机械能守恒定律-连接体问题)
第3讲 机械能守恒定律及其应用

第3讲机械能守恒定律及其应用学习目标 1.理解重力势能和弹性势能,知道机械能守恒的条件。
2.会判断研究对象在某一过程机械能是否守恒。
3.会用机械能守恒定律分析生产生活中的实际问题。
1.2.3.4.1.思考判断(1)重力势能的变化与零势能参考面的选取无关。
(√)(2)被举到高处的物体重力势能一定不为零。
(×)(3)发生弹性形变的物体都具有弹性势能。
(√)(4)弹力做正功,弹性势能一定增加。
(×)(5)物体所受的合外力为零,物体的机械能一定守恒。
(×)(6)物体的速度增大时,其机械能可能减小。
(√)(7)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒。
(√)2.(多选)我国风洞技术世界领先。
如图1所示,在模拟风洞管中的光滑斜面上,一个小物块受到沿斜面方向的恒定风力作用,沿斜面加速向上运动,则从物块接触弹簧至到达最高点的过程中()图1A.物块的速度先增大后减小B.物块加速度一直减小到零C.弹簧弹性势能先增大后减小D.物块和弹簧组成的系统机械能一直增大答案AD考点一机械能守恒的理解与判断判断机械能守恒的三种方法例1如图2所示,斜劈劈尖顶着竖直墙壁静止在水平面上。
现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法中正确的是()图2A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球重力势能的减少量等于斜劈动能的增加量答案B解析斜劈对小球的弹力与小球位移的夹角大于90°,故弹力做负功,A错误;不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,系统机械能守恒,小球重力势能的减少量等于斜劈和小球动能的增加量,B正确,D 错误;小球对斜劈的弹力做正功,斜劈的机械能增加,C错误。
跟踪训练1.(2023·江苏苏州月考)如图3所示,轻质弹簧的一端与固定的竖直板P连接,另一端与物体A相连,物体A置于光滑水平桌面上,A右端连接一细线,细线绕过光滑的轻质定滑轮与物体B相连。
高考物理连接体模型问题归纳

绳牵连物”连接体模型问题归纳广西合浦廉州中学秦付平两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题就是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,就是力学中能考查的重要内容。
从连接体的运动特征来瞧,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。
从能量的转换角度来说,有动能与势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。
一、判断物体运动情况例1如图1所示,在不计滑轮摩擦与绳质量的条件下,当小车匀速向右运动时,物体A的受力情况就是( )A.绳的拉力大于A的重力B.绳的拉力等于A的重力C.绳的拉力小于A的重力D.拉力先大于A的重力,后小于重力解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向与与绳垂直的方向进行正交分解,分别就是v2、v1。
如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。
A的速度等于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。
点评:此类问题通常就是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体与被动运动物体的加速、减速的不一致性。
解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。
二、求解连接体速度例2质量为M与m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。
求当M滑至容器底部时两球的速度。
两球在运动过程中细线始终处于绷紧状态。
解析:设M滑至容器底部时速度为,m的速度为。
根据运动效果,将沿绳的方向与垂直于绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能守恒定律有:,联立两式解得:,方向水平向左;方向竖直向上。
点评:作为连接两个物体的介质绳,能实现力与能量的传递,这也就使两个物体的运动状态彼此都会发生影响,这就使物体的速度上存在一定的矢量关联,分解或者求解速度之间的约束关系就成为解决这类问题的关键。
系统机械能守恒的三类“连接体模型”

系统机械能守恒的三类“连接体模型”摘要:研究与连接体模型相关的机械能守恒问题,是物理教学的重点内容。
有助于提高学生分析问题和物理模型建构能力。
文章通过分析两物体速度大小相等的连接体模型;角速度相等的连接体模型;分速度数值相等的连接体模型,从能量守恒的角度分析相关情境,解决物理问题。
关键词:连接体模型;能量守恒;机械能守恒;为了研究实际情境中各物体的运动规律,科学家往往把复杂的、具体的物体或过程,用简化的模型或过程来代替。
连接体模型就是我们在教学中被简化的一类物理模型。
研究“连接体模型”的能量守恒问题,有助于提高学生分析问题和物理模型建构能力。
连接体模型是两个或两个以上物体相互作用,或通过轻绳、轻弹簧、轻杆连接的物理模型。
为了更好的分析连接体模型,先要通过受力分析,运用牛顿运动定律,明确各个力的关系。
[例1]如图1,在光滑的水平桌面上,一根拉直的轻绳通过定滑轮将物块A与物块B连接起来,物块A 的质量大于物块B的质量,分别设为M和m,将A、B静止释放。
分析A、B运动过程中,轻绳的拉力T为多少?解析:分别对A、B受力分析对A:对B:当在受力分析的基础上,借助牛顿运动定律,分析连接体模型各个物体的运动过程和运动特点。
教师可以进一步引导学生从能量守恒的角度分析相关情境,解决问题。
文章通过分析三类连接体模型,帮助学生了解连接体模型的特点,掌握分析连接体问题的方法。
一、速率相等的连接体模型如图2所示,由物体A和B通过细绳组成的四种连接体模型,A B连接体的初速度为零,细绳拉力不为零。
若静止释放A、B,物体B将通过细绳拉着A一起做加速运动。
请分析A、B的速度方向,以及比较它们速度的大小(不计空气阻力以及各接触面的摩擦力)。
结合模型,分析A、B运动过程, A、B的速度均沿着绳子的方向,则两物体的速率相等。
不计空气阻力和摩擦力,系统只有动能和重力势能相互转化,从能量转化的角度,系统的机械能守恒。
[例2] 如图3所示长度均为L,质量为m的甲、乙、丙三根链条,链条的一半悬空放置。
新教材高中物理第八章拓展课11多物体组成的系统机械能守恒问题pptx课件新人教版必修第二册

【典例】 例 3 如图,足够长的光滑斜面倾角为30°,质量相等的甲、乙两物 块通过轻绳连接放置在光滑轻质定滑轮两侧,并用手托住甲物块,使 两物块都静止,移开手后,甲物块竖直下落.当甲物块下降0.8 m时, 求乙物块的速度大小(此时甲未落地,g=10 m/s2).请用机械能守恒定 律和动能定理分别求解,并比较解题的难易程度.
1.速率相等的连接体模型 (1)如图所示的两物体组成的系统,当释放B后,在A、B运动的过程 中,二者的速度均沿绳子方向,因为A、B在相等时间内运动的路程 相等,所以A、B的速率相等.
(2)系统的机械能是否守恒不从做功角度判断,而从能量转化的角度 判断,即如果系统中只有动能和势能相互转化,系统的机械能守 恒.这类题目的典型特点是系统不受摩擦力作用.
拓 展 课 11
多物体组成的系统机械能守恒问题
Hale Waihona Puke 素养·目标要求 1.能灵活应用机械能守恒定律的三种表达形式. 2.会分析多个物体组成的系统的机械能守恒问题. 3.知道动能定理与机械能守恒定律的区别,体会二者在解题时的异
同. 4.能灵活运用动能定理和机械能守恒定律解决综合问题.
拓展一 多物体组成的系统机械能守恒问题 【归纳】 连接体问题是力学部分的难点,本书通过对近几年高考题及各地模 拟题的深入研究,总结出以下两类可以利用系统机械能守恒来快速解 题的连接体模型.
例 4 如图所示,一粗糙斜面AB与光滑圆弧轨道BCD相切,C为圆弧 轨道的最低点,圆弧BC所对圆心角θ=37°.已知圆弧轨道半径为R= 0.5 m,斜面AB的长度为L=2.875 m.质量为m=1 kg的小物块(可视为 质点)从斜面顶端A点处由静止开始沿斜面下滑,从B点进入圆弧轨道, 恰能通过最高点D.sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2.求:
机械能守恒中速度关联问题的求解方法

一
【 摘
要】 力学 中,两个或 两个以上物
、
-
பைடு நூலகம்
2 .整 体法
( 1 )含义 :所谓整体法就是将两个或两 个 以上 物 体 组 成 的整 个 系统 或 整 个 过 程作 为 研 究对 象 进 行分 析 研究 的 方 法 。 ( 2)运用整体法解题的基本步骤 :① 明 确研究 的系统或运动 的全过程 。② 域出系统 的受力 图和运动全过程 的示 意图。③ 寻找未 知量与 已知量之间的关系 , 选择适当的物理规 律列方程求解 。 隔离 法与整体法 ,不是相互对立 的,一 般问题的求解 中,随着研究对象 的转 化,往 往 两 种 方 法 交 叉 运 用 ,相 辅 相 成 。所 以 ,两 种 方法的取舍 ,并无绝对的界 限,必须具体 分 析 ,灵 活 运 用 。 无论 哪 种 方 法 都 应 以尽 可 能避免或减少 非待求量 ( 即 中 间 未 知 量 的 出 现, 如非待求 的力 , 非待求 的中间状态或过程 等) 的出现为原则。正确建立连接体间的速度 关联 关系,是求解 连接体有关速度问题的切 入 点,也是求解有 关连 接体综合问题的关键
之二。
又 由图示 位 置 m 、m 2 受力 平衡 ,应 有 :
T c o s AC B= m2 g , T =ml g s i n 3 0 。
m g( h - r ) = m v ^ 2 + m v B
①
又 由速 度分 解知 识知 V 1 - V 2 C O S A C B,
机械 能守恒 中速度关联 问题 的求解 方法
3 2 5 2 0 4 浙江省 瑞安 市塘 下 中学 浙 江 瑞 安 竺建 国
第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。
2020年高三物理专题 机械能守恒中的三类连接体模型(解析版)

(一)系统机械能守恒的三类连接体模型连接体问题是力学部分的难点,本书通过对近几年高考题及各地模拟题的深入研究,总结出以下三类可以利用系统机械能守恒来快速解题的连接体模型。
速率相等的连接体模型1.如图所示的两物体组成的系统,当释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,则A、B的速率相等。
2.判断系统的机械能是否守恒不从做功角度判断,而从能量转化的角度判断,即:如果系统中只有动能和势能相互转化,系统的机械能守恒。
这类题目的典型特点是系统不受摩擦力作用。
[例1]如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上。
现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。
已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计。
开始时整个系统处于静止状态;释放A后,A沿斜面下滑至速度最大时,C恰好离开地面。
求:(1)斜面的倾角α;(2)A球获得的最大速度v m。
[审题建模](1)细线不可伸长,A、B两球速率一定相等,但B与C球以弹簧相连,速率一般不同。
(2)弹簧的弹性势能与弹簧的形变量大小有关,无论弹簧处于伸长状态还是压缩状态。
【解析】(1)由题意可知,当A沿斜面下滑至速度最大时,C恰好离开地面。
A的加速度此时为零由牛顿第二定律得: 4mg sin α-2mg =0 则:sin α=12,α=30°。
(2)由题意可知,A 、B 两小球及轻质弹簧组成的系统在初始时和A 沿斜面下滑至速度最大时的机械能守恒,同时弹簧的弹性势能相等, 故有:2mg =k Δx4mg Δx sin α-mg Δx =12(5m )v m 2得:v m =2gm 5k。
【答案】 (1)30° (2)2gm 5k[集训冲关]1.如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍。
连接体的机械能守恒

连接体的机械能守恒问题(基础好的学生可参考)典例、如图所示,左侧竖直墙面上固定不计为R=0.3m的光滑半圆环,右侧竖直墙面上与圆环的圆心O等高处固定一光滑直杆.质量为m a=100g的小球a套在半圆环上,质量为m b=36g的滑块b套在直杆上,二者之间用长为l=0.4m的轻杆通过两铰链连接.现将a从圆环的最高处由静止释放,使a沿圆环自由下滑,不计一切摩擦,a、b均视为质点,重力加速度g=10m/s2.求:(1)小球a滑到与圆心O等高的P点时的向心力大小;(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,杆对滑块b做的功.分析(1)不计一切摩擦,a沿圆环自由下滑的过程中,a、b及杆组成的系统机械能守恒,由机械能守恒定律求出小球a滑到与圆心O等高的P点时的速度,再由向心力公式求解.(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,根据杆不可伸长和缩短,两球沿杆的速度相等列式,得到两球速度关系式,再结合机械能守恒定律求出b球此时的速度,即可由动能定理求得杆对b球做的功.解:(1)当a滑到与O同高度P点时,a的速度v沿圆环切向向下,b的速度为零,由机械能守恒定律可得:m a gR=1/2m a v2;对小球a受力分析,由牛顿第二定律可得:F=mav2/R=2m a g=2N(2)杆与圆相切时,如图所示,a的速度沿杆方向,设此时b的速度为v b,根据杆不可伸长和缩短,有:v a=v b cosθ由几何关系可得:cosθ=0.8在图中,球a下降的高度h=Rcosθa、b系统机械能守恒,则有:m a gh=1/2m a v a2+1/2m b v b2-1/2m a v2;对滑块b,由动能定理得:W=1/2M b V b2=0.1944J答:(1)小球a滑到与圆心O等高的P点时的向心力大小是2N;(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,杆对滑块b做的功是0.1944J.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(mA+mB ) v 2 + mAg(H−h)= 2 mAgh = mB =
所以:
1 2 1 2
√
2H 4H B. 5 C. 5 1H DFra bibliotek3vh
mA v
2 5
2
mA
H
h =
机械能守恒定律应用
机械能守恒定律的表达形式:
1、E1=E2 ( E1、E2初末态机械能)
2、ΔEP减=ΔEK增 (减少等于增加量)
3、ΔEA减=ΔEB增(A机械能减少等于B增量)
例1 在光滑的水平桌面上有一质量为 M的小车,小车与绳的一端相连,绳子 的另一端通过光滑滑轮与一个质量为m 的砝码相连,砝码到地面的高度为h, 由静止释放砝码,则当其着地前的一 瞬间(小车未离开桌子)小车的速度 为多大?
L · 2
=
gL 2
1 2
mv 2
L 2
v
∴ v=
√
例3 一粗细均匀的U形管内装有同种液 体竖直放置,右管口用盖板A密闭一部 分气体,左管口开口,两液面高度差为 h,U形管中液柱总长为4h,现拿去盖板, 液柱开始流动,当两侧液面恰好相齐时, 右侧液面下降的速度大小为多少?A
h
解:根据机械能守恒定律得:
Mgh−mgh = 1 (M+m)v2 2
解得:
v=
1 2
√
2(M−m)gh M+m
(2)M触地,m做竖直上抛运动,机械能守恒:
mv2 = mgh´
∴ m上升的总高度: H = h+h´ = 2Mh M+m
练习:固定的三角形木块,倾角θ=30°, 一细线两端分别与物块A和B连接,A的质 量为4m,B的质量为m。开始时将B按在地 面上不动,然后放开手,让A沿斜面下滑而 B上升。物块A与斜面间无摩擦。设当A沿 斜面下滑S距离后,细线突然断了。求物块 B上升的最大高度H。
A
30º
B
解:该题A、B组成的系统只有它们的重力做功,故系 统机械能守恒。 设物块A沿斜面下滑S距离时的速度为v,则有:
1 4mgL•sinθ-mgL = 2(4m+m)v2 ( 势能的减少量 = 动能的增加量 )
细线突然断的瞬间,物块B垂直上升的初速度为v, 此后B作竖直上抛运动。设继续上升的高度为h, 由机 械能守恒得
mgh =
1 2
mv2
物块B上升的最大高度: H=h+L
三式连立解得 H=1.2L
例2、长为L质量分布均匀的绳子,对称地悬 挂在轻小的定滑轮上,如图所示.轻轻地推动 一下,让绳子滑下,那么当绳子离开滑轮的瞬 间,求绳子的速度?
解:由机械能守恒定律得:
(绳子减少的势能=绳子增加的动能) 1 2
· mg
M
m
h
练习1 一根细绳绕过光滑的定滑轮,两端
分别系住质量为M和m的长方形物块, 且M>m,开始时用手握住M,使系统处于 如图示状态。求:
(1)当M由静止释放下落h高时的速度 (2)如果M下降h 刚好触地, 那么m上升的总高度是多少?
m
M
解:(1)对于M、 m构成的系统,只有 重力做功,由机械能守恒有:
m1
m2
两质量分别为m和2m的小球a、b用一 根长L轻杆连接,杆可绕中心O的水平 轴无摩擦转动,让杆由水平位置无初速 释放,在转至竖直的过程中( ) A.a球机械能增大 B.b球重力势能减小, 动能增加,机械能守恒 C.a球和b球总机械能守恒 D.a球和b球总机械能不守恒
练习题: 如图所示,B物体的质量是A物体 质量的1/2,在不计摩擦阻力的情况下,A物 体自H高处由静止开始下落.以地面为参考 平面,当物体A的动能与其势能相等时,物 体距地面的高度是( ) v
mg· h/2 =
1 2
Mv2
h 2
设液体密度为ρ有:
m = M =
S· ρ
4h S · ρ
所以:
v=
√
gh 8
练习3 如图光滑圆柱被固定在水平台上, 质量为m1的小球甲用轻绳跨过圆柱与质 量为m2的小球乙相连,开始时让小球甲 放在平台上,两边绳竖直,两球均从静 止开始运动,当甲上升到圆柱最高点时 绳子突然断了,发现甲球恰能做平抛运 动,求甲、乙两球的质量关系式。