基坑监测总结报告15195
基坑监测类个人总结

基坑监测类个人总结背景基坑工程作为现代城市建设的一部分,由于其大规模、复杂性和特殊性,对基坑监测的要求也越来越高。
我在过去的一段时间内参与了基坑监测工作,累积了一些经验和教训,在此总结分享给大家。
监测目标基坑监测的目标是保证基坑工程的安全运行,及时掌握基坑变形和变化趋势,预测可能发生的灾害,为调整工程施工计划或采取相应措施提供依据。
主要监测目标包括但不限于以下几个方面:1. 地下水位:监测地下水位的变化情况,为基坑降水提供参考。
2. 周边建筑物:监测周边建筑物的位移、沉降和裂缝情况,判断是否对周边建筑物造成影响。
3. 地下管线:监测地下管线的变化,防止损坏或冲击到地下管线。
4. 地表变形:监测基坑边坡、挡墙的变形,及时发现并采取相应措施。
监测方法基坑监测主要采用传统的物理监测和现代化的遥感监测相结合的方式。
传统的物理监测主要包括设置测点,通过测量位移、沉降和应力等参数来监测基坑变形情况。
而遥感监测主要是通过无人机、卫星等技术手段,利用图像处理、变形分析等方法来实现对基坑的监测。
1. 物理监测:在基坑周边设置监测点,通过经纬仪、水准仪、测量经验等手段测量位移和沉降。
此外,还可以采用倾斜仪、地震仪等设备来监测基坑的倾斜、振动等参数。
2. 遥感监测:利用无人机、卫星等设备进行空中遥感监测。
通过获取高分辨率的影像图像,运用图像处理和变形分析等技术手段,实现对基坑的变形监测。
监测技术基坑监测技术涉及多个领域,需要综合运用地质、测绘、摄影测量、计算机等学科的知识和技术手段。
1. 地质勘探:在开始基坑开挖前,进行地质调查和勘探,了解地质情况和地下水位,为后续监测提供重要数据。
2. 测绘技术:使用全站仪、经纬仪、水准仪等设备进行基坑边界的测量,获取准确的三维坐标数据。
3. 遥感技术:运用无人机、卫星等设备获取高分辨率的影像图像,通过图像处理和变形分析等技术手段对基坑进行监测。
4. 摄影测量:运用航摄、地面摄像等手段获取基坑表面的影像数据,通过图像处理和分析,了解基坑表面的变形情况。
深基坑监测总结报告内容

深基坑监测总结报告内容1. 简介深基坑工程是指在城市建设中需要修建的较深的地下结构,常见于高层建筑、地下车库等工程项目中。
由于深基坑在施工过程中具有较大的工程风险,因此需要进行监测以确保工程的安全进行。
本报告总结了某深基坑监测项目的监测过程、结果分析和改进建议。
2. 监测过程2.1 监测目标本次监测的目标为对深基坑工程的变形、应力、裂缝等进行实时监测,以及传感器数据的采集和处理。
2.2 监测方法本次监测采用了传感器监测和现场观察相结合的方法。
传感器监测主要包括水位传感器、内力传感器、位移传感器等。
现场观察主要由专业技术人员进行,观察变形情况、裂缝状况等。
2.3 监测结果在监测期间,通过传感器采集到了大量的监测数据,并经过处理得出了以下结果:- 变形:深基坑的变形主要表现为周边土壤的沉降和深基坑本身的位移。
监测结果显示,深基坑的沉降速度逐渐减小,位移整体稳定。
- 应力:监测结果显示,深基坑的应力分布均匀,未出现明显的应力集中现象。
- 裂缝:观察结果显示,深基坑周边土体出现了一些细微的裂缝,但未出现明显的裂缝扩展。
3. 结果分析3.1 变形分析深基坑的变形主要受土壤本身性质和周边环境的影响。
通过监测结果可以看出,深基坑的变形速度逐渐减小是正常现象,表明土壤基本稳定。
然而,变形仍然存在一定的风险,需要继续进行监测和分析。
3.2 应力分析深基坑的应力分布均匀表明施工过程中没有明显的超载现象,但不排除可能存在局部应力异常的情况。
应力异常可能导致结构的破坏,因此需要继续关注应力变化并及时采取相应的措施。
3.3 裂缝分析深基坑周边土体的细微裂缝可能是由于土壤固结引起的,一般属于正常现象。
然而,如果裂缝扩展较大,可能会对结构产生不利影响。
因此,需要持续观察裂缝的变化情况,并及时采取适当的补强措施。
4. 改进建议根据本次监测的结果分析,提出以下改进建议:- 继续进行深基坑的实时监测,以更全面地了解深基坑的变形、应力和裂缝情况。
基坑安全监测个人总结

基坑安全监测个人总结引言在建筑施工过程中,基坑是常见的工程类型,但基坑施工存在一定的风险,如土方工程施工不规范、土体失稳、支护结构失效等,这些问题都可能导致基坑坍塌,造成严重的人员伤亡和财产损失。
因此,对基坑的安全监测至关重要。
本文将总结个人在基坑安全监测方面的经验和教训,以期提高施工过程中的安全性和效率。
基坑安全监测的重要性1. 保障人员安全:基坑施工是一项危险性较高的工程,及时监测基坑的变化,可以对潜在风险进行预警,避免事故发生,保障施工人员的安全。
2. 防止土方失稳:基坑的土方施工会导致土体变形和失稳,及时监测土体的变化,可以采取合适的支护措施,防止土方失稳带来的问题。
3. 检测支护结构情况:基坑的支护结构是保证基坑稳定的重要因素,监测支护结构的变化可以及时发现结构的松动、开裂等问题,以便及时修复。
基坑安全监测的方法与措施1. 定期巡视:定期巡视基坑的周边环境和施工现场,观察基坑土体的变化情况和支护结构的状态,及时发现潜在问题。
2. 安装监测设备:利用现代技术手段,如裂缝计、位移计等,安装在基坑周边或支护结构上,实时监测基坑土体的位移情况和支护结构的变形状况,以便及时发现异常情况。
3. 制定监测方案:在施工前制定详细的监测方案,包括监测设备的选择、安装位置、监测频率等,以确保监测的全面性和及时性。
4. 建立预警机制:根据监测数据的变化情况,建立一套完整的预警机制,包括预警指标、预警级别和应急处理方案,以便在发生异常情况时能够迅速采取措施。
5. 培训施工人员:提高施工人员的安全意识,对基坑安全监测的方法和操作进行培训,以便能够及时发现问题并采取正确的应对措施。
个人经验和教训1. 深入了解基坑工程:在进行基坑安全监测前,需要对基坑工程的施工要求和支护措施有充分的了解,避免出现监测方案不合理或无法有效监测的情况。
2. 选择合适的监测设备:根据具体情况选择合适的监测设备,并确保设备的正常运行和准确测量,避免因设备问题导致监测结果失真。
基坑监测总结报告

基坑监测总结报告一、引言基坑监测是在建筑施工中非常重要的一项工作,其目的是为了及时掌握基坑的变形情况,保证施工的安全性和稳定性。
本报告总结了一次基坑监测的过程和结果,并对监测数据进行了分析和评价。
二、监测目标和方法本次基坑监测的目标是掌握基坑的变形情况,特别是地下水位的变化和基坑的沉降情况。
监测方法主要包括以下几方面:1.地下水位监测:利用水位计定时定点采集地下水位数据,并进行记录和分析。
2.基坑侧壁变形监测:采用全站仪进行基坑的侧壁变形监测,包括侧壁的位移和倾斜情况。
3.基坑底部沉降监测:利用测量水准仪定时测量基坑底部的沉降情况,并记录和分析数据。
三、监测结果根据监测数据的统计和分析,得出以下结果:1.地下水位变化较为稳定,在施工过程中水位基本保持不变。
这说明基坑附近的地下水状况相对稳定,对施工没有明显的影响。
2.基坑侧壁的变形情况较小,位移和倾斜均在设计范围内。
说明基坑的支护结构和施工工艺是合理的,满足了安全性和稳定性的要求。
3.基坑底部存在一定的沉降,但变化趋势平稳。
这可能是由于地下水位的变化和基坑开挖引起的。
然而,沉降量在合理范围内,不会对施工造成太大的影响。
四、评价和建议根据本次监测的结果,可以对施工进行评价和提出建议:1.施工工艺和支护结构的设计是合理的,能够满足基坑的安全性和稳定性要求。
因此,在后续的施工过程中可以继续使用相同的工艺和结构。
2.地下水位变化较小,对施工没有明显的影响。
因此,在后续施工中可以继续进行相同的地下水处理和排水工作。
3.基坑底部的沉降量在合理范围内,但仍需要继续监测和控制。
建议定期进行测量,并根据监测数据及时采取相应的措施。
4.在基坑施工过程中,需要加强施工人员的安全意识和培训,确保他们具备监测数据的正确使用和分析能力。
五、结论基坑监测是保证建筑施工安全性和稳定性的重要环节。
通过本次监测,我们得出了一些重要的结论和建议。
在后续的施工过程中,我们将继续对基坑进行监测,并根据监测数据调整和优化施工措施,以确保施工的顺利进行。
基坑监测个人总结

基坑监测个人总结
基坑监测是建筑工程施工中的重要环节,对于保证工程安全、防止事故发生具有重要意义。
在我个人的基坑监测工作中,我主要有以下几点体会和总结:
1. 基坑监测的重要性:基坑监测可以及时发现基坑的变化情况,预防和避免基坑事故的发生,保障施工人员的生命安全和工程的正常进行。
2. 基坑监测的内容:基坑监测主要包括基坑边坡的稳定性、基坑周边建筑物的稳定性、基坑内的水位变化、基坑内的土压力变化等。
3. 基坑监测的方法:基坑监测主要采用仪器监测和人工监测相结合的方式,如使用测斜仪、水准仪、土压力计等仪器进行监测,同时配合人工的观察和检查。
4. 基坑监测的频率:基坑监测的频率应根据基坑的实际情况和施工进度来确定,一般情况下,基坑开挖初期和基坑施工过程中应进行频繁的监测,基坑施工完成后可以适当减少监测频率。
5. 基坑监测的结果分析:对监测结果进行分析,判断基坑的稳定性和安全性,如果发现有异常情况,应及时采取措施进行处理。
6. 基坑监测的记录和报告:对每次监测的结果进行详细记录,并定期编制基坑监测报告,以便于对基坑的施工情况进行全面的了解和掌握。
基坑监测是一项技术性很强的工作,需要具备一定的专业知识和技能,同时也需要有高度的责任心和敬业精神。
基坑监测个人总结

基坑监测个人总结基坑监测是建筑工程中必不可少的环节,它可以帮助工程师及时掌握基坑的变化情况,确保施工的安全性和稳定性。
在基坑监测中,个人总结如下。
基坑监测需要按照一定的步骤进行。
在开始施工前,需要对基坑周围的环境进行勘察,了解地质情况和地下水位等信息。
然后,在施工过程中,需要进行定期的观察和记录,包括地表沉降、地下水位、土壤位移等指标的监测。
监测数据需要及时整理和分析,以便及时发现问题并采取相应的措施。
基坑监测需要使用专业的监测设备和工具。
常用的监测设备包括测量仪器、传感器等,可以对基坑的变化情况进行实时监测。
此外,还可以利用现代化的信息技术手段,如无线传输、数据存储等,提高监测的效率和精度。
基坑监测需要依靠专业的监测人员进行操作和分析。
监测人员需要具备一定的专业知识和技能,能够准确地判断监测数据的变化趋势,并及时向相关人员报告。
监测人员还需要具备一定的应急处理能力,能够在出现问题时及时采取措施,保证施工的安全性和稳定性。
在进行基坑监测时,还需要注意一些问题。
首先,监测数据的准确性非常重要,需要确保监测设备的准确性和可靠性。
同时,还需要注意监测数据的时效性,及时更新监测数据,以便及时发现问题。
另外,监测数据的分析和解读也非常重要,需要进行科学合理的分析,找出问题的根源,并采取相应的措施。
基坑监测是建筑工程中不可或缺的环节,它可以帮助工程师及时了解基坑的变化情况,确保施工的安全性和稳定性。
在进行基坑监测时,需要按照一定的步骤进行,使用专业的监测设备和工具,并依靠专业的监测人员进行操作和分析。
同时,还需要注意监测数据的准确性、时效性和分析解读的科学性。
通过科学合理的基坑监测,可以有效地保障建筑工程的安全进行。
基坑监测情况汇报

基坑监测情况汇报近期,我公司在某地进行了基坑监测工作,并对监测情况进行了详细的记录和分析。
以下是对监测情况的汇报:一、监测范围。
本次监测范围包括基坑周边建筑物、地下管线、地表沉降情况等,涵盖了基坑工程施工可能影响到的各项因素。
二、监测手段。
我们采用了多种监测手段,包括测量仪器的安装、遥感技术的应用以及实地调查等方式,确保了监测数据的全面性和准确性。
三、监测数据分析。
经过对监测数据的分析,我们发现在基坑周边建筑物的监测中,部分建筑出现了轻微的位移情况,但未达到警戒值。
地下管线的监测显示,管线受到了一定程度的变形,但未出现破裂和泄露情况。
地表沉降监测显示,基坑周边地表出现了一定程度的下沉,但未影响周边道路和建筑物的安全。
四、监测结果评估。
根据监测结果,我们对基坑工程的影响进行了评估。
在建筑物位移方面,我们将加强对周边建筑物的监测,并采取相应的支护措施,以确保建筑物的安全。
对于地下管线的变形情况,我们将进行进一步的监测和评估,并在必要时进行修复和加固。
针对地表沉降情况,我们将加强对周边道路和建筑物的巡检,确保其安全使用。
五、监测工作总结。
本次基坑监测工作取得了一定的成果,但也发现了一些问题和隐患。
我们将进一步加强对监测数据的分析和评估,及时采取相应的措施,确保基坑工程施工过程中的安全和稳定。
六、后续工作安排。
针对本次监测中发现的问题和隐患,我们将制定具体的后续工作方案,并加强与相关部门的沟通和协调,确保基坑工程的顺利施工和周边环境的安全稳定。
在未来的监测工作中,我们将继续努力,不断提升监测技术水平,为基坑工程的安全施工和周边环境的安全稳定做出更大的贡献。
以上是对本次基坑监测情况的汇报,如有任何问题和建议,请及时与我们联系。
感谢您的关注和支持!。
深基坑检查情况汇报

深基坑检查情况汇报
尊敬的领导:
根据您的要求,我对深基坑进行了检查,并将情况汇报如下:
一、基坑地质情况。
经过实地勘察,发现该基坑所处地质属于岩层地质,整体岩石结构较为坚固,
不存在明显的滑坡、崩塌等地质灾害隐患。
但在部分区域发现了少量的岩屑堆积和裂缝,需要加强监测。
二、基坑支护情况。
基坑周边已经完成了初步的支护工程,包括钢支撑和混凝土护壁。
在检查过程中,未发现明显的支护失稳、开裂等情况,整体结构较为稳固。
三、基坑排水情况。
基坑排水系统已经建立并投入使用,通过现场观察和排水管道监测,基坑内部
水位保持在合理范围内,排水效果良好。
四、基坑施工管理情况。
在施工现场,我发现各项施工管理措施得到了有效执行,现场作业人员严格按
照安全操作规程进行作业,安全防护设施齐全,施工管理秩序井然。
五、存在问题及建议。
尽管基坑目前整体情况良好,但仍需注意以下几点,首先,加强对岩屑堆积和
裂缝部位的监测,及时采取相应的加固措施;其次,定期检查和维护基坑支护结构,确保其稳固性;最后,加强施工现场安全管理,做好各项安全预防措施。
六、结论。
综上所述,基坑目前整体情况良好,但仍需密切关注地质变化和支护结构稳定性,加强施工现场安全管理。
我将继续对基坑进行监测,并及时向您汇报相关情况。
谨此报告,如有不妥之处,敬请指正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*********商业楼基础开挖基坑监测技
术总结报告
2017年7月
*******商业楼基础开挖基坑监测技术总结报告
编写:
审核:
审定:
2017年7月
目录
1工程概况 (1)
1.1简况 (1)
1.2周边环境 (1)
1.3地质概述 (1)
1.4基坑围护 (1)
2监测依据 (1)
3 工程地质概要 (2)
3.1本基坑地下水埋藏较深,不考虑地下水变化监测。
(2)
4、监测内容: (2)
5、基准点、监测点的布设 (2)
5.1.2 基准点的埋设和观测 (3)
5.1.3监测点的布设 (3)
5.2监测方法 (4)
5.2.1垂直位移监测 (4)
5.2.2水平位移监测 (4)
6监测周期及频率 (4)
7监测仪器设备及检定要求 (5)
7.1监测仪器设备 (5)
7.2仪器检定 (6)
9 结论与建议 (7)
1工程概况
1.1简况
*************大街东段南侧,东侧与京港澳高速公路相望,西侧接近南联路,地势平坦。
基坑东西宽约55米,南北长为56.5米,开挖面积约4.68亩。
开挖深度在5.0~7.7米。
1.2周边环境
本工程基坑3倍基坑深度范围内地上无建筑物、构筑物,地下无管线等。
1.3地质概述
详见本工程《岩土工程勘察报告》。
1.4基坑围护
本基坑根据周边环境、开挖深度及土层情况,选用土钉墙挂网锚喷的支护形式。
2监测依据
1)《国家一、二等水准测量规范》GB/T 12897-2006
2)《建筑变形测量规范》JGJ 8-2007
4)《建筑基坑工程变形技术规范》(GB50497-2009)
5)《精密水准测量规范》(GB/T15314-940)
6)《工程测量规范》(GB 50026-93)
7)《建筑边坡工程技术规范》(GB50330-2007)
8)本工程地质勘察报告、基坑围护设计方案、保护对象权属部门对监测
的技术要求等。
9)同类工程实践经验。
3 工程地质概要
3.1本基坑地下水埋藏较深,不考虑地下水变化监测。
3.2拟建场地浅层土层成份复杂,观测点和基准点应充分考虑其稳定性和可使用性。
4、监测内容:
本工程布设的监测系统及时、有效、准确地反映施工中围护体及周边环境的动向。
根据现场的周边环境情况及设计的常规要求,本项目完成了以下监测内容:
1、护坡的水平位移监测
2、竖向位移监测。
5、基准点、监测点的布设
5.1水平位移监测基准点的布置及埋设
5.1.1、根据基坑形状和周围环境的影响,将基准点布设在基坑影响范围以外,离基坑较远,人员、车辆影响较小的地方。
共布设3个基准点。
基坑北面的南联路为A、B两点、基坑南侧C点。
具体布置如下图:
5.1.2 基准点的埋设和观测
监测控制网分两种:平面控制网用于水平位移监测;水准控制网用于垂直位移监测。
1) 控制点布设
平面控制点和水准控制点为同点,现场布设3个点,用于控制整个监测区垂直及水平位移。
2) 控制网联测
水准控制网采用水准路线测量,其技术指标参数表1。
于2017年3月25日、2017年5月20日进行首次测量和复核测量,线路闭合差分别为0.63mm 和0.52mm ,满足规范要求。
水准控制测量技术指标表 表1
±2L mm
平面基准点采用导线法测量坐标,坐标系统采用假设独立坐标系统,按二级导线测量要求进行测量。
于2017年3月25日、2017年5月20日进行首次测量和复核测量,导线点点位中误差分别为0.39mm 和0.47mm 。
满足规范要求。
保证平面测量资料可靠性。
平面控制测量技术指标表 表2
±2
5.1.3监测点的布设
1) 垂直、水平位移
◆测点布设:在基坑四周共布设14个监测点
◆布设方法:直接在道路路面设定位置冲击钻孔,并打入测量专用道钉,并确保其牢固。
5.2监测方法
5.2.1垂直位移监测
参照按国家二等水准测量规范要求,历次垂直位移监测是通过工作基点间联测一条二等水准闭合线路,由线路的工作点来测量各监测点的高程,各监测点高程初始值在监测工程前期两次测定(两次取平均),某监测点本次高程减前次高程的差值为本次垂直位移,本次高程减初始高程的差值为累计垂直位移。
5.2.2水平位移监测
采用极坐标测量方法,每次测量结果与上次结果相比较,获得想⊿X、⊿Y 为本次基坑位移的变化值。
6监测周期及频率
6.1监测期限:
从基坑开挖2017年4月7日开始,到2017年6月30日回填至±0.000施工结束。
6.2监测频率:±
6.3监测警戒值:
6.3.1基坑及支护结构监测报警值
6.3.2.当监测项目的变化速率连续3天超过报警值的70%,应报警。
①周边建(构)筑物报警值应结合建(构)筑物裂缝观测确定,并应考虑建(构)筑物原有变形与基坑开挖造成的附加变形的叠加。
②当出现下列情况之一时,必须立即报警;若情况比较严重,应立即停止施工,并对基坑支护结构和周边的保护对象采取应急措施。
a 当监测数据达到报警值;
b 基坑支护结构或周边土体的位移出现异常情况或基坑出现渗漏、流砂、管涌、隆起或陷落等;
c 基坑支护结构的支撑或锚杆体系出现过大变形、压屈、断裂、松弛或拔出的迹象;
d 周边建(构)筑物的结构部分、周边地面出现可能发展的变形裂缝或较严重的突发裂缝;
e 根据当地工程经验判断,出现其他必须报警的情况。
7监测仪器设备及检定要求
7.1监测仪器设备
主要采用仪器设备见表6:
监测仪器设备表表6
序设备仪器规格型号分辨率/精度使用项
1数字水准Dini030.3mm垂直位
2全站仪索佳±2",平面位
3测斜仪航天万新0.02mm/500测斜
4电脑数据处
5打印机输出设7.2仪器检定
所有监测仪器设备在开工前送国家认可的计量校准/检定试验室进行强制检定,施工期间监测仪器需进行连续标定。
8.数据分析
根据观测数据结果,基坑北侧向基坑方向偏移最大量为20.mm,基坑东侧向基坑方向偏移最大量为9mm,基坑南侧向基坑方向偏移最大量为4mm,基坑西侧向基坑方向偏移最大量为14mm。
平均偏移量为11.75mm,没有超过警戒值。
据以上基坑监测点垂直位移变化曲线图分析可知,在基坑开挖施工过程中基坑边缘受外界因素较小,相对稳定。
9 结论与建议
我公司对******商业楼基础开挖基坑施工阶段进行了为期近3个月的跟踪监测。
信息化施工监测在本项目施工中取得了成功,切实达到了信息化施工的目的。
本项目基坑挖土施工过程中基本保持稳定,没有超过警戒报警值。
建议在以后施工过程中,加强新建楼体对周围环境的影响监测。
我公司在本工程的监测工作得到了业主、监理、施工方及其它相关单位的大力配合,在此表示衷心感谢!。