卷(可以删除)。
第11章 全等三角形单元测验(含答案)

第十一章全等三角形单元测试题(总分100分,时间:60分钟)度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级_________ 姓名__________ 学号_________一、精心选一选,慧眼识金!(每小题3分,共24分)1.两个直角三角形全等的条件是()A.两条边对应相等 B.两锐角对应相等C.一条边对应相等 D.一锐角对应相等2.下列条件中,不能判定两个三角形全等的是()A.三边对应相等B.两条边和夹角对应相等C.3.的是A.∠4.则Δ5.6.如图在△ABD和△ACE都是等边三角形,则ΔADC≌ΔABE的根据是()A. SSSB. SASC. ASAD. AAS7.如图,AB ∥CD ,AD ∥BC ,OE=OF ,则图中全等三角形的组数是( )A. 3B. 4C. 5D. 6 8.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( ) A.4个 B.3个 C.2个 D.1个 二、耐心填一填,一锤定音!(每小题3分,共24分)9.( 2008.广东梅州)如图, 点 P 到∠AOB 两边的距离相等,若∠POB=30°,则 ∠AOB=___度.第9题图形 第10题图形 第11题图形10.(2008.广东肇庆)如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D , 写出图中一对相等的线段(只需写出一对即可) . 11.(2008.黑龙江黑河)如图,∠BAC=∠ABD ,请你添加一个条件: ,使OC=OD(只添一个即可).12.有两边和 对应相等的两个三角形全等.13.如图,若△OAD≌△OBC,且∠0=65°,∠C=20°,则∠OAD= .14.如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: (写一个即可).15.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,如果BD+CE=9cm ,那么DE 的长度是 .16.如图,将正方形纸片沿AM 折叠,使点D 恰好落在边BC 上的N 处,若AD=7cm ,CM=3cm , ∠DAM=30°,那么AN= cm ,MN= cm ,∠NAM= ,∠DMN= .A DE F 第13题图形AD M 第14题图形DO CBA三、用心做一做,马到成功!(本大题共52分)17.(10分)如图,三条公路两两相交于A、B、C三点,现计划建一座综合供应中心,要求到三条公路的距离相等,则你能找出符合条件的地点吗?画出来。
第11章 全等三角形综合测试卷(含答案)

第11章全等三角形综合测试卷题号一1 二2 三3 四4 五5 六6 七7 八8得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(本大题共8小题,每小题3分,共24分)1.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A、5B、4C、3D、22、如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A、20°B、30°C、35°D、40°3、如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A. 4个B、3个C、2个D、1个4、如图,已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是()A、只有乙B、只有丙C、甲和乙D、乙和丙5、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A、60°B、50°C、45°D、30°6、用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A. SSSB. SASC. ASAD. AAS7、如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A、①B、②C、①②D、①②③8、如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,所作三角形与△ABC全等,这样的三角形最多可以画出()个A、2B、4C、6D、8二、填空题(本大题共8小题,每小题3分,共24分)9、如图,若△ABC≌△DEF,则∠E= ___________度.10、如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= cm.11、如图,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件.第6题12、如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=6 cm,则点D到AB的距离是__________cm.13、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.14、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于15、如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC与B′C′边上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,请你补充条件.(只需填写一个你认为适当的条件)16、如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CE;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)三、(本大题共3小题,第17 题6分,第18、19题均为7 分,共20 分)17、如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.18、如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是(2)添加了条件后,证明△ABC≌△EFD.19、如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.四、(本大题共2小题,每小题8 分,共16 分)20、如图,在Rt△ABC中,AD为∠BAC的平分线,DE⊥AB,若AB=10cm,AC=6cm,求BE的长.21.如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.五、(本大题共2小题,每小题8分,共16 分)22、如图所示,有一块三角形的空地,其三边长分别为20m、30m、40m,现在要把它分成面积比为2:3:4的三部分,分别种植不同的花。
第11章 全等三角形单元水平测试(含答案)培训资料

第11章全等三角形单元水平测试(含答案)第十一章 全等三角形全章水平测试班级_____________ 姓名______________ 号次_____________ 成绩_____________一、选择题(每题5分,共30分)1. 下列说法:(1)只有两个三角形才能完全重合;(2)如果两个图形全等,它们的形状和大小一定都相同;(3)两个正方形一定是全等形;(4)边数相同的图形一定能互相重合.其中错误说法的为 ( )A .(1)(3)B .(1)(2)(3)C .(1)(3)(4)D .(1)(4)2.如图1所示,△ABC ≌△EDF ,DF =BC ,AB =ED ,AE =20,FC =10,则AC 的长为( )A .10B .5C .15D .20F EDCBANMCB A图1 图23.如图2,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠C BM 等于( )A .1:2B .1:3C .2:3D .1:4图34.如图3,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE (2)BC =EF (3)AC =DF (4)∠A =∠D (5)∠B =∠E (6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与△DEF 全等的是( )A .(1)(5)(2)B .(1)(2)(3)C .(4)(6)(1)D .(2)(3)(4)5.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同一条直线上,如图4,可以得到EDC ABC ≅,所以ED =AB ,因此测得ED 的长就是AB 的长,判定EDC ABC ≅的理由是( )A .SASB .ASAC .SSSD .HLFEDCBA图4 图5 图66.如图5,ABC △是直角三角形,90A ∠=︒,BD 是角平分线,,AD n BC m ==,则BDC △的面积是( )A .mnB .12mnC .2mnD .14mn二、填空题(每题5分,共30分)7.由同一张底片冲洗出来的两张五寸照片的图案 _____ 全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片 _____ 全等图形(填“是”或“不是”).OB CAD8.如图6,ACB DBC ∠=∠,要想说明ABC DCB △≌△,只需增加的一个条件是__________________(只需填一个你认为合适的条件)9. “两个锐角对应相等”_______(填“能”或“不能”)判别两个直角三角形全等.10.如图7, ∠AOB 和一条定长线段O A ,在∠AOB 内找一点P ,使P 到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH ,使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平分线OP ,与NM 交于P .(4)点P 即为所求.其中(3)的依据是___________________________________11.如图8,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,若∠B =20°,则∠C = .12.如图9,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.三、解答题(共60分)13.(12分)课本上说:“两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.”⑴试找出在什么情况下,两边和其中一边的对角对应相等的两个三角形全等,画出图形.ADCB图9E图7图8(写一种情况即可) ⑵请说出(1)中的道理。
第11章全等三角形单元测试

第2题《全等三角形》单元测试卷班级 __姓名 得分____________一、选择题(每题5分,共30分)1.下列条件中,不能判定两个直角三角形全等的是( )A .一锐角和斜边对应相等B .两条直角边对应相等C .斜边和一直角边对应相等D .两个锐角对应相等2.如图,∠A =∠D ,AB 与DF 、AC 与DE 是对应边,则书写最规范的是( )A .△ABC ≌△DEFB .△ABC ≌△DEF C .△BAC ≌△DEFD .△ACB ≌△DEF3.如图,AB =AD ,BC =CD ,则全等三角形共有( )A .1对;B .2对;C .3对;D .4对; 4.如图,AB ∥FC ,DE =EF ,AB =15,CF =8,则BD =( )A .8;B .7;C .6;D .5;5.如图,O A B △绕点O 逆时针旋转80 到O C D △的位置,已知45AOB?,则A O D Ð等于( )A.55B.45C.40D.356.根据下列已知条件,能惟一画出三角形ABC 的是( ) A.AB =3,BC =4,AC =8; B.AB =4,BC =3,∠A =30; C .∠A =60,∠B =45,AB =4 D .∠C =90,AB =6 二、填空题(每题4分,共20分)1. 如果△ABC≌△DEF ,若AB =DE ,∠B=50°,∠C=70°,则∠D = °2.如图,如果△ABC ≌ △CDA ,则对应边是___________________________________,对应角是__________________________________BACDEF第4题第2题AFB第5题3.如图,AB 与CD 交与O ,∠C=∠D ,再添加条件 ,则△AOD ≌△BOC ,理由是 .4.在△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2, 且△ABC ≌△DEF ,则∠DEF =______.5. 如图所示,已知∠A=90°,BD 是∠ABC 的平分线, AC=10,DC=6,则点D•到BC 的距离DE=_______. 三、证明题(共50分)1.(10分)如图所示在△ABC 中,AB=AC , D 是BD 的中点,求证:△ABD ≌△ACD .2.(10分)如图所示,AE=AD , AB=AC ,求证:△EAB ≌△DAC .3.(15分)已知:∠BAE =∠DAC ,∠E=∠C, AC=AE ,求证:AB=AD .EDCB A4.(15分)如图所示,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC .FE D CB AD A CBE第5题。
第11章 全等三角形单元综合测评(含答案)

第11章全等三角形单元综合测评一、选择题(每小题3分,共30分)题号一1 二2 三3 四4 五5 六6 七7 八8得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
01.下列每组中的两个图形,是全等图形的为()A.B.C.D.02.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A.6cm B.5cmC.7cm D.无法确定03.如图,下列三角形中,与△ABC全等的是()(第02题)A.①B.②C.③D.④(第03题)04.两个三角形有两个角对应相等,正确的说法是()A.这两个三角形一定全等B.这两个三角形一定不全等C.如果还有一角相等,这两个三角形就一定全等D.如果还有一条边对应相等,这两个三角形就一定全等05.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC(第05题)(第06题)(第07题)06.如图,点P是AB上任意一点,AB是∠CBD的平分线,下列条件中,不一定能得出△APC≌△APD的是()A.BC=BD B.AC=ADC.∠ACB=∠ADB D.∠CAB=∠DAB07.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC08.小明用同种材料制成的金属框架如图所示.已知∠B=∠E,AB=DE,BF=EC,其中框架△ABC的质量为840克,CF的质量为106克,则整个金属框架的质量为()A.734克B.946克(第08题)C.1052克D.1574克09.两个直角三角形全等的条件是()A.一个锐角对应相等B.一条边对应相等C.两条边对应相等D.两个角对应相等10.如图是5 5的正方形网格,以点D、E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个(第10题)二、填空题(每小题3分,共30分)11.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI___________全等.(填“一定”或“不一定”或“一定不”)12.如图,BE、CD是△ABC的高,且BD=CE,判定△BCD≌△CBE的依据是__________.(第12题)(第13题)(第14题)13.如图,△ABC中,∠C=90︒,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是_____________.14.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF 的长是___________.15.如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由转动,做成一个测量工具,则A'B'的长等于内槽宽AB,那么判定△OAB≌△OA'B'的理由是_______________.(第15题)(第16题)16.如图,在6个条形方格图中,图中由实线围成的图形与①全等的有______________.17.如图,AE=AF,AB=AC,∠A=60︒,∠B=24︒,则∠BDC的度数为___________.(第17题)(第18题)(第19题)18.如图,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC,交AC于E,且OE=2,则两平行线AB、CD之间的距离等于____________.19.如图,在△ABC中,AC的垂直平分线交BC于点D,垂足为点E,△ABD的周长为12cm,AC=5cm,则△ABC的周长是_____________.20.如图,在△ABC中,AB=AC,E、D、F是BC边的四等分点,则图中全等三角形共有______________对.(第20题)三、解答题(每小题8分,共40分)21.如图,△ABC≌△DEC,∠A:∠ABC:∠BCA=3:5:10.(1)求∠D的度数;(2)求∠EBC的度数.22.如图,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C,求证:AE=CF.23.如图,在四边形ABCD中,AB∥CD,AD=CD=BC,AD、BC的延长线交于G,CE ⊥AG于E,CF⊥AB于F.(1)请写出图中4组相等的线段(已知相等的线段除外);(2)选择(1)中你写出的一组相等线段,说说它们相等的理由.24.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.25.如图①,△ABC与△DEF是两张全等的直角三角形纸片.(1)将这两张三角形纸片摆放成②所示的形式,使点C与点F重合,AB交DE于点G,写出图中的全等三角形(不包括△ABC≌△DEF).并说明理由.(2)若把这两张三角形纸片摆放成如图③所示的形式,使点C与点E重合,AB交DF 于点H,交DC于点G,试判断AB与CD间的位置关系,并说明理由.图①图②图③参考答案一、01.A 02.C 03.C 04.D 05.C 06.B 07.C 08.D 09.C 10.B 二、11.一定 12.H .L . 13.5 14.3 15.S .A .S . 16.②、④ 17.108︒ 18.4 19.17cm 20.4三、21.(1)∵∠A +∠ABC +∠BCA =180︒,∠A :∠ABC :∠BCA =3:5:10,∴∠A =30︒,∠ABC =50︒,∠BCA =100︒. 又∵△ABC ≌△DEC ,∴∠D =∠A =30︒. (2)∵△ABC ≌△DEC ,∴∠E =∠ABC =50︒. 而∠BCA =100︒,∴∠EBC =∠BCA -∠E =100︒-50︒=50︒.22.∵AB ∥CD ,∴∠B =∠D .又∵AB =CD ,∠A =∠C ,∴△ABE ≌△CDF ,∴AE =CF .23.(1)CE =CF ,GC =GD ,GA =GB ,DE =BF ; (2)过点D 作DH ⊥AB 于H ,∵CD ∥AB ,CF ⊥AB , ∴DH =CF .∵AD =DC ,∠GDC =∠A ,∠CED =∠DHC , ∴△DAH ≌△CDE ,∴CE =DH ,∴CE =CF .24.过点D 作DF ⊥BC 于点F .∵BD 是∠ABC 的平分线,DE ⊥AB , ∴DF =DE =2.∴△ABC 的面积为()19262152⨯+⨯=cm 2. 25.(1)△AGE ≌△DGB .∵△ABC ≌△DEF , ∴∠A =∠D ,AC =DF ,BC =EF . ∴AC -EF =DF -BC ,即AE =DB . 又∵∠AGE =∠DGB ,∴△AGE ≌△DGB .(2)AB 与CD 互相垂直.∵△ABC ≌△DEF ,∴∠A =∠D .∵DF ∥BC ,∴∠D =∠BCG ,∴∠A =∠BCG . ∵∠A +∠B =90︒,∴∠BCG +∠B =90︒.∴AB ⊥CD .可以编辑的试卷(可以删除)。
第十一章全等三角形单元测试卷及答案

第十一章全等三角形单元测试卷及答案(时刻:60分钟,满分:100分)一、选择题 (每小题3分,共30分)1.如图,已知AB //DC ,AD //BC ,则△ABC ≌△CDA 的依据是( ) A .SAS B .ASA C .AAS D .以上都不对 2.如图,AB = DB ,BE BC =,欲证△ABE ≌△DBC ,则须增加的条件是( )A .D A ∠=∠B .C E ∠=∠ C .C A ∠=∠D .∠1 =∠2 3.如图,MQ MP =,QN PN =,MN 交PQ 于点O ,则下列结论不正确的是( )A .△MPN ≌△MQNB .OQ OP =C .NO MQ =D .∠MPN =∠MQN4.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个直角三角形的面积相等 5.如图,已知△ABC 中,AB = AC ,AE = AF ,AD ⊥BC 于D ,且E 、F 在BC 上,则图中共有( )对全等的直角三角形. A .1 B .2 C .3 D .46.如图,AO = BO ,CO =DO ,AD 与BC 交于E ,∠O =40º,∠B = 25º,则∠BED 的度数是( )A .090B .060C .075D .085第9题图第10题图第1题图 第2题图 第3题图 第5题图第6题图7.在△ABC 和△DEF 中,下列各组条件中,不能判定两个三角形全等的是( )A .AB = DE ,∠B =∠E ,∠C =∠F B .AC =DF ,BC =DE ,∠C =∠DC .AB = EF ,∠A =∠E ,∠B =∠FD .∠A =∠F ,∠B =∠E ,AC = DE 8.下列说法中,错误的个数是( )(1)有两边与一角对应相等的两个三角形全等 (2)有两个角及一边对应相等的两个三角形全等 (3)有三个角对应相等的两个三角形全等 (4)有三边对应相等的两个三角形全等A .4B . 3C .2D .1 9.如图,亮亮书上的三角形被墨迹污染了一部分,专门快他就依照所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A. SSS B. SAS C. AAS D. ASA 10.如图,△ABC 中,∠1 =∠2,PR = PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则下列三个结论:①AS = AR ;②QP //AR ;③△BRP ≌△QSP ,( ) A .全部正确 B .①和②正确 C .仅①正确 D .①和③正确 二、填空题(每小题2分,共16分)11.如图,△ABC ≌△DBC ,且∠A 和∠D ,∠ABC 和∠DBC 是对应角,除公共边外,其余对应边是 .12.已知△ABC 中,∠A =050,∠ABC 、∠ACB 的平分线交于点O ,则∠BOC 的度数为 .13.如图, 已知∠1=∠2 , ∠3=∠4 , 要证BD =CD , 需先证△AEB ≌△AEC , 依照是_________,再证△BDE ≌△______.14.如图,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是_________.A BCD12第14题图第13题图4321EDBA第11题图O DCB AC B A E D第15题图 第16题图 15.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 ____ 对全等三角形.16.如图,△ABC ≌△ADE ,则AB = ,∠E = . 若∠BAE =120°,∠BAD =40°,则∠BAC = .17.若△ABC ≌△DEF ,△ABC 的周长为12,若AB =3,EF =4,则AC = . 18.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB 的距离是____ __.三、解答题(19-22题每小题6分,23-25题每小题10分,共计54分) 19. 已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(不写作法,保留作图痕迹)20. 如图,AB =DC ,AC =DB ,求证:∠A =∠D .21.如图, AB =CD ,CE =DF ,AE =BF ,求证:AE ∥DF .22.如图,,DBE ABC ∆≅∆ AB 与DB ,AC 与DE 是对应边,已知 30,43=∠=∠A B ,求BED ∠的度数.解:∵∠A +∠B +∠ACB =0180( ),30,43=∠=∠A B ( ), ∴∠ACB = .F D CB DAO N MBA∵,∆( )≅ABC∆DBE∴∠BED=∠ACB= ( ) .23.如图,在△ABC和△DBC中,∠ACB =∠DBC = 90º,E是BC的中点,EF⊥AB于F,且AB = DE.(1)求证:BC =DB;(2)若DB= 8cm,求AC的长.24.在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EB.25.如图,已知在△ABC中,BE、CF分别是AC、AB边上的高,在BE上截取BD = AC,在CF的延长线上截取CG = AB,连结AD、AG,则AG与AD 有何关系?试证明你的结论.八年级数学(上)第十一章单元测试题参考答案11. AB 和DB , AC 和DC ; 12. 0115 ; 13. ASA,△CDE ; 14. ∠B =∠C ; 15.3; 16. AD ,∠C ,080 ; 17. 5; 18. 4cm . 三、解答题(19-22题每小题6分,23-24每小题10分,共计54分) 19.(略)20.(略) 21.(略)22.三角形的内角和等于0180 ,已知,0107,已知,0107,等量代换 . 23.(1)证明:∵∠DEB +∠ABC = 90º,∠A +∠ABC = 090, ∴∠DEB =∠A ,又∵DE = BA ,∠DBE =∠BCA = 090, ∴△ACB ≌△EBD (AAS),则有BC = DB . (2)解:由△ACB ≌△EBD 得AC = EB ,∵E 是BC 的中点,∴EB =BC 21,∵DB = 8,BC = DB ,∴BC = 8,∴AC =EB = BC 21= 4cm .24.证明:(1)∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DC DE =,又∵BD DF =, ∴ Rt △CDF ≌Rt △EDB (HL), ∴CF =EB .25.解:AG = AD,AG⊥AD.证明:∵CF⊥AB,BE⊥AC∴∠ACG+∠CAB =090,∠ABE+∠CAB = 90º,∴∠ACG=∠ABE,又∵AC =BD,CG = AB,∴△ACG≌△DBA(SAS),则AG =AD,∠G=∠BAD,∵∠G+∠GAB= 090,∴∠BAD+∠GAB = 90º,即∠GAD = 090,∴AG⊥AD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第11章全等三角形》2011年综合复习测试卷(五)《第11章全等三角形》2011年综合复习测试卷(五)一、选择题(每题3分)1.(3分)(2009•钦州)如图,在等腰梯形ABCD中,AB=DC,AC,BD交于点O,则图中全等三角形共有()2.(3分)(2008•成都)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()3.(3分)(2011•呼伦贝尔)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()4.(3分)(2009•辽宁)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()5.(3分)(2009•绍兴)如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB 边上的点P处.若∠CDE=48°,则∠APD等于()6.(3分)(2009•临夏州)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD 的面积为8,则BE=()D.7.(3分)(2008•鄂州)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为().D二、填空题:(每题3分)8.(3分)(2009•内江)如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_________度.9.(3分)(2009•龙岩)如图,点B、E、F、C在同一直线上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要补充的一个条件是_________(写出一个即可).10.(3分)(2008•沈阳)已知△ABC中,∠A=60°,∠ABC、∠ACB的平分线交于点O,则∠BOC的度数为_________度.11.(3分)(2012•巴彦淖尔模拟)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,则点D到直线AB的距离是_________厘米.12.(3分)(2009•包头)如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图1所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图1中的△ACB绕点C顺时针方向旋转到图2的位置,点E在AB边上,AC交DE于点G,则线段FG的长为_________cm(保留根号).13.(3分)(2009•河池)如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C 点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为_________.14.(3分)如图,△ABC中,E、F分别是AB、AC上的点.①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②→③,①③→②,②③→①.三个选项中正确的是_________.15.(6分)(2009•怀化)如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.16.(6分)(2009•北京)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.17.(9分)(2009•丽水)已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.18.(10分)(2009•临夏州)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.19.(12分)(2009•宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.20.(12分)(2009•包头)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?《第11章全等三角形》2011年综合复习测试卷(五)参考答案与试题解析一、选择题(每题3分)1.(3分)(2009•钦州)如图,在等腰梯形ABCD中,AB=DC,AC,BD交于点O,则图中全等三角形共有()2.(3分)(2008•成都)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()3.(3分)(2011•呼伦贝尔)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()4.(3分)(2009•辽宁)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()AOC=×5.(3分)(2009•绍兴)如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB 边上的点P处.若∠CDE=48°,则∠APD等于()6.(3分)(2009•临夏州)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD 的面积为8,则BE=()D.BE=.7.(3分)(2008•鄂州)如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为().D二、填空题:(每题3分)8.(3分)(2009•内江)如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=40度.9.(3分)(2009•龙岩)如图,点B、E、F、C在同一直线上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要补充的一个条件是AB=DC或AF=DE或BF=CE或BE=CF(写出一个即可).10.(3分)(2008•沈阳)已知△ABC中,∠A=60°,∠ABC、∠ACB的平分线交于点O,则∠BOC的度数为120度.(∠11.(3分)(2012•巴彦淖尔模拟)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,则点D到直线AB的距离是6厘米.12.(3分)(2009•包头)如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图1所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图1中的△ACB绕点C顺时针方向旋转到图2的位置,点E在AB边上,AC交DE于点G,则线段FG的长为cm(保留根号).=13.(3分)(2009•河池)如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C 点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为(8,3).14.(3分)如图,△ABC中,E、F分别是AB、AC上的点.①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②→③,①③→②,②③→①.三个选项中正确的是①②→③;②③→①.AD AD为圆心,AD15.(6分)(2009•怀化)如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.16.(6分)(2009•北京)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.中,17.(9分)(2009•丽水)已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.18.(10分)(2009•临夏州)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.19.(12分)(2009•宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.DAB=∠20.(12分)(2009•包头)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?由题意,得.共运动了秒点参与本试卷答题和审题的老师有:HJJ;zhangCF;lantin;开心;CJX;自由人;Liuzhx;lf2-9;117173;MMCH;sks;zxw;kuaile;lanchong;郭静慧;ln_86;haoyujun;算术;蓝月梦;wenming;zhjh;137-hui;王岑;Linaliu;wdxwzk(排名不分先后)菁优网2013年8月9日。