高考数学复习 专题一 集合与常用逻辑用语专项练习 理
2021年高考数学分项汇编 专题1 集合与常用逻辑用语(含解析)理

2021年高考数学分项汇编专题1 集合与常用逻辑用语(含解析)理一.基础题组1. 【xx课标Ⅰ,理1】已知集合{}{}2-=x-xxA,则()≥xBx=,|232≤-|2<A. B. C.. D.【答案】A2. 【xx课标全国Ⅰ,理1】已知集合A={x|x2-2x>0},B={x|-<x<},则( ).A.A∩B= B.A∪B=R C.BA D.AB【答案】B3. 【xx全国,理1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3 B.6 C.8 D.10【答案】D4. 【xx新课标,理1】已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=( ) A.(0,2) B.[0,2] C.{0,2} D.{0,1,2}【答案】:D5. 【xx全国卷Ⅰ,理1】设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【答案】:A6. 【xx全国,理1】设集合M={x│x2-x<0},N={x││x│<2},则( )(A)(B)(C)(D)【答案】B7. 【xx高考新课标1,理3】设命题:,则为( )(A)(B)(C)(D)【答案】C【考点定位】本题主要考查特称命题的否定二.能力题组1. 【2011全国新课标,理10】已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1:|a+b|>1θ∈[0,)p2:|a+b|>1θ∈(,π]p3:|a-b|>1θ∈[0,)p4:|a-b|>1θ∈(,π]其中的真命题是( )A.p1,p4B.p1,p3 C.p2,p3D.p2,p4【答案】A2. 【2011全国,理3】下面四个条件中,使a>b成立的充分而不必要的条件是( ) A.a>b+1 B.a>b-1C.a2>b2 D.a3>b3【答案】:A3. 【xx全国1,理1】设I为全集,S1、S2、S3是I的三个非空子集且S1∪S2∪S3=I,则下面论断正确的是()A. B.C. D.【答案】C三.拔高题组1. 【xx新课标,理5】已知命题:p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(p1)∨p2和q4:p1∧(p2)中,真命题是( )A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【答案】:C27340 6ACC 櫌25639 6427 搧123683 5C83 岃M22790 5906 夆25192 6268 扨22960 59B0 妰23768 5CD8 峘35292 89DC 觜m{29657 73D9 珙26893 690D 植@。
高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
13集合与常用逻辑用语专项训练-2023年高考数学一轮总复习题型归纳专项练习(新高考专用)(原卷版)

☆注:请用Microsoft Word2016以上版本打开文件进行编辑,用WPS 等其他软件可能会出现乱码等现象.第一章 集合与常用逻辑用语1.3 集合与常用逻辑用语专项训练一.选择题(共8小题)1.设集合A ={x |x <x 2},B ={x |x 2+x ﹣6<0},则A ∩B =( )A .(0,1)B .(﹣2,0)∪(1,3)C .(﹣3,1)D .(﹣3,0)∪(1,2) 2.已知命题p :∀x >0,总有(x +1)lnx >1,则¬p 为( )A .∃x 0≤0,使得(x 0+1)lnx 0≤1B .∃x 0>0,使得(x 0+1)lnx 0≤1C .∃x 0>0,总有(x 0+1)lnx 0≤1D .∃x 0≤0,总有(x 0+1)lnx 0≤13.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为( )A .0B .1C .2D .3 4.已知集合A ={x ∈Z |x+1x−3≤0},B ={y |y =x 2+1,x ∈A },则集合B 的子集个数为( ) A .5 B .8C .3D .2 5.设0<a <1,则“log a b >1”是“b <a ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件6.集合A ={x |x <﹣1或x ≥3},B ={x |ax +1≤0},若B ⊆A ,则实数a 的取值范围是( )A .[−13,1)B .[−13,1]C .(﹣∞,﹣1)∪[0,+∞)D .[−13,0)∪(0,1) 7.已知集合A ={x |4−x x+1≥0},B ={x |x 2﹣(a +1)2x +2a (a 2+1)<0},若A ∩B =∅,则实数a 的取值范围是( )A .(2,+∞)B .{1}∪(2,+∞)C .{1}∪[2,+∞)D .[2,+∞) 8.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二.多选题(共4小题) (多选)9.已知全集为R ,集合A ={x|(12)x ≤1},B ={x |x 2﹣6x +8≤0},则下列结论正确的有( )A .A =(﹣∞,0]B .∁R B ={x |x <2或x >4}C .A ∩∁R B ={x |0≤x <2}D .A ∩∁R B ={x |0≤x <2或x >4}(多选)10.若“x 2+3x ﹣4<0”是“x 2﹣(2k +3)x +k 2+3k ≥0”的充分不必要条件,则实数k 可以是( )A .﹣8B .﹣5C .1D .4(多选)11.下列命题中,是真命题的是( )A .已知非零向量a →,b →,若|a →+b →|=|a →−b →|,则a →⊥b →B .若p :∀x ∈(0,+∞),x ﹣1>lnx ,则¬p :∃x 0∈(0,+∞),x 0﹣1≤lnx 0C .在△ABC 中.“sin A +cos A =sin B +cos B ”是“A =B ”的充要条件D .若定义在R 上的函数y =f (x )是奇函数,则y =f (f (x ))也是奇函数(多选)12.下列选项中,p 是q 的必要不充分条件的是( )A .p :3<m <7;q :方程x 27−m +y 2m−3=1的曲线是椭圆B .p :a ≥8;q :对∀x ∈[1,3]不等式x 2﹣a ≤0恒成立C .设{a n }是首项为正数的等比数列,p :公比小于0;q :对任意的正整数n ,a 2n ﹣1+a 2n <0D .已知空间向量a →=(0,1,﹣1),b →=(x ,0,﹣1),p :x =1;q :向量a →与b →的夹角是π3 三.填空题(共4小题)13.已知集合A ={x |a ﹣1<x <a +1},B ={x |0<x <1},若A ∩B =∅,实数a 的取值范围是 .14.已知P :A ={x |(x ﹣1)(x ﹣2)>0},q :B ={x |x ﹣a ≤0},若p 是q 的必要不充分条件,则a 的取值范围为 .15.已知命题p :∀x ∈[1,2],x 2+1≥a ,命题q :∃x ∈[﹣1,1],使得2x +a ﹣1>0成立,若p 是真命题,q 是假命题,则实数a 的取值范围为 .16.对于两个正整数m ,n ,定义某种运算“⊙”如下,当m ,n 都为正偶数或正奇数时,m ⊙n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊙n =mn ,则在此定义下,集合M ={(p ,q )|p ⊙q =10,p ∈N *,q ∈N *}中元素的个数是 .。
高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
2020年高考文科数学专题一 集合与常用逻辑用语 含习题答案

2020年高考文科数学专题一集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a 不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U 中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______. 【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义), 所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是( ) (A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(A)∩(U B)={1,9},求集合A和B.U11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为( ) (A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集 (B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集 (C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集 (D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集 二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件. 6.命题“若x <-1,则|x |>1”的逆否命题为_________. 7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题: ①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上) 三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假: (1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0; (4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0 (C)cb 2<ab 2 (D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题01 集合与常用逻辑用语参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4} 6.4个7.{x|-1<x<2} 8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-1 7.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-x x x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x , 所以,原不等式的解集为{x |x <0或21>x }. 12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,21,2三个元素. (2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.。
高考数学(理科)二轮复习【专题1】集合与常用逻辑用语(含答案)

第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。
高考数学(理)一轮复习文档 第一章 集合与常用逻辑用语 高考零距离1 集合与常用逻辑用语 Word版含答案

集合与常用逻辑用语1.集合作为高考必考内容,多年来命题较稳定,多以选择题的形式在前3题的位置进行考查,难度较小,命题的热点依然会集中在集合的运算上,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等知识命题.(2015·高考全国卷Ⅱ,T1)已知集合A ={x |-题溯源(必修1 P8例5)设集合A ={x |(2016·高考全国卷乙,T1)设集合A ={x |x 2-21.(必修1 P11练习T4改编)已知全集U ={1,2,3,4,5,6,7},A ={2,4,5},B ={1,3,5,7},则(∁U A )∩B =( )A .{1,3,5,6,7}B .{1,3,7}C .{5}D .{3,5,7}B (∁U A )∩B ={1,3,6,7}∩{1,3,5,7}={1,3,7},选 B .2.(必修1 P12习题1.1A 组T4(3)改编)设A ={x ∈Z |-3<2x -1≤3},B ={x |3x ≥4-2x },则A ∩B =( )A .{1,2}B .{2}C .{x |45≤x ≤2}D .{0,1}A A ={x ∈Z |-1<x ≤2}={0,1,2},B ={x |x ≥45},所以A ∩B ={1,2},选A.3.(必修1 P11练习T2改编)设A ={x |x 2-4x -5<0},B ={x |x 2<4},则A ∪B =( ) A .(-1,2) B .(-2,5) C .(2,5)D .(-2,-1)B A ={x |-1<x <5},B ={x |-2<x <2}, 所以A ∪B ={x |-2<x <5}.选B .4.(必修1 P83复习参考题B 组T1改编)设集合A ={y |y =log 2(|sin x |+1),x ∈R },B ={y |y =2cos x ,x ∈R },则A ∩B =( )A .B .C .D .[12,1]D 因为|sin x |+1∈,所以A ={y |y =log 2(|sin x |+1),x ∈R }={y |0≤y ≤1}, 又cos x ∈,所以B ={y |y =2cos x,x ∈R }={y |12≤y ≤2},所以A ∩B =∩⎣⎢⎡⎦⎥⎤12,2=⎣⎢⎡⎦⎥⎤12,1,选 D . 5.(选修21 P25例4(1)改编)对于命题p :∃x 0∈R ,x 20+2x 0+2≤0,则下列说法正确的是( )A .綈p :∀x ∈R ,x 2+2x +2≤0是假命题 B .綈p :∀x ∈R ,x 2+2x +2>0是真命题 C .綈p :∃x 0∈R ,x 20+2x 0+2>0是真命题 D .綈p :∀x ∈R ,x 2+2x +2>0是假命题B 綈p :∀x ∈R ,x 2+2x +2>0,因为x 2+2x +2=(x +1)2+1>0对于一切x ∈R ,恒成立,故选B .6.(选修21 P12练习T2(2)改编)已知条件p :x -3>0,条件q :(x -3)(x -4)≥0,则( )A .p 是q 的充分条件B .p 是綈q 的必要条件C .綈p 是綈q 的充分条件D .p 是q 的必要条件B 将命题p 、q 转化为用集合表示:p :A ={x |x -3>0}={x |x >3}.綈p :B ={x |x -3≤0}={x |x ≤3}.q :C ={x |(x -3)(x -4)≥0}={x |x ≤3或x ≥4},綈q :D ={x |(x -3)(x -4)<0}={x |3<x <4}. 显然,A 不是C 的子集,故A 错.D ⊆A ,即p 是綈q 的必要条件,故B 正确.B 不是D 的子集,故C 错,C 不是A 的子集,故D 错,所以选 B .。
高考理科数学专项练习-集合与常用逻辑用语

专题一 集合与常用逻辑用语第一讲 集合一、选择题1.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB = A .{0,1} B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}AB =,故选A . 2.(2018全国卷Ⅰ)已知集合2{20}=-->A x x x ,则A =R A .{12}-<<x xB .{12}-≤≤x xC .{|1}{|2}<->x x x xD .{|1}{|2}-≤≥x x x xB 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x{|12}=-≤≤x x ,故选B .3.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则AB =A .{0}B .{1}C .{1,2}D .{0,1,2} C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =.故选C .4.(2018天津)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B A .{01}x x <≤ B .{01}x x << C .{12}x x <≤ D .{02}x x << B 【解析】因为{1}B x x =≥,所以{|1}R B x x =<,因为{02}A x x =<<, 所以()=R A B {|01}x x <<,故选B .5.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A A .∅ B .{1,3} C .{2,4,5}D .{1,2,3,4,5} C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A {2,4,5}.故选C . 6.(2018全国卷Ⅱ)已知集合22{(,)|3}=+∈∈Z Z ≤,,A x y x y x y ,则A 中元素的个数为A .9B .8C .5D .4A 【解析】通解 由223+≤x y知,x≤y又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .7.(2017新课标Ⅰ)已知集合{|1}A x x =<,{|31}x B x =<,则A .{|0}AB x x =< B .A B R =C .{|1}A B x x =>D .A B =∅A 【解析】∵{|0}B x x =<,∴{|0}A B x x =<,选A .8.(2017新课标Ⅱ)设集合{1,2,4}A =,2{|40}B x x x m =-+=,若AB ={1},则B =A .{1,3}-B .{1,0}C .{1,3}D .{1,5}C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C . 9.(2017新课标Ⅲ)已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则AB 中元素的个数为A .3B .2C .1D .0B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B 中元素的个数为2.选B .10.(2017山东)设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B =A .(1,2)B .(1,2]C .(2,1)-D .[2,1)-D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<≤≤≤,选D.11.(2017天津)设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()A B C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤ B 【解析】(){1246}[15]{124}A B C =-=,,,,,, ,选B.12.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q = A .(1,2)- B .(0,1) C .(1,0)- D .(1,2)A 【解析】由题意可知{|12}P Q x x =-<<,选A .13.(2017北京)若集合{|21}A x x =-<<,{|13}B x x x =<->或,则A B = A .{|21}x x -<<- B .{|23}x x -<<C .{|11}x x -<<D .{|13}x x <<A 【解析】{}21AB x x =-<<-,故选A.14.已知集合{}{}21,0A x x B x x =-<<=>,则集合AB =( )A .(2,1)-B .(0,1)C .(0,)+∞D .(2,)-+∞ D 【解析】{}{}{}2102A B x x x x x x ⋃=-<<⋃>=>-故选:D15.已知集合{}{}2230,ln()A x x x B x y x =+-≤==-,则AB =( )A .[3,0]-B .[3,1]-C .[3,0)-D .[1,0)- C 【解析】由2230x x +-≤有(1)(3)0x x -+≤,即31x -≤≤,又ln()x -中0x ->即0x <. 故A B =[3,0)-故选:C16.已知集合{|A x y ==,集合2{|0}B x x x =-<,则AB =( )A .∅B .{|1}<x xC .{|01}x x <<D .{|0}x x < D 【解析】解:{}{}101A x x x x =-≥=≤,{}{200B x x x x x =->=<或}1x >, {|0}A B x x ∴⋂=<.故选:D .17.设集合{}12A x x =-<≤,{}1,0,1,2,3B =-,则A B =( ) A .1,0,1,2 B .{}0,1,2 C .{}0,1 D .{}12,3x x x -<≤=或B 【解析】因为{}12A x x =-<≤,{}1,0,1,2,3B =-,所以AB ={0,1,2}.故选:B 18.设集合{}2|30,{|14}A x x x B x x =-<=<<,则A B =( ) A .(0,4) B .(1,4) C .(3,4)D .(1,3) D 【解析】{}2|30{|03}A x x x x x =-<=<<,A B =(1,3)故选:D19.已知集合{}{}241,0,1,2,3A x x B =<=-,,则A B =( ) A .{}0,1,2 B .{}0,1 C .{}1,0,1- D .{}2,1,0,1,2--C 【解析】{}{}221,0,1,2,3A x x B =-<<=-,,则A B ={}1,0,1-.故选:C20.已知集合A ={0,1,2},B ={x |x 2﹣x ≤0},则A ∩B =( )A .{0}B .{0,1}C .{1,2}D .{0,1,2} B 【解析】因为{}2B |0{|01}x x x x x =-≤=≤≤,A ={0,1,2}则A ∩B ={0,1}二、填空题21.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = . {1,8}【解析】由集合的交运算可得AB ={1,8}. 22.已知集合{1,2}A =,2{,3B a a =+},若{1}AB =,则实数a 的值为_. 1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.23.已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为__.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==,5个元素.24.已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .{}1,3-【解析】=B A {}1,3-三、解答题25.(2018北京)设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记(,)M αβ= 111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=, 1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅,11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥. 所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +.取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-). 令1211(,,,)n n n B e e e S S -+=⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一《集合与常用逻辑用语》
数学试卷
考试范围:xxx;考试时间:100分钟;命题人:xxx
学校:___________姓名:___________班级:___________考号:___________
题号 一 二 三 总分
得分
注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题
卡上
第1卷
评卷人 得分
一、选择题
1、已知集合则( )
A.
B.
C.
D.
2、设集合,。若,则
( )
A.
B.
C.
D.
3、已知集合,,则中元素
的个数为( )
A.3
B.2
C.1
D.0
4、集合,且,则的值为( )
A.1
B.-1
C.1或-1
D.1或-1或0
5、若,则的取值范围是( )
A.
B.
C.
D.
6、已知集合,,若,则实数的
取值范围是( )
A.
B.
C.
D.
7、已知集合,若实数,满足:对任意的,
都有,则称是集合的“和谐实数对”,则以下集合中,存在“和谐
实数对”的是( )
A.
B.
C.
D.
8、“若,则”的逆否命题是( )
A.若,则,或
B.若,则
C.若或,则
D.若或,则
9、“”是“”的( )
A.充分且不必要条件
B.必要且不充分条件
C.充要条件
D.既非充分也非必要条件
10、圆与直线有公共点的充分不必要条件是( )
A.或
B.
C.
D.或
11、设,则“”是“”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
12、已知命题,,命题,则下
列命题为真命题的是( )
A.
B.
C.
D.
评卷人 得分
二、填空题
13、已知集合(其中为虚数单位),,则复数等
于 .
14、已知命题“若,则”,命题的原命题,逆命题,
否命题,逆否命题中真命题的个数为 .
15、已知,且是的充分而不必要条件,
则的取值范围为 .
16、若命题“”是假命题,则实数的取值范围
是 .
评卷人 得分
三、解答题
17、已知,.
1.当时,求;
2.若求实数的取值范围.
18、集合,.
1.若,求实数的取值范围;
2.当时,求的非空真子集的个数.
19、设命题;命题,若是
的必要不充分条件,求实数的取值范围.
20、已知, 若为
真命题,求实数的取值范围.
21、 已知,设,成
立;,成立,如果“”为
真,“”为假,求的取值范围.
22、已知命题:,成立;命题双曲线
的离心率,若为假命题,求实数的取值范围.
参考答案:
一、选择题
1.
答案: A
解析: 由 可得,则,即,所以
,
.
2.
答案: C
解析: 由得,即是方程的根,所以
,,。
3.
答案: B
解析: 集合中的元素为点集,由题意,结合表示以为圆心,1为半径的单位圆上所有
点组成的集合,集合表示直线上所有的点组成的集合,圆 与直线
相交于两点 ,,则中有两个元素.故选B
4.
答案: D
解析: 由有,当,则;当,则;
当,则;当,方程最多有一个实根,不符合,舍去.
综上情况有或或0.选D.
5.
答案: D
解析: 由题意,∴,选D.
6.
答案: A
解析: 由题意可知:,结合集合和题意可得实数的取值范围是
.
7.
答案: C
解析: 分析题意可知,所有满足题意的有序实数对所构成的集合为
,将其看作点的集合,为中心在原
点,,,,为顶点的正方形及其内部,A,B,D选项分别表示
直线,圆,双曲线,与该正方形及其内部无公共点,选项C为抛物线,有公共点,故选
C.
8.
答案: D
解析: 逆否命题需将原命题的条件和结论交换后并分别否定,所以为:若或,
则
9.
答案: A
解析: ,,所以为充分不必要条件.
10.
答案: B
解析: 圆与直线有公共点
或,所以“”是“圆
与直线有公共点的充分不必要条件”,故选B.
11.
答案: A
解析: ,但,不
满足,所以是充分不必要条件,选A.
12.
答案: B
解析: 根据指数函数的性质,可知命题知真命题,对于命题
,所以命题为假命题,所以命题
为真命题.
二、填空题
13.
答案: -4i
解析: ,说明是的子集,则元素,所以必有.
14.
答案: 2
解析: 因为,所以,所以命题为真命题;其逆命题为:若
,则,因为
时,成立,所以此时,所以逆命题为假命题;根据命题与逆
否命题真假相同,逆命题与否命题是互为逆否命题,所以命题的原命题,逆命题,否命题,逆
否命题中真命题的个数为2.
15.
答案: [-1,6]
解析:
,
因为是的充分而不必要条件,所以解得
经验证或时,是的充分而不必要条件,故的取值范围为
16.
答案:
解析: 命题“”的否定是
“”为真命题,即,解得
.
三、解答题
17.
答案: 1.,,
2.或
当,即得,满足
当时,使即或,解得
综上所述,的取值范围是.
18.
答案: 1.∵,∴,
当,即时,,满足;
当,即时,要使成立,
需满足,可得;
综上,时,有.
2.当时,,所有的非空真子集的个数为
.
19.
答案: 设
,,易知
,由是的必要不充分条件,
从而是的充分不必要条件,即,且两等号不能同时取.故所求实
数的取值范围是.
20.
答案: 解法1
由题意知,真或真,当真时,,当真时,,解得
,因此,当为真命题时,或,即
解法2
若为假命题,则,均为假命题,此时满足,即
因为与真假性互异,所以当为真命题时,
21.
答案: 若为真:对恒成立,
设,配方得,
∴在上的最小值为,
∴,解得,
∴为真时:;
若为真:,成立,
∴成立.
设,
易知在上是增函数,
∴的最大值为,
∴
∴为真时,
∵""为真,“”为假,
∴与一真一假,当真假时,∴,
当假真时,∴,
综上所述,的取值范围是或.
22.
答案: 命题,分参得.设
,,成立,等价于
.当,时,;当
时,,故在上单调递增,在上单调递减,
∴,故 ①
命题双曲线的离心率,易知.离心率,
∵,①
∴. ②
若为假命题,则真真,结合①和②知,