常用放缩方法技巧

合集下载

基本不等式放缩法

基本不等式放缩法

基本不等式放缩法是解决数学问题中的一种常用技巧,特别是在证明不等式时。

放缩法的核心思想是通过适当的放大或缩小某些项,使得原始的不等式更容易处理或者更容易证明。

以下是一些常见的放缩技巧:
1. 添加或舍弃一些正项(或负项):在保持不等式方向不变的前提下,可以适当添加或去掉一些不影响不等式成立的正项或负项。

2. 先放缩再求和(或先求和再放缩):根据问题的需要,可以先对某些项进行放缩,然后再进行求和,或者先求和再对结果进行放缩。

3. 逐项放大或缩小:对不等式中的每项单独进行放缩,然后合并结果。

4. 固定一部分项,放缩另外的项:在某些情况下,可以固定一部分项不变,只对其他项进行放缩。

5. 函数放缩:利用函数的单调性进行放缩,例如,对于递增函数,可以放大小的值,缩小大的值。

6. 裂项放缩:将复杂的项分解成更简单的形式,然后进行放缩。

7. 均值不等式放缩:利用算术平均值大于等于几何平均值的性质进行放缩。

8. 二项放缩:在涉及二项式的情况下,可以利用二项式的性质进行放缩。

9. 指数函数放缩:例如,对于指数函数e^x,有e^x ≥x + 1 当x ≥0。

10. 利用导数判断函数的单调性:通过求导数来判断函数的单调性,然后根据单调性进行放缩。

在实际应用中,放缩法往往需要结合具体问题灵活运用,有时还需要与其他数学方法(如代换法、综合法、反证法等)结合使用。

通过放缩,可以将复杂的不等式转化为更易于处理的形式,从而简化问题的解决过程。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法(Sequence Squeezing Method)是指在解决数学问题时,通过限制或放缩数列的取值范围,从而简化问题的求解过程。

数列放缩法是数学竞赛和高等数学中常见的一种技巧,本文将总结数列放缩法常用的技巧和应用场景。

1. 加减不等式放缩法加减不等式放缩法是通过对等式进行加减操作,使得所得不等式比原来的不等式更易于求解。

常见的加减不等式放缩技巧有如下几个:1.1. 约束条件加减法设原不等式为A<B,通过针对不等式的约束条件进行加减操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

1.2. 平方项加减法对于不等式中的平方项,可以通过改变平方项的系数进行加减操作,从而得到一个更易于处理的不等式。

例如,对于a2+b2<2ab,可以将不等式变换为(a−b)2>0,从而得到更容易求解的形式。

1.3. 倒数项加减法对于不等式中的倒数项,可以通过改变倒数项的系数进行加减操作,从而放缩不等式。

例如,在2ab<a2+b2中,可以将不等式变换为$\\frac{1}{a}+\\frac{1}{b} > \\frac{2}{a+b}$,从而得到更容易处理的形式。

2. 乘除不等式放缩法乘除不等式放缩法是通过对等式进行乘除操作,使得所得不等式比原来的不等式更易于求解。

常见的乘除不等式放缩技巧有如下几个:2.1. 约束条件乘除法设原不等式为A<B,通过针对不等式的约束条件进行乘除操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

2.2. 平方项乘除法对于不等式中的平方项,可以通过改变平方项的系数进行乘除操作,从而得到一个更易于处理的不等式。

例如,在a2+b2<2ab中,可以将不等式变换为a2−2ab+b2<0,从而得到更容易求解的形式。

2.3. 倒数项乘除法对于不等式中的倒数项,可以通过改变倒数项的系数进行乘除操作,从而放缩不等式。

大学中常用不等式放缩技巧

大学中常用不等式放缩技巧

大学中常用不等式,放缩技巧大学中常用不等式,放缩技巧一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sinaⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0&lt;a&lt;1)ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1 tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ai bi)2≤∑ai2∑bi24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp (0&lt;p&lt;1)(a+b)p≥ap+ bp (p&gt;1)6:(1+x)n≥1+nx (x&gt;-1)7:切比雪夫不等式若a1≤a2≤…≤an, b1≤b2≤…≤bn∑aibi≥(1/n)∑ai∑bi若a1≤a2≤…≤an, b1≥b2≥…≥bn∑aibi≤(1/n)∑ai∑bi三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n&lt;1/√(2n+1);2:1+1/√2+1/√3+…+1/√n&gt;√n;3:n!&lt;【(n+1/2)】n4:nn+1&gt;(n+1)n n!≥2n-15:2!4!…(2n)!&gt;{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n&lt;4四:一些重要极限(书上有,但这些重要极限需熟背如流)假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结高中数学中的放缩法是一种常用的解题技巧,它通过适当调整式子的形式,进行等价转化,从而简化计算或者明晰问题的关键点。

下面总结了一些常见的高中数学放缩法技巧。

1. 分子分母同乘:当分式的分子和分母中含有相同的因式时,可以将分子和分母同时乘以这个因式的倒数,从而得到一个等价的分式。

这样做的好处是可以简化分式,消去分子分母中的公因式。

2. 导数法:在解决函数极值问题时,可以利用导数的概念进行放缩。

通过求函数的导数,并研究导数的正负性,可以找到函数的极值点。

这种方法可以有效地缩小问题的范围,简化计算。

3. 均值不等式:均值不等式是一种常用的放缩方法,它通过寻找合适的均值来放缩不等式。

常见的均值不等式有算术-几何均值不等式、柯西-施瓦茨不等式等。

通过将不等式的两边同时取均值,可以得到一个更简单的等价不等式。

4. 三角函数变换:在解决三角函数相关的问题时,可以利用三角函数的性质进行放缩。

常见的三角函数变换有和差化积、倍角公式等。

通过适当的变换,可以将原问题转化为更容易处理的形式。

5. 幂函数变换:在解决幂函数相关的问题时,可以利用幂函数的性质进行放缩。

常见的幂函数变换有换元法、幂函数的反函数等。

通过适当的变换,可以使问题的形式更简单,更易于分析。

6. 递推关系式:在解决数列相关的问题时,可以利用递推关系式进行放缩。

通过找到数列的递推关系式,可以将原问题转化为递推问题。

递推关系式可以帮助我们找到数列的通项公式,从而简化问题的求解过程。

以上是一些高中数学中常用的放缩法技巧。

通过灵活运用这些技巧,可以在解题过程中简化计算、明晰问题的关键点,从而更高效地解决数学问题。

数列放缩法的应用技巧总结

数列放缩法的应用技巧总结

数列放缩法的应用技巧总结数列放缩法是一种在解决数学问题中常用的技巧和方法。

它的核心思想是对给定的数列进行适当的放缩,以便更好地理解和分析数列的性质和规律。

数列放缩法在各个数学领域都有广泛的应用,包括数论、代数、几何、概率论等。

下面将总结数列放缩法的应用技巧。

1. 数列变形:在使用数列放缩法解决问题时,常常需要对原始数列进行变形。

通过将数列中的项重新排列或重新组合,可以使问题变得相对简单。

数列变形的关键是发现数列中的规律和性质,在此基础上进行合理的变形,从而达到更好地解决问题的目的。

2. 数列放缩:数列放缩是数列放缩法的核心步骤。

通过对数列进行加减乘除等运算,可以使数列的项之间的关系更加明确和简单。

数列放缩的关键在于找到合适的变换方法和变换因子,保持等价性的同时使问题变得更容易解决。

3. 利用不等式:数列放缩法常常利用不等式来进行数列的放缩。

通过添加合适的不等式或利用已知的不等式性质,可以对数列的项进行限制和界定。

不等式的选择和使用需要根据具体的问题和数列的性质进行判断,常用的不等式有柯西-施瓦兹不等式、均值不等式、特殊不等式等。

4. 利用递推关系:对于递推数列,数列放缩法常常利用递推关系进行变形和放缩。

通过寻找递推数列的通项公式,可以将原始问题转化为求解通项公式的问题。

在这个过程中,数列的放缩往往是不可缺少的一步,它可以将复杂的递推关系简化为更简单的形式。

5. 利用数列的性质:数列放缩法还常常利用数列的性质来解决问题。

例如,对于等差数列,可以利用其性质求解等差数列的和、推导等差数列的通项公式等。

对于等比数列,也可以利用等比数列的性质来解决等比数列的问题。

6. 利用极限思想:数列放缩法常常利用极限思想来求解数列的极限或证明数列的性质。

通过适当的放缩和变形,可以从数列中找到趋于极限的子数列,从而进一步研究数列的性质和规律。

7. 利用对称性:数列放缩法还常常利用数列的对称性进行变形和放缩。

通过对称性的利用,可以简化数列的形式,从而更好地理解和分析数列的性质和规律。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法是解决数学问题中常用的一种技巧。

通过将数列进行放缩,可以使得原问题更易于解决,或者得到更加精确的结果。

本文将介绍数列放缩法的基本概念和常用技巧,并通过一些例子来说明其应用。

基本概念在使用数列放缩法解决问题时,我们需要理解以下几个基本概念:1. 数列放缩数列放缩是指通过对数列中的每一项进行适当的操作,使得数列满足一些特定的性质。

常用的数列放缩操作包括:乘法放缩、加法放缩和取对数放缩等。

2. 性质保持数列放缩后,原数列的一些性质可能得以保持,例如单调性、有界性等。

这样可以为问题的解决提供一些有用的线索。

3. 题目转化数列放缩还可以将原问题转化为一个更容易解决的形式。

通过变换数列中的项,我们可以得到一个新的数列,从而将原问题转化为对新数列进行分析的问题。

常用技巧1. 乘法放缩乘法放缩是数列放缩中最常用的技巧之一。

通过乘以一个适当的常数,可以使得数列中的项满足某种性质,比如有界性或单调性。

以下是一些常见的乘法放缩技巧:•将数列中的项全部乘以一个常数。

这可以用来放缩数列中的每一项,使得它们满足某种条件,例如有界性。

比如,对于一个递增的数列a n,我们可以将每一项乘以2,得到一个递增且更大的数列2a n。

•对数列中的每一项都乘以一个缩放因子,使得数列中的项的比较关系得以保持。

这种放缩常用于解决含有不等式的问题。

比如,对于一个递减的数列a n,我们可以将每一项都乘以−1,得到一个递增的数列−a n。

•利用数列放缩的特性进行条件的放缩。

比如,对于一个不等式问题,我们可以将不等式两边都乘以一个常数,使得问题更易解决。

2. 加法放缩加法放缩是利用数列的加法、减法性质进行放缩的一种技巧。

通过对数列中的项进行加减操作,可以得到一个新的数列,从而顺利解决问题。

以下是一些常见的加法放缩技巧:•利用数列之间的加减关系进行放缩。

比如,对于一个递增的数列a n,我们可以构造一个新的递增数列b n=a n+1−a n,从而将问题转化为分析数列b n的性质的问题。

数列的放缩技巧

数列的放缩技巧

数列的放缩技巧
数列的放缩技巧主要有以下几种:
1. 利用单调性放缩:如果数列的前n项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式。

2. 分式放缩:通过改变数列的项的分母来达到放缩的目的。

3. 部分放缩:只对数列的部分项进行放缩,常用方法有:舍弃一部分不需要的项,或者将一部分项的值直接取为1等。

4. 迭代放缩:通过多次迭代的方式,逐步将数列的项进行放缩。

5. 基于递推结构的放缩:根据数列的递推公式,通过逐步推导的方式进行放缩。

6. 利用导数不等式放缩:对数列的项进行求导,再利用不等式,达到放缩的目的。

常用放缩方法技巧

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1(⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3lg 2=<=+<⋅;2)1()1(++<+n n n n ⑷二项式放缩: n n n n n n C C C +++=+= 10)11(2,1210+=+≥n C C n n n , (5)利用常用结论:Ⅰ.的放缩<Ⅱ. 21k 的放缩(1) :2111(1)(1)k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ. 21k 的放缩(3):2214112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++<m b a ma mb a b记忆口诀“小者小,大者大”。

解释:看b ,若b 小,则不等号是小于号,反之亦然.Ⅵ.构造函数法 构造单调函数实现放缩。

例:()(0)1x f x x x=≥+,从而实现利用函数单调性质的放缩:()()f a b f a b +≤+。

一. 先求和再放缩例1.)1(1+⋅=n n a n ,前n 项和为S n ,求证:1<n s 例2.n n a )31(= , 前n 项和为S n ,求证:21<n s 二. 先放缩再求和(一)放缩后裂项相消例3.数列{}n a ,11(1)n n a n +=-,其前n 项和为n s,求证:2n s < (二)放缩后转化为等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 6
常用放缩方法技巧
证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能
全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素
材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进
行恰当地放缩;其放缩技巧主要有以下几种:

⑴添加或舍去一些项,如:aa12;nnn)1(
⑵将分子或分母放大(或缩小)

⑶利用基本不等式,如:4lg16lg15lg)25lg3lg(5lg3lg2;2)1()1(nnnn
⑷二项式放缩: nnnnnnCCC10)11(2,1210nCCnnn,

2
222210nn
CCC
nnn
n

)2)(1(2nnn
n

(5)利用常用结论:
Ⅰ. 1k 的放缩 :222121kkkkk

Ⅱ. 21k的放缩(1) : 2111(1)(1)kkkkk(程度大)
Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211kkkkkk(程度小)
Ⅳ. 21k的放缩(3):2214112()412121kkkk(程度更小)
Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(mabmambab和)0,0(mbamambab
记忆口诀“小者小,大者大”。 解释:看b,若b小,则不等号是小于号,反之亦然.
Ⅵ.构造函数法 构造单调函数实现放缩。例:()(0)1xfxxx,从而实现利用函数单调性质的放缩:

()()fabfab

一. 先求和再放缩
例1.)1(1nnan,前n项和为Sn ,求证:1ns

例2.nna)31( , 前n项和为Sn ,求证:21ns
2 / 6

二. 先放缩再求和
(一)放缩后裂项相消

例3.数列{}na,11(1)nnan,其前n项和为ns ,求证:222ns

(二)放缩后转化为等比数列。
例4. {}nb满足:2111,(2)3nnnbbbnb
(1) 用数学归纳法证明:nbn

(2) 1231111...3333nnTbbbb,求证:12nT

三、裂项放缩
例5.(1)求nkk12142的值; (2)求证:35112nkk.

例6.(1)求证:)2()12(2167)12(151311222nnn
(2)求证:nn412141361161412
(3)求证:)112(2131211)11(2nnn
3 / 6

例7.求证:35191411)12)(1(62nnnn

例8.已知nnna24,nnnaaaT212,求证:23321nTTTT.

四、分式放缩
姐妹不等式:)0,0(mabmambab和)0,0(mbamambab

记忆口诀”小者小,大者大”
解释:看b,若b小,则不等号是小于号,反之亦然.
例9. 姐妹不等式:12)1211()511)(311)(11(nn和

121)211()611)(411)(211(n
n

也可以表示成为

12)12(5312642n
n

n


和1212642)12(531nnn

例10.证明:.13)2311()711)(411)(11(3nn
4 / 6

五、均值不等式放缩
例11.设.)1(3221nnSn求证.2)1(2)1(2nSnnn

例12.已知函数bxaxf211)(,a>0,b>0,若54)1(f,且)(xf在[0,1]上的最大值为21,
求证:.2121)()2()1(1nnnfff

六、二项式放缩
nnnnnnCCC10)11(2,1210nCCnnn,

2222210nnCCCnnnn )2)(1(2nnnn

例13.设Nnn,1,求证)2)(1(8)32(nnn.

例14. nna32 , 试证明:.121111424nnnaaa≤

5 / 6

七、部分放缩(尾式放缩)
例15.求证: 74123112311311n

例16. 设ana211.2,131anaa求证:.2na


八、函数放缩
例17.求证:)(665333ln44ln33ln22ln*Nnnnnn.

例18.求证:)2()1(212ln33ln22ln,22nnnnnn

例19. 求证:nnn1211)1ln(113121

6 / 6

九、借助数列递推关系
例20. 若1,111naaann,求证:)11(211121naaan

例21.求证:1222642)12(531642531423121nnn

十、分类放缩
例22.求证:212131211nn

相关文档
最新文档