全网最系统的数列放缩法技巧证明数列不等式总结

合集下载

放缩法技巧全总结

放缩法技巧全总结

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法(Sequence Squeezing Method)是指在解决数学问题时,通过限制或放缩数列的取值范围,从而简化问题的求解过程。

数列放缩法是数学竞赛和高等数学中常见的一种技巧,本文将总结数列放缩法常用的技巧和应用场景。

1. 加减不等式放缩法加减不等式放缩法是通过对等式进行加减操作,使得所得不等式比原来的不等式更易于求解。

常见的加减不等式放缩技巧有如下几个:1.1. 约束条件加减法设原不等式为A<B,通过针对不等式的约束条件进行加减操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

1.2. 平方项加减法对于不等式中的平方项,可以通过改变平方项的系数进行加减操作,从而得到一个更易于处理的不等式。

例如,对于a2+b2<2ab,可以将不等式变换为(a−b)2>0,从而得到更容易求解的形式。

1.3. 倒数项加减法对于不等式中的倒数项,可以通过改变倒数项的系数进行加减操作,从而放缩不等式。

例如,在2ab<a2+b2中,可以将不等式变换为$\\frac{1}{a}+\\frac{1}{b} > \\frac{2}{a+b}$,从而得到更容易处理的形式。

2. 乘除不等式放缩法乘除不等式放缩法是通过对等式进行乘除操作,使得所得不等式比原来的不等式更易于求解。

常见的乘除不等式放缩技巧有如下几个:2.1. 约束条件乘除法设原不等式为A<B,通过针对不等式的约束条件进行乘除操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

2.2. 平方项乘除法对于不等式中的平方项,可以通过改变平方项的系数进行乘除操作,从而得到一个更易于处理的不等式。

例如,在a2+b2<2ab中,可以将不等式变换为a2−2ab+b2<0,从而得到更容易求解的形式。

2.3. 倒数项乘除法对于不等式中的倒数项,可以通过改变倒数项的系数进行乘除操作,从而放缩不等式。

数列及函数不等式放缩如何一步到位

数列及函数不等式放缩如何一步到位
数列不等式与函数不等式
——如何放缩才能一步到位
数列不等式为高中数学的重点和难点,常 出现在高考压轴题中,具有极高的思想性和 技巧性。解决数列不等式的一般思想是进行 合理地放缩,放缩后能够再运算是解决此类 问题的重要原则。
熟记一些常见的放缩结论,掌握一些常见 的放缩技巧很重要。在放缩过程中经常用到 的方法有:积分(函数法)放缩、裂项放缩、 对偶放缩、分类放缩、二项式定理放缩、 等比放缩、切线放缩等等。
一、积分放缩
积分法即利用积分的几何意义进行放缩。
基本结论:
1 n1 1 dx ln( n 1) ln n
n
nx
1 n 1 dx ln n ln( n 1)
n n1 x
1
n 1
1
dx 2
n
nx
x
| n 1 n
1
n1
dx 2
n n1 x
x
|n n 1
f (x) 1 或 1
x
(
1 2
1 31
)
(1 4
1 5
...
1 32

...
(3n11
1
1 3n1
2
...
1 3n

n段,每个括号都 5 ?
6
下证f
(n)
1 3n1 1
1 3n1 2
...
1 3n
5 6
1 n1 1 dx ln( n 1) ln n
n nx
1
1
1
1 3n1 2
1 3n1 3
1 3n 1
)
3n
1
5n 6
1 2
1 ... 3
1 3n
5n 6

巧用放缩法证明数列不等式

巧用放缩法证明数列不等式

证明数列不等式问题一般较为复杂.解答这类问题的常用方法是放缩法,通常要灵活运用数列的定义、性质、通项公式、前n 项公式对不等式进行变形、化简,再运用不等式的性质对数列不等式进行适当的放缩.而证明数列不等式的关键是对不等式进合理的放缩,下面重点谈一谈运用放缩法证明数列不等式的几个技巧.一、通过裂项进行放缩有些数列不等式中的各项为分式,通过变形可裂为两项之差的形式,此时可利用裂项求和法来求得数列的和,再对其进行放缩,从而证明不等式.有时数列的通项公式不能直接裂项,可先将其进行适当的放缩,再进行求和.例1.求证:∑k =1n1k2≤53.证明:因为1k 2=44k 2<44k 2-1=2æèöø12k -1-12k +1,所以∑k =1n 1k 2=1+∑k =2n 1k 2<1+∑k =2n2æèöø12k -1-12k +1=1+2æèöø13-15+15-17+⋯+12n -1-12n +1=1+2æèöø13-12n +1<1+23=53.该数列的通项公式为分式,可根据不等式的可加性和传递性,将其放缩44k 2-1,再将其裂项为2æèöø12k -1-12k +1,这样便可运用裂项相加法求得数列的和,运用放缩法快速证明不等式.二、利用基本不等式进行放缩若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.运用基本不等式可快速将两式的和或积放大或缩小.在运用基本不等式进行放缩时,要注意三个条件“一正”“二定”“三相等”.需根据已知的关系式或目标式,合理配凑出两式的和或积,并使其一为定值.在证明数列不等式时,有时要用到基本不等式的变形式,如a +b +c ≥3abc 3、a 21+a 22+⋯+a 2nn≥a 1a 2⋯a n n 等,对所要证明的不等式进行放缩.例2.设S n =1×2+2×3+⋯+n ()n +1,求证:n ()n +12<S n <()n +122.证明:设a k =k ()k +1(k =1,2,⋯,n ),因为k <k ()k +1<k +k +12=k +12,所以∑k =1n k <∑k =1n k ()k +1<∑k =1n(k +12),即n ()n +12<S n <n ()n +12+n 2<()n +122.该数列中含有根式,很难快速求得数列的和,于是将其通项看作两式的积,构造出两式的和式,便可利用基本不等式将数列中的每一项进行放缩,再根据等差数列的前n 项和公式进行求解,即可证明不等式.三、根据数列的单调性进行放缩数列具有单调性,所以在证明数列不等式时,可根据不等式的特点找出其中的通项公式,通过作差或作商来判断数列的单调性.若a n ≥a n +1,则该数列单调递增,若a n ≤a n +1,则该数列单调递减,即可利用数列的单调性来放缩不等式.例3.求证:12≤1n +1+1n +2+⋯+1n +n <710(n ∈N *).证明:令S n =1n +1+1n +2+⋯+1n +n ,则S n +1-S n =æèöø1n +2+1n +3+⋯+1n +n +1n +n +1-æèöø1n +1+1n +2+⋯+1n +n =14æèöøn +12()n +1>0.可知数列{}S n 单调递增,因此S n ≥S 1=12.又因为S n +1-S n =14æèöøn +12()n +1<14æèöøn +14æèöøn +54=14׿èççççöø÷÷÷÷1n +14-1n +54=14n +1-14n +5,即S n +14n +1>S n +1+14n +5,可知数列{}S n +14n +1单调递减,所以S n +14n +1≤S 1+14+1=710.综上可得12≤S n <710,即12≤1n +1+1n +2+⋯+1n +n <710.总之,运用放缩法证明数列不等式,关键是对数列的通项公式、和式进行合理的放缩.同学们可根据目标不等式的结构特点,对通项公式进行裂项,也可利用基本不等式,还可以根据数列的单调性来进行放缩.(作者单位:江西省临川第二中学)解题宝典41。

数列不等式放缩技巧

数列不等式放缩技巧

数列不等式放缩技巧何谓放缩?就是当要证明不等式A<B成立时,可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种证法便称为放缩法,简称放缩。

在高考数列不等式中,常常伴随着类似形式的不等式证明,这类式子无法通过求和化简或数学归纳法证明,然而通过适当的放缩技巧,却能快速使问题简单化。

【知识技巧】1、放缩的几种形式:①构造特殊数列求和进行放缩;技巧积累:(1);(2)(3)(4)(5)(6)(7)②应用基本不等式或函数单调性放缩;③加强命题,转化为数学归纳法证明题(注意点:形式、方向、首项)。

2、放缩的注意事项①熟练掌握裂项技巧,如:,这类数列由于可以裂项求和,所以在证明不等式时,大可不必放缩;②放与缩要注意形式、方向和首项,要注意放缩度的把握。

③可以只对数列的一部分进行放缩法,保留一些项不变(多为前几项)。

【例题讲解】1、通项公式的放缩1、(2013广东理)设数列的前项和为.已知,,.(Ⅰ) 求的值;(Ⅱ) 求数列的通项公式;(Ⅲ) 证明:对一切正整数,有.2、求证:3、(2012广东理)设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式.(3)证明:对一切正整数n,有.2、递推式的放缩1、已知,求证:当时,2、已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.3、加强命题1、数列中,,对任何,都有。

(1)求通项公式;(2)证明:对任何,4、利用不等式或函数放缩1.设,求证解析: 此数列的通项为,,即2、设,如图,已知直线及曲线:,上的点的横坐标为().从上的点作直线平行于轴,交直线于点,再从点作直线平行于轴,交曲线于点.的横坐标构成数列.(Ⅰ)试求与的关系,并求的通项公式;(Ⅱ)当时,证明;(Ⅲ)当时,证明.解析:(过程略).证明(II):由知,∵,∴.∵当时,,∴.证明(Ⅲ):由知.∴恰表示阴影部分面积,显然④∴.【课后练习】1、(2014广东文)设各项为正数的数列的前和为,且满足(1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有2、(2014新课标2理)已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明:.3、已知,,求证:.4、已知数列中,。

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳) 教师版

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳) 教师版

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩.一、放缩技巧(1)1n2=44n2<44n2-1=212n-1-12n+1(2)1C1n+1C2n=2(n+1)n(n-1)=1n(n-1)-1n(n+1)(3)T r+1=C r n⋅1n r=n!r!(n-r)!⋅1n r<1r!<1r(r-1)=1r-1-1r(r≥2)(4)1+1 nn<1+1+12×1+13×2+⋯+1n(n-1)<3(5)12n(2n-1)=12n-1-12n(6)1n+2<n+2-n(7)2(n+1-n)<1n<2(n-n-1)(8)22n+1-12n+3⋅12n=1(2n+1)⋅2n-1-1(2n+3)⋅2n(9)1k(n+1-k)=1n+1-k+1k1n+1,1n(n+1+k)=1k+11n-1n+1+k(10)n(n+1)!=1n!-1(n+1)!(11)1n<2(2n+1-2n-1)=222n+1+2n-1=2n+12+n-12(11)2n(2n-1)2=2n(2n-1)(2n-1)<2n(2n-1)(2n-2)=2n-1(2n-1)(2n-1-1)=12n-1-1-12n-1(n≥2)(12)1n3=1n⋅n2<1n(n-1)(n+1)=1n(n-1)-1n(n+1)⋅1n+1-n-1=1n-1-1n+1⋅n+1+n-12n <1n-1-1n+1(13)2n +1=2⋅2n=(3-1)⋅2n>3⇒3(2n-1)>2n⇒2n-1>2n 3⇒12n -1<2n3(14)k +2k !+(k +1)!+(k +2)!=1(k +1)!-1(k +2)!(15)1n (n +1)<n -n -1(n ≥2)(16)i 2+1-j 2+1i -j =i 2-j 2(i -j )(i 2+1+j 2+1)=i +j i 2+1+j 2+1<1二、经典试题解析(一)、经典试题01、裂项放缩1.(1)求∑nk =124k 2-1的值;(2)求证:∑nk =11k2<53.【分析】(1)根据裂项相消求和即可;(2)根据1n 2<1n 2-14放缩再求和即可【详解】(1)因为24n 2-1=2(2n -1)(2n +1)=12n -1-12n +1,所以∑nk =124k 2-1=11-13+13-15+...+12n -1-12n +1=2n2n +1(2)因为1n 2<1n 2-14=44n 2-1=212n -1-12n +1 ,所以∑nk =11k2≤1+213-15+⋯+12n -1-12n +1 <1+23=532.求证:1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2).【分析】根据1(2n -1)2>1(2n -1)(2n +1)放缩后利用裂项相消求和即可【详解】因为1(2n -1)2>1(2n -1)(2n +1)=1212n -1-12n +1 ,(n ≥2)故∑nk =11(2k -1)2>1+1213-15+...+12n -1-12n +1 =1+1213-12n +1 =76-122n -1,故1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2)3.求证:14+116+136+⋯+14n2<12-14n .【详解】由14+116+136+⋯+14n 2=141+122+⋯+1n 2<141+1-1n =12-14n 根据1n 2<1n ⋅n -1 得122+⋯+1n 2<1-12+12-13+⋯1n -1-1n =1-1n 所以141+122+⋯+1n2<141+1-1n =12-14n 4.求证:12+1⋅32⋅4+1⋅3⋅52⋅4⋅6+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<2n +1-1【分析】利用分式放缩法证明出1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,进而利用数学归纳法证明13+15+⋯+12n +1<2n +1-1即可.【详解】由1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n 2<12⋅23⋅34⋯2n -12n ⋅2n 2n +1=12n +1,得1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,所以12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <13+15+⋯+12n +1,要证12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <2n +1-1,只需证13+15+⋯+12n +1<2n +1-1,下面利用数学归纳法证明:当n =1时,左边=13,右边=3-1。

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

47
3n 2
04、分类放缩
15.求证:1 1 1
23
1 2n 1
n 2
.
16.在平面直角坐标系 xoy 中, y 轴正半轴上的点列An 与曲线 y 2x x 0 上的点列Bn 满足
OAn
OBn
1 n
,直线
An Bn

x
轴上的截距为
an
.点
Bn
的横坐标为
bn

n N
.
(1)证明 an > an1 >4, n N ;
1 a2n
7n 11 36 .
05、迭代放缩
19.已知 xn1
xn xn
4 1

x1
1 ,求证:当
n
2
时,
n i 1
xi 2
2 21n .
20.设
Sn
sin1! 21
sin 2! 22
sin n! 2n
,求证:对任意的正整数
k,若
k≥n
恒有:|Sn+k-Sn|<
1 n
.
06、借助数列递推关系
21.求证: 1 13 135 135 (2n 1) 2n 2 1 .
2 24 246
246 2n
22.求证: 1 13 135 135 (2n 1) 2n 1 1
2 24 246
2 46 2n
(一)、经典试题
01、裂项放缩
1.(1)求
n k 1
4k
2 2 1
的值;
(2)求证:
n k 1
1 k2
5 3
.
2.求证:1
1 32
1 52

证明数列不等式的常用放缩方法技巧精减版

证明数列不等式的常用放缩方法技巧精减版

证明数列不等式的常用放缩方法技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1(⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3lg 2=<=+<⋅;2)1()1(++<+n n n n ⑷二项式放缩: n n n n n n C C C +++=+=Λ10)11(2,1210+=+≥n C C n n n ,2222210++=++≥n n C C C n n n n )2)(1(2≥->n n n n (5)利用常用结论:Ⅰ.的放缩 Ⅱ. 21k 的放缩(1) :2111(1)(1)k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211kk k k k k <==+-+--+(程度小) Ⅳ. 21k 的放缩(3):2214112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++<m b a ma mb a b记忆口诀“小者小,大者大”。

解释:看b ,若b 小,则不等号是小于号,反之亦然.Ⅵ.构造函数法 构造单调函数实现放缩。

例:()(0)1x f x x x=≥+,从而实现利用函数单调性质的放缩:()()f a b f a b +≤+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=+a pa n n r1+=++ra sa pa qn n n 1=+a s n 1=++a a a nn n 11=+⋅+a a f n a n n n 12)(目录一、基本数列 (3)1.1等差数列与差分 ...................................................................................................................................3 1.2等比数列与商分 .. (6)1.2.1指数主导项型........................................................................................................................ 10 1.3 求和与裂项 . (13)1.3.1裂项 .......................................................................................................................................... 15 1.3.2 P 级数 .. (17)二、数列的性质 (21)3.1差分 ....................................................................................................................................................... 21 3.2商分 ....................................................................................................................................................... 25 3.3数学归纳法 ......................................................................................................................................... 31 3.4反证法 .................................................................................................................................................. 35 三、递推关系 . (39)3.1二次型, (39)3.2打钩型 .................................................................................................................... 48 3.3根式型 (56)3.4分式型 (63)3.5幂级型 ............................................................................................................................ 68 四、重要不等式 ................................................................................................................................................ 71 4.1对数函数 ............................................................................................................................................. 71 4.2三角函数 ............................................................................................................................................. 79 4.3指数与二项式 .................................................................................................................................... 83 4.4基本不等式 .. (87)⎝⎭⎝⎭- ⎪ ⎪++⋅⋅⋅+≤+-+-<+⎛⎫⎛⎫+c c c n n n n 2242321241111117112+---<-+n n n n 222212111111+≤-+n n 22211≥n 2+⎝⎭⋅++ ⎪===+-+⎛⎫++c n n n n n n n n nn 212222222212211121212)()(+=+=n a b n n n 11+=-n b n 11=--b n n 11-1=-b 211⎩⎭⎨⎬⎧⎫b n 1=-+b b n n1111-=+b b b n n n11=+a b n n 1-=+a a nn 211≠a n 2 n c c c n +++<+12724=+212n c a a n nb n {}b a n n =-1n n n a a a n N =-∈++*1121()a =112a n {}+-1(1)a n d a n 1+->n n a a d +-1(1)a n d a n 1+-<n n a a d a n {}d a n {}d a n {}-≤≥+b b d n n 1)(=+∈+b b f a f a B n n n n ,1)()(=++a a f n n n 1)(=++a a d n n 1一、基本数列1.1等差数列与差分伪等差已知数列,若从第二项起,每一项与它的前一项的差都小于(或大于)同一个常数,则数列叫做伪等差数列,称为伪等差数列的公差。

伪等差数列具有性质:若,则 ; 若,则 .1、已知数列满足,,令. (1)求数列的通项公式; (2)令,求证:. 解:(1)因为,所以 把带入得 对上式两边取倒数得所以为首项,公差为的等差数列 所以,从而 (2) 得到 因为时,所以所以n a n +≤≤2211,n n N ≥∈*a =≥+=1121223n =122,2,n a n n n N ≥+≥∈*n a a n n ≤+-=+21112(2)121n n n n a a a a n +=+≤+≥111112(2)n a a ≤=2122,n n N ≥∈*n a a ≤=11a n }{1+<a a n n a a n n+>>1110111+=+a a a n nn a n >0n a n n2(2)2a a a a n n n11, 211a n n n a n +≤≤+2321n ≥2=++⋅⋅⋅+≤++-=+-a a a n n n n n n 22221221311)(≥≥a n n 42)(=++⋅⋅⋅+≥+-a a a n n n n 22211-=-++⋅⋅⋅+≥-a a a a n n n n 1222111)(-=+-=+⋅⋅⋅-=+-----a a a a a a a a a n n n n n n 1,1,,122212111221≥=≥a a n n 422)(a n }{-=+>+a a a n n n 1021=+++a a a nn n 121n n a n +≤≤+2321n ≥2n N ∈*a a a n n n+=++121a =11a n {}2、设数列满足,,. 证明:当时,.证明:因为 所以,所以单调递增 从而累加得所以又因为 所以所以当时,.3、数列满足:; 证明:解:由已知条件易知:,且,(*) ∴,因此,即数列是递减数列,故. 当时,.又由(*)知,,利用累加可得:,即, 经验证:当时,也成立. 因此当时,.≤n nS n 2=S 1211=n 1≤n n S n 2⎝⎭⎝⎭ ⎪ ⎪<+-+⋅⋅⋅+-=⎛⎫⎛⎫S a n n n 22221112=-+-+⋅⋅⋅+-+<-+=----a a a a a a a a n n n n n n n 22111112211)()()(≥n 2+-=<-a a a a n n n n111+=-a a a n n n 112≤n nS n 2n n a n }{S n =+≥--a a a a n n n n n (2)112=a 211a n }{∴=++++≤a a d d d ()2161125+++≤d d d 20125-+++d d d 4092016()125=+++d d d 40967504≤+++d d d 5125++++=d d d d 2016123504≤≤≤≤d d d d 123504=i (1,2,,504)=-+d a a i i i 1-≤-+++a a a a n n n n 121a 6=a 2017505=a 11≤+++a a a n n n 212N ∈n *S n n a n {}4、[2017.4杭州二模]已知数列的各项均为非负数,其前项的和为,且对任意,都有.若,,求的最大值;解:由题意知,设, 则,且, ,所以,5、[2017绍兴柯桥]22.(本题满分15分)已知正项数列满足:,,为数列的前项和.求证:对任意正整数,有;证明:由题意得,所以所以时, 所以,即当时,,综上,-=++a n n n 23211-=-=---a a n n n 242(1)(1)()()1113111121-43⎩⎭⎨⎬-⎧⎫a n 11-=-a 41131=a 41-=-+a a n n 21(1)1111=++a a n n 221111a n }{∈n N *=a 41=++a a n n 221111a n }{a q n -11a n 1+>n na a q a q n -11a n 1+<n n a a q q >0a n >0a n {}q a n {}q q ≠(0)a n {}≥≤+b q b nn 1)(=∈+b f a f a B b n n n n ,1)()(=+=+++a qa p a qa f n n n n n ,11)(=+a qa n n 11.2等比数列与商分通项 累加 差分形式已知数列,若从第二项起,每一项与它的前一项的比都 同一个常数,则数列叫做伪等比数列,称为伪等比数列的公比。

相关文档
最新文档