常用放缩方法技巧
放缩法技巧及经典例题讲解

放缩法技巧及经典例题讲解一.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧(1)若0,,t a t a a t a >+>-<(2)<>,11>n >= (3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<= (5)若,,a b m R +∈,则,a a a a m b b m b b +><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+ (7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111n n n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++ 或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (8)1⋅⋅⋅+>⋅⋅⋅+== (9))1(11)1(12-<<+k k k k k ,⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211 (10)12112-+<<++k k k k k【经典例题】例1、设数列{}n a 满足12,311+-==+n a a a n n(1) 求{}n a 的通项公式;(2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{}n n d b ⋅的前n 项和31<n S例2、已知正项数列{}n a 满足()()*21111,1N n a n a a a n n n ∈⋅++==+ (1) 判断数列{}n a 的单调性;(2) 求证:()2111112111+<-<+-++n a a n n n n经典方法归纳:一.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a s ,试求:(1)数列{}n a 的通项公式;(2)设11+=n n n a a b ,数列{}n b 的前n 项的和为,n B ,求证:21<n B例2、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈二.先放缩再求和1.放缩后成等差数列,再求和例1.已知各项均为正数的数列{}n a 的前n 项和为n S ,且n n n as a a 22=+.(1) 求证:4221++<n a a S n n ;(2) 求证:2121321-<+⋅⋅⋅+++<+n n n s s s s s s例2.已知数列{}n a 满足:()⋅⋅⋅=⎪⎭⎫ ⎝⎛+==+3,2,121,111n a n a a n n n .求证:11213-++-≥≥n n n n a a .2.放缩后成等比数列,再求和例2.(1)设a ,n ∈N *,a ≥2,证明:()()n nn a a a a 12+≥--; (2)等比数列{a n }中,211-=a ,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12 , 数列{b n }前n 项的和为B n ,证明:31<n B .3.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列()()32111⋅⋅⋅-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数.63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令,11nn n n n a a a a b +++=,证明,32221+<+⋅⋅⋅++<n b b b n n ⋅⋅⋅=2,1n三. 裂项放缩1、若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
基本不等式放缩法

基本不等式放缩法是解决数学问题中的一种常用技巧,特别是在证明不等式时。
放缩法的核心思想是通过适当的放大或缩小某些项,使得原始的不等式更容易处理或者更容易证明。
以下是一些常见的放缩技巧:
1. 添加或舍弃一些正项(或负项):在保持不等式方向不变的前提下,可以适当添加或去掉一些不影响不等式成立的正项或负项。
2. 先放缩再求和(或先求和再放缩):根据问题的需要,可以先对某些项进行放缩,然后再进行求和,或者先求和再对结果进行放缩。
3. 逐项放大或缩小:对不等式中的每项单独进行放缩,然后合并结果。
4. 固定一部分项,放缩另外的项:在某些情况下,可以固定一部分项不变,只对其他项进行放缩。
5. 函数放缩:利用函数的单调性进行放缩,例如,对于递增函数,可以放大小的值,缩小大的值。
6. 裂项放缩:将复杂的项分解成更简单的形式,然后进行放缩。
7. 均值不等式放缩:利用算术平均值大于等于几何平均值的性质进行放缩。
8. 二项放缩:在涉及二项式的情况下,可以利用二项式的性质进行放缩。
9. 指数函数放缩:例如,对于指数函数e^x,有e^x ≥x + 1 当x ≥0。
10. 利用导数判断函数的单调性:通过求导数来判断函数的单调性,然后根据单调性进行放缩。
在实际应用中,放缩法往往需要结合具体问题灵活运用,有时还需要与其他数学方法(如代换法、综合法、反证法等)结合使用。
通过放缩,可以将复杂的不等式转化为更易于处理的形式,从而简化问题的解决过程。
十种放缩法技巧全总结

十种放缩法技巧全总结放缩法(Scaling)是一种常用的图像处理技术,通过对图像进行放缩,可以改变图像的尺寸和像素分布,以满足不同的需求。
本文将总结十种常用的放缩法技巧,包括等比例缩放、非等比例缩放、双线性插值、最近邻插值等。
1. 等比例缩放等比例缩放是最常用的一种放缩法技巧,通过保持图像的宽高比不变,按比例减小或增大图像的尺寸。
在图像处理软件中,可以直接设置缩放比例或输入目标尺寸来实现等比例缩放。
代码示例:1. 设置缩放比例为0.5:scale_factor = 0.52. 设置目标尺寸为宽度为500px:target_width = 500, target_height = original_height * (target_width / original_width)2. 非等比例缩放非等比例缩放是一种在宽高比不变的情况下,分别按比例减小或增大图像的宽度和高度的放缩法技巧。
与等比例缩放相比,非等比例缩放会改变图像的形状,导致图像的扭曲或拉伸。
代码示例:1. 分别设置缩放比例:scale_factor_x = 0.8, scale_factor_y = 1.22. 分别设置目标尺寸:target_width = original_width * scale_factor_x, targ et_height = original_height * scale_factor_y3. 双线性插值双线性插值是一种用于图像放缩的插值算法,通过对图像的像素进行线性插值计算,以获得更平滑、更真实的放缩效果。
双线性插值通过对目标图像的每个像素,根据原图像的相邻像素的灰度值进行加权平均计算,从而得到最终的像素值。
代码示例:1. 计算目标像素的位置:target_x = (x / scale_factor_x), target_y = (y / s cale_factor_y)2. 计算四个相邻像素的坐标:top_left_x, top_left_y, top_right_x, top_right_y, bottom_left_x, bottom_left_y, bottom_right_x, bottom_right_y3. 分别计算四个相邻像素的灰度值:top_left_gray, top_right_gray, bottom_left_gray, bottom_right_gray4. 根据四个相邻像素的灰度值和目标像素的位置,进行插值计算得到最终的像素值4. 最近邻插值最近邻插值是一种快速的插值算法,通过选择离目标像素最近的原图像像素的灰度值作为目标像素的灰度值。
放缩法技巧全总结

放缩法技巧全总结
放缩法技巧全总结如下,仅供参考:
1. 舍掉(或加进)一些项。
2. 在分式中放大或缩小分子或分母。
3. 应用基本不等式放缩(例如均值不等式)。
4. 应用函数的单调性进行放缩。
5. 根据题目条件进行放缩。
6. 构造等比数列进行放缩。
7. 构造裂项条件进行放缩。
8. 利用函数切线、割线逼近进行放缩。
9. 利用裂项法进行放缩。
10. 利用错位相减法进行放缩。
请注意,使用放缩法时,要确保放缩的方向一致,适度地进行放与缩,且很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。
另外,用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。
因此,对放缩法只需了解,不宜深入。
放缩技巧积累公式生用

放缩技巧积累公式生用放缩技巧是数学中经常使用的一种方法,通过对数学表达式中的相关变量进行适当放缩,可以简化问题的求解过程,提高求解效率。
下面将介绍一些常见的放缩技巧及其应用。
一、放缩技巧之平方差公式平方差公式是数学中常用的放缩技巧之一,它可以将一个式子表示为两个平方差的形式,从而提供了更多的计算方式。
1. (a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这两个公式可以将一个式子表示为两个平方差的形式,从而可以将一些复杂的计算转化为更简单的计算,例如求解一些二次式的因式分解等问题。
2. (a + b)² - (a - b)² = 4ab这个公式是平方差公式的一个推论,用来计算两个具有平方差形式的式子之间的差值。
可以应用于一些问题中,例如计算两个数的乘积等。
二、放缩技巧之倍角公式倍角公式是一类通过对角度进行放缩的技巧,可以将不同角度的三角函数关系转化为相同角度的三角函数关系,从而简化问题的求解。
1. sin 2θ = 2sinθcosθ这个公式表示角度2θ的正弦值可以通过角度θ的正弦和余弦值来计算,可以应用于一些三角函数的积分、导数和级数展开等问题。
2. cos 2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ这个公式表示角度2θ的余弦值可以通过角度θ的正弦和余弦值来计算,可以应用于一些三角函数的积分、导数和级数展开等问题。
三、放缩技巧之柯西不等式柯西不等式是数学中一个重要的放缩技巧,它可以将多个变量的乘积的和表示为一个变量的平方和的形式,从而提供了更多的计算方式。
1.(a₁²+a₂²+...+aₙ²)(b₁²+b₂²+...+bₙ²)≥(a₁b₁+a₂b₂+...+aₙbₙ)²这个公式表示两个向量的点乘的平方不小于它们的模的平方的乘积,可以应用于一些向量和矩阵计算中。
用放缩法证明方法与技巧

二、常见的放缩法技巧 1、基本不等式、柯西不等式、排序不等式放缩
b bm (m 0, a b) . 2、糖水不等式放缩: a am
3、添(减)项放缩 4、先放缩,后裂项(或先裂项再放缩) 5、逐项放大或缩小:
三、常用公式
1 1 1 1. 2 k (k 1) k k (k 1)
0, a t a, a t a
n 1 n , 2 n n n 1 , n 1 1 n 1 , n(n 1) n 2 n 1 1 1 1 1 1 1 (3) 2 (n 1) n n 1 n(n 1) n n(n 1) n 1 n 2 2 1 2 (4) 2( n 1 n ) 2( n n 1) n 1 n n n n n n 1 a a a am , (5)若 a, b, m R ,则 b bm b b 1 1 1 1 1 1 1 2 n 1 (6) 1 2! 3! n! 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 (1 ) ( ) ( ) (7) (因为 ) 22 32 n2 2 2 3 n 1 n n 2 (n 1)n 1 1 1 1 1 1 1 n 1 (7) n 1 n 2 n 3 2n n 1 n 1 n 1 n 1 1 1 1 1 1 1 1 n 1 或 n 1 n 2 n 3 2n 2n 2n 2n 2n 2 1 1 1 1 1 1 n n 等等。 (8) 1 2 3 n n n n n
一、放缩法原理 为了证明不等式 A B , 我们可以找一个或多个中间变量 C 作比较, 即若能判定 A C, C B 同时成立, 那么 A B 显然正确。 所谓 “放” 即把 A 放大到 C,再把 C 放大到 B;反之,由 B 缩小经过 C 而变到 A, 则称为“缩” ,统称为放缩法。放缩是一种技巧性较强的不等变形,必 须时刻注意放缩的跨度,做到“放不能过头,缩不能不及” 。
高中数学放缩法技巧全总结

高中数学放缩法技巧全总结高中数学中的放缩法是一种常用的解题技巧,它通过适当调整式子的形式,进行等价转化,从而简化计算或者明晰问题的关键点。
下面总结了一些常见的高中数学放缩法技巧。
1. 分子分母同乘:当分式的分子和分母中含有相同的因式时,可以将分子和分母同时乘以这个因式的倒数,从而得到一个等价的分式。
这样做的好处是可以简化分式,消去分子分母中的公因式。
2. 导数法:在解决函数极值问题时,可以利用导数的概念进行放缩。
通过求函数的导数,并研究导数的正负性,可以找到函数的极值点。
这种方法可以有效地缩小问题的范围,简化计算。
3. 均值不等式:均值不等式是一种常用的放缩方法,它通过寻找合适的均值来放缩不等式。
常见的均值不等式有算术-几何均值不等式、柯西-施瓦茨不等式等。
通过将不等式的两边同时取均值,可以得到一个更简单的等价不等式。
4. 三角函数变换:在解决三角函数相关的问题时,可以利用三角函数的性质进行放缩。
常见的三角函数变换有和差化积、倍角公式等。
通过适当的变换,可以将原问题转化为更容易处理的形式。
5. 幂函数变换:在解决幂函数相关的问题时,可以利用幂函数的性质进行放缩。
常见的幂函数变换有换元法、幂函数的反函数等。
通过适当的变换,可以使问题的形式更简单,更易于分析。
6. 递推关系式:在解决数列相关的问题时,可以利用递推关系式进行放缩。
通过找到数列的递推关系式,可以将原问题转化为递推问题。
递推关系式可以帮助我们找到数列的通项公式,从而简化问题的求解过程。
以上是一些高中数学中常用的放缩法技巧。
通过灵活运用这些技巧,可以在解题过程中简化计算、明晰问题的关键点,从而更高效地解决数学问题。
放缩法大全

a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=
1
1 dx = ln( n + 1) x
1 n
n +1
n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n
由
ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用放缩方法技巧
证明数列型不等式,因其思维跨度大、构造性强,需要有较高得放缩技巧而充满思考性与挑战性,能全面而综合地考查学生得潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题得极好素材。
这类问题得求解策略往往就是:通过多角度观察所给数列通项得结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:
⑴添加或舍去一些项,如:;
⑵将分子或分母放大(或缩小)
⑶利用基本不等式,如:;
⑷二项式放缩:,,
(5)利用常用结论:
Ⅰ、得放缩 :
Ⅱ、得放缩(1) : (程度大)
Ⅲ、得放缩(2):(程度小)
Ⅳ、得放缩(3):(程度更小)
Ⅴ、分式放缩还可利用真(假)分数得性质:与
记忆口诀“小者小,大者大”。
解释:瞧b,若b小,则不等号就是小于号,反之亦然、
Ⅵ、构造函数法构造单调函数实现放缩。
例:,从而实现利用函数单调性质得放缩:。
一.先求与再放缩
例1、,前n项与为S n ,求证:
例2、 , 前n项与为S n ,求证:
二.先放缩再求与
(一)放缩后裂项相消
例3.数列,,其前项与为 ,求证:
(二)放缩后转化为等比数列。
例4、满足:
(1)用数学归纳法证明:
(2),求证:
三、裂项放缩
例5、(1)求得值; (2)求证:、
例6、(1)求证:
(2)求证:
(3)求证:
例7、求证:
例8、已知,,求证:、
四、分式放缩
姐妹不等式:与
记忆口诀”小者小,大者大”
解释:瞧b,若b小,则不等号就是小于号,反之亦然、
例9、姐妹不等式:与
也可以表示成为
与
例10、证明:
五、均值不等式放缩
例11、设求证
例12、已知函数,a>0,b>0,若,且在[0,1]上得最大值为,
求证:
六、二项式放缩
,,
例13、设,求证、
例14、 , 试证明:、
七、部分放缩(尾式放缩)
例15、求证:
例16、设求证: 八、函数放缩
例17、求证:、
例18、求证:
例19、求证: 九、借助数列递推关系
例20、若,求证:
例21、求证:
十、分类放缩
例22、求证:。