信号与系统PPT课件

合集下载

信号与系统ppt课件

信号与系统ppt课件
2.对于(at+b)形式的冲激信号,要先利用冲激信 号的展缩特性将其化为(t+b/a) /|a|形式后,
方可利用冲激信号的抽样特性与筛选特性。
完整版ppt课件
25
二、奇异信号
3. 斜坡信号
定义:
r(t)
t 0
t 0 t 0
或 r(t)tu(t)
r (t )
1
0
1
t
完整版ppt课件
26
二、奇异信号
x(t)(t t0)x(t0)(t t0)
完整版ppt课件
x(t ) (1)
t t0 x(t) (t t0 )
( x(t0 ) ) t
t0
19
二、奇异信号
2. 冲激信号
(6) 冲激信号的性质
② 抽样特性
x(t)(tt0)dtx(t0)
证明:
x(t)(t t0)dt
利用筛
选特性
x(t0)(t t0)dt x(t0) (t t0)dt x(t0)
(7)e4t (22t) (8)e2tu(t)(t1)
完整版ppt课件
23
解:
(1 ) sit)n ((tπ 4)d t siπ 4 n )(2/2
(2 ) 2 3 e 5 t (t 1 )d t e 5 1 1 /e 5
(3) 4 6e2t (t8)dt0
(4 ) e t(2 2 t)d t e t1 2( t 1 )d t 2 1 e
(2) x ( t) u ( t 1 ) 2 r ( t) 2 r ( t 1 )
完整版ppt课件
28
二、奇异信号
4. 冲激偶信号 定义: '(t) d(t)
dt

信号与系统第2章ppt课件

信号与系统第2章ppt课件
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22

(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)

信号与系统ppt课件

信号与系统ppt课件

结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。

信号与系统_精解课件§1[1].5_奇异函数

信号与系统_精解课件§1[1].5_奇异函数
1 sgn(t) = −1 t >0 t <0


τ O
2
τ
2
sgn(t )
O
t
1 sgn(t ) = −u(−t ) + u(t ) = 2u(t ) − 1 u(t ) = [sgn(t ) + 1] 2
X
三.单位冲激(难点)
概念引出 定义1 定义1 定义2 定义2 冲激函数的性质
X
定义1
t
O
t
求 导
R(t) ↓ ↑ 积 u(t) ↓ ↑ 分 δ(t)
(-∞<t< ∞) ∞
X
冲激函数的性质总结
(1)抽样性
f (t )δ (t ) = f (0)δ (t )
(5)冲激偶 δ ′(−t ) = −δ ′(t )

+∞
−∞
f (t)δ (t)dt = f (0)


δ ′(t)dt = 0 −∞
−∞

3、 δ ′(−t ) = −δ ′(t ) , δ ′(t − t) = −δ ′(t − t ) 、 0 0
所以 ′(t )是奇函数 δ

δ ′(t)dt = 0 , −∞
−∞

X
四.总结: R(t),u(t), δ(t) 之间的关系
R(t) 1
O
u(t) 1 t 1
O
δ (t)

(1)
t0 u(t + t0 )
t
1
− t0 O
t
X
3.用单位阶跃信号描述其他信号
门函数: 门函数:也称窗函数
τ τ f (t ) = u t + − u t − 2 2

信号与系统(郑君里)ppt

信号与系统(郑君里)ppt

t
f(t)
t/2
f(t/2)
0
1
0
1
T
2
T
2
时间尺度压缩:t t 2 ,波形扩展
求新坐标
t
f(t/2)
0
1
2T
2
f(t)f(2t)
f t
2 1
O
Tt
宗量相同,函数值相同
t
f(t)
2t
f(2t)
0
1
0
1
T
2
T
2
求新坐标
t
f(2t)
0
1
T/2
2
t2t,时间尺度增加,波形压缩。
比较
f t
2 1
O
Tt
•三个波形相似,都是t 的一次 函数。 •但由于自变量t 的系数不同, 则达到同样函数值2的时间不同。 •时间变量乘以一个系数等于改 变观察时间的标度。
a 1 压缩,保持信号的时间缩短 f (t) f (at)0 a 1 扩展,保持信号的时间增长
4.一般情况
f t f at b f at b a 设a 0
f (t) K sin(t )
f
t
T
K

O

衰减正弦信号:
K et sint
f (t) 0
振幅:K 周期:T

1
f
频率:f
角频率: 2 π f t 初相:
t0 0
t0
欧拉(Euler)公式
sin t 1 ejt ejt 2j
cos t 1 ejt ejt 2
t
间为,t0时函数有断点,跳变点
宗量>0 函数值为1 宗量<0 函数值为0

《信号与系统》课件第1章 (3)

《信号与系统》课件第1章 (3)
41
4. 指数信号 指数信号的一般数学表达式为
f(t)=Aest
根据式中s的不同取值,可以分下列两种情况讨论: (1) s=σ时,此时为实指数信号,即
(1-23)
f(t)=Aeσt
(1-24)
当σ>0时,信号呈指数规律增长;当σ<0时,信号随指数规律
衰减;当σ=0时,指数信号变成恒定不变的直流信号,如图1-
16所示。
42
图1-16 实指数信号
43
(2) s=σ+jω,此时为复指数信号。利用欧拉公式,可以进 一步表示为
(1-25) 可见,复指数信号的实部和虚部都是振幅按指数规律变化的 正弦振荡,当σ>0(σ<0)时,其实部和虚部的振幅按指数规律增 长(衰减);当σ=0时,复指数信号变为虚指数信号
(1-26) 此时信号的实部和虚部都是等幅振荡的正弦波。复指数信号 虚部的波形如图1-17所示。
f(t)δ(t)=f(0)δ(t)
若f(t)在t=t0时连续,则有
f(t)δ(t-t0)=f(t0)δ(t-t0)
(1-16) (1-17)
36
对上面两式取积分,可得到下面两个重要的积分结果: (1-18) (1-19)
式(1-19)说明,δ(t)函数可以把信号f(t)在某时刻的值采样(筛选) 出来,这就是δ(t)的筛选性。
11
图1-4 非周期能量信号
12
图1-5 非周期功率信号
13
图1-6 非功率非能量信号
14
1.2.2 几种常用的基本信号 1. 单位斜变信号 斜变信号是指从某一时刻开始随时间成正比例增加的信
号。斜变信号也称斜坡信号。若斜变信号增长的变化率为1, 斜变的起始点发生在t=0时刻,就称其为单位斜变信号(如图 1-7所示),其数学表达式为

信号与系统§1-2 常用信号介绍ppt课件

信号与系统§1-2 常用信号介绍ppt课件



0
2
25
二、离散时间信号:
1、单位样值序列: (n)
函数式:(n)

1 0
n0 n0
波形图:
(n)
1
0
n
位移:
1 (n n0 ) 0
n n0 n n0
(n n0)
1
0 n0
n
26
• 抽样性:
设有序列x(n) ,则有
x(n)
1 2 0
12 3 4 5
0
t0
t
x(t)(t t0 ) x(t0 )(t t0 )
(x(t0 )) (x(0))


0
t0
t
x(t)(t)dt x(0) (t)dt x(0)




x(t)(t t0)dt x(t0 ) (t t0 )dt x(t0 )

t
Au(t t0 ) A
0
t0
t
函数式:x(t)

A t0
[R(t)

R(t

t0
)]

Au(t

t0
)

A t0
tu(t)

A t0
(t

t0
)u(t

t0
)

Au(t

t0
)
6
? 试用单位斜变信号表示以下三角波形:
x(t)
A
0
2 t
A R(t)
A
0

A R(t )
A
1

0R
不管电阻值的大小,始终为1。

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 90
() 360
2
5.6 全通系统和最小相位系统
用途:用来对系统进行相位校正
例:下图所示的网络,写出网络传输函数H(s)=V2(s)/V1(s),
判别它是否为全通网络。
1
v1(t)
R
H (s) V2 (s) sC R
V1(s) R 1 R 1
b,c
Ld LeLf -------- 所有三个都互不接触环路的增益乘积之和;
d ,e, f
K -------由源点到阱点之间的第K条前向通路的标号; gK ------ 由源点到阱点之间的第K条前向通路的增益;
K ----- 第K条前向通路特征行列式的余因子,表示将第K条
前向通路去掉以后,所剩流图的特征行列式。
system)。反之,如果系统函数有一个或多个零点在右半s
平面,则称该系统为非最小相位系统。
5
5.6 全通系统和最小相位系统
6
5.6 全通系统和最小相位系统
7
5.6 全通系统和最小相位系统
8
5.7 系统模拟及信号流图
5.7.1 系统的框图
三种基本单元的方框图及运算功能
x1 (t )
X1(s)

Y (s)
由两个及两个以上的 箭头指向的节点可兼 做加法器。
X (s) 1
x(t)
s 1
a1
输入节点(源点):
a2
s 1

a3
s 1
b2
1
Y (s)
y(t)
输出节点(阱点):
只有输出支路的节点。
只有输入支路的节点。
(2) 信号流图的性质
1.信号只能沿支路箭头方向传输,支路的输出是该支路输入与 支路增益的乘积。
C
C v2 (t)
sC
sC


s 1/ RC
R
s 1/ RC
j 1
H(
j)


j
RC 1
H( j) 1
j


RC
3
5.6 全通系统和最小相位系统
2 最小相位函数
4
5.6 全通系统和最小相位系统
零点仅位于左半s平面或 j 轴上的系统函数称为最小
相位函数。对应的系统称为最小相位系统(minimum-phase
(1) 信号流图的获得
系统的信号流图,就是用一些点和线段来表示系统。
X (s)
Y (s)
H(s)
X (s) H(s) Y (s)
Y(s) H(s)X (s)
例:将下图所示系统的方框图转化成信号流图。
X (s)
解:
s 1 s 1 s 1
a1 a2 a3 b1
b1

b2
y(t) x1(t) x2 (t) Y(s) X1(s) X2(s)
x2 (t) X 2 (s)
xቤተ መጻሕፍቲ ባይዱt)
X (s)
x(t)
a
y(t) ax(t)
Y (s) aX (s)

a
y(t) ax(t)
(a) 加法器
t
x(t)
1
y(t) x( )d
P
X (s)
3.具有输入和输出支路的混合节点,通过增加一个具有单位传 输增益的支路,可以将它变成输出节点。
x1
a x2 b
d 1
c x3'
x3''
4.给定系统,信号流图并不唯一。
dy(t) dt

a0
y(t)

b1
dx(t) dt

b0
x(t)
b1
b1
X (s) 1
s 1
b0
1 Y(s) X (s) 1
b0
s 1
a0
a0
1 Y(s)
例5-13:求下图所示的信号流图的系统函数。
x3
x1
x2 b
ac
e
d
x5
f
x6
x4
x2 ax1

x3 x4

bx2 cx2

ex5 dx3

x5

fx4
x6 x5
H x6 a(bd c) f x1 1 edf
a(bd c) f
1 edf
x1
x6
(3) 信号流图的梅森公式
梅森公式:
H 1

K
gK K
1 La LbLc Ld LeLf
a
b,c
d,e, f --------- 信号流图的特征行列式
La -------- 所有不同环路的增益之和;
a
LbLc -------- 所有两两互不接触环路的增益乘积和;
例5-14:求下图所示流图的系统函数。 H4
X
x1
H1 x2 H2 x3 H3
x4 H5
Y
G1
解: 求 La
G2
G3
a
x1 x2 x1 环路:L1 G1H1
x2 x3 x2 环路:L2 G2H2 x3 x4 x3 环路:L3 G3H3 x1 x4 x3 x2 x1 环路:L4 G1G2G3H4
La (G1H1 G2H 2 G3H3 G1G2G3H 4 )
a
H4
X
x1
H1 x2 H2 x3 H3
x4 H5
Y
G1 G2 G3
求 LbLc
b,c
只有一对两两互不接触的环路:x1 x2 x1 与 x3 x4 x3
5.6 全通系统和最小相位系统
1 全通系统
H(s)的极点位于左半s平面
H(s)的零点位于右半s平面
j
零、极点对于jΩ轴互为镜像。
H ( j) K N1N2 N3 M1M 2M3
e j[(1 2 3 )(1 2 3 )]
H( j) K
1
5.6 全通系统和最小相位系统
(c) 积分器(时域表示)积分
(b) 数乘器
1 y(0 )
s
1 s
Y (s) 1 X (s) 1 y(0 )

s
s
积分器(s域表示)积分
X (s)
H(s)
Y(s) 结论:
X1(t)
(1)信号只能沿箭头方向传输 (2)箭头只表示信号传输方向 (3)加法器有多个输入信号
5.7.2 信号流图
X (s)
如:
H(s)
Y (s)
Y(s) H(s)X (s)
2.当节点有几个输入时,节点将所有输入支路的信号相加,并 将它的和传送给与该节点相连的输出节点。
x1 H 14
x5
x2
H 24 H 34
x3
x4 H 45 H 46 x6
x4 H14 x1 H 24 x2 H34 x3 x5 H 45 x4 x6 H 46 x4
j 1 3 0

2
1 90 j

3 90

2 90

1 3 180
H ( j) K


2
1 2, 1 2, () 0 180
1 270
()
180
3 90


360
相关文档
最新文档