高考数学压轴题预测专题五立体几何

合集下载

高考的立体几何压轴题精选

高考的立体几何压轴题精选

ABCDE F1.甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一正四面体,碳原子位于该正四 面体的中心,四个氢原子分别位于该正四面体的四个顶点上.若将碳原子和氢原子均视为一 个点(体积忽略不计),且已知碳原子与每个氢原子间的距离都为a ,则以四个氢原子为顶点 的这个正四面体的体积为( ) A,3827a3C,313a D,389a 2.夹在两个平行平面之间的球,圆柱,圆锥在这两个平面上的射影都是圆,则它们的体积之 比为( )A,3:2:1 B,2:3:1 C,3:6:2 D,6:8:33.设二面角a αβ--的大小是060,P 是二面角内的一点,P 点到,αβ的距离分别为1cm, 2cm,则点P 到棱a 的距离是( )A,3B,3cm C,23cmD,34.如图,E,F 分别是正三棱锥A -BCD 的棱AB,BC的中点,且DE ⊥EF.若BC=a ,则此正三棱锥的体积是( )A,324aB,324C,312a35.棱长为的正八面体的外接球的体积是( ) A,6πB,27C,3D,36.若线段AB 的两端点到平面α的距离都等于2,则线段AB 所在的直线和平面α 的位置关系是 .7.若异面直线,a b 所原角为060,AB 是公垂线,E,F 分别是异面直线,a b 上到A,B 距离为 2和平共处的两点,当3EF =时,线段AB 的长为 .8.如图(1),在直四棱柱1111A BC D ABCD -中,当底面四边形ABCD 满足条件时,有1A C⊥1B 1D (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)CDF ABOCD EOAA B C D P Q9.如图(2),是一个正方体的展开图,在原正方体中,有下列命题: ①AB 与EF 所连直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成060; ④MN 与CD 所在直线互相垂直.其中正确命题的序号为 .(将所有正确的都写出)10.如图,在ABC ∆中,AB=AC=13,BC=10,DE//BC 分别交AB,AC 于D,E.将ADE ∆沿 DE 折起来使得A 到1A ,且1A DE B --为060的二面角,求1A 到直线BC 的最小距离.11.如图,已知矩形ABCD 中,AB=1,BC=a (0)a >,PA ⊥平面ABCD,且PA=1.(1)问BC 边上是否存在点Q 使得PQ ⊥QD?并说明理由;(2)若边上有且只有一个点Q,使得PQ ⊥QD,求这时二面角Q PD A --的正切.12. 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.A BCDA BC D图(1)A BENM 图(2)13.在正四棱柱1111ABCD A BC D -中,122AB BB==, P 为B 1C 1的中点.(1)求直线AC 与平面ABP 所成的角;(2)求异面直线AC 与B P 所成的角; (3)求点B 到平面APC 的距离.14.如图,正四棱锥P-ABCD 中,侧棱PA 与底面ABCD 所成的角的正切值为26。

高考数学高考数学压轴题立体几何多选题分类精编及答案

高考数学高考数学压轴题立体几何多选题分类精编及答案

高考数学高考数学压轴题立体几何多选题分类精编及答案一、立体几何多选题1. 如图,在直三棱柱ABC-A}B}C}中,AC = BC = AA i=2, ZACB = 90°, D, E, F分别为AC, AB的中点.则下列结论正确的是()B. B、CJ /平而DEFD.点d到平面DFF的距离为比C. EF与4G所成的角为90。

2【答案】BCD【分析】利用异而直线的位這关系,线而平行的判泄方法,利用空间直角坐标系异而直线所成角和点到面的距离,对各个选项逐一判断.【详解】对选项A,由图知4C|U平而ACC.A. , EFD平面ACQA^E,且E AC r由异面直线的建义可知AC】与EF异面,故A错误: 对于选项B,在直三棱柱ABC — AQG中,BG HBC.•.•D,F分别是AC, AB的中点,• •FDIIBC, :・B\C\ IIFD.又••• BQ] (Z 平面DEF, DF u 平而DEF, ・・BG //平而DEF.故B正确:对于选项C,由题意,建立如图所示的空间直角坐标系,则C(0,0, 0), A(2,0t 0), 5(0,2, 0),人(2,0, 2),坊(0,2, 2), C 】(0,0, 2),D(l,o, 0), E(2,0, 1), F(1,1, 0)..\EF = (-1,1, T), AC ;=(—2,0, 2).•.•EFAC ; = 2+0—2 = 0, :.EF 丄 AC ;, 丄 A©.•.•EF 与AC ;所成的角为90。

,故c 正确:对于选项D,设向量匝= (x,y, Z)是平而DEF 的一个法向疑.・••万E = (ho ・ 1) , DF = (0,l, 0),取 X = 1 ♦则 z=—1 ‘ ・••帀=(h 0, —1),设点耳到平而DEF 的距离为d ・二点d 到平而DEF 的距离为空,故D 正确.2故选:BCD【点睛】本题主要考查异而直线的位置关系,线而平行的判定,异而直线所成角以及点到而的距 离,还考查思维能力及综合分析能力,属难题.2. 已知球O 为正方体ABCD-AgD 、的内切球,平而A {C }B 截球O 的而积为24兀, 下列命题中正确的有()A. 异而直线AC 与所成的角为60。

第5讲 立体几何选择压轴题(解析版)

第5讲  立体几何选择压轴题(解析版)

第5讲 立体几何选择压轴题一、单选题1.(浙江超级全能生3月联考)如图,已知在中,为线段上一点,沿将翻转至,若点在平面内的射影恰好落在线段上,则二面角的正切的最大值为( )AB .1C D【答案】C【分析】过作交BC 于E ,连接EH ,结合已知条件有二面角的平面角为,而,设且,则,即可求,,应用函数与方程思想,构造且在上有解求参数m 的范围,即可得二面角正切的最大值.【解析】过作交BC 于E ,连接EH ,∵在平面内的射影恰好落在线段上,即面,∴且,,即面,面,则,ABC 90,1,2,BAC AB BC D ∠=︒==BC AD ABD △AB D 'B 'ADC H AC B DC A '--B 'B E BC '⊥B DC A '--B EH '∠tan B H B EH m EH ''∠==AH x =01x <<HC x =B H '2HC EH =()g x 01x <<B DC A '--B 'B E BC '⊥B 'ADC H AC B H '⊥ABC B H BC '⊥B E BC '⊥B E B H B '''=BC ⊥B HE 'EH ⊂B HE 'BC EH ⊥∴二面角的平面角为,在中,,若令,则,又, ∴,且, 故,则,即方程在上有解时,m 的最大值即为所求,而开口向上且,即,对称轴. ∴当时,,显然成立; 当时,当对称轴在上,恒成立;当对称轴在上,,即; ∴综上,有,即,故二面角. 故选C . 【点睛】关键点点睛:利用三垂线定理找到二面角的平面角,进而根据线段关系、勾股定理求,,由,结合函数与方程的思想求参数m 范围,进而确定最大值. 2.(浙江宁波模拟)设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则A .B .C .D .【答案】B【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各B DC A '--B EH '∠Rt B HE 'tan B H B EH EH ''∠=AH x =HC x =1AB AB '==B H '=22HC x EH ==01x <<tan B EH m '∠==2222()(4)340g x m x x m =+-+-=01x <<()g x 21680m ∆=-≥202m <≤21x m=+22m =(0,1)3x =202m <<1(0,)22(1)(40f m =->1[,232(0)340f m =->243m >2423m <≤[(33m ∈-⋃B DC A '--B H 'EH tan B H B EH m EH''∠==V ABC -P VA PB AC αPB ABC βP AC B --γ,βγαγ<<,βαβγ<<,βαγα<<,αβγβ<<种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【解析】方法1:如图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,,即,综上所述,答案为B .方法2:由最小角定理,记的平面角为(显然)由最大角定理,故选B .方法3:(特殊位置)取为正四面体,为中点,易得,故选B . 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.3.(湖南长沙市·长沙一中高三月考)在三棱锥中,,二面角的余弦值为,当三棱锥的体积的最大值为时,其外接球的表面积为 A .B .C .D .【答案】B G AC V ABC O P D AO D DE AE //PE VG P //PF AC VG F D //DH AC BG H ,,BPF PBD PED α=∠β=∠γ=∠cos cos PF EG DH BD PB PB PB PBα===<=βαβ>tan tan PD PD ED BDγ=>=βy >ββα<V AB C --γ'γ'=γβ<γ'=γV ABC -PVA cos sin sin α=⇒α=β=γ=A BCD -60BAC BDC ∠=∠=︒A BC D --13-A BCD-45π6π7π8π【分析】根据两个射影,结合球的图形,可知二面角的平面角为;根据题意可知当,时,三棱锥的体积最大.根据体积的最大值可求得BC 的长,结合图形即可求得球的半径,进而求得表面积.【解析】如图,设球心在平面内的射影为,在平面内的射影为,则二面角的平面角为,点在截面圆上运动,点在截面圆上运动,由图知,当,时,三棱锥的体积最大,此时与是等边三角形, 设,则,,, ,解得, ,,设,则,解得∴,球的半径,所求外接球的表面积为,故选B .【点睛】本题考查了三棱锥外接球的综合应用,根据空间几何关系求得球的半径,进而求得表面积,对空间想象能力要求较高,属于难题.4.(天一大联考(理))在棱长为的正四面体中,点为所在平面内一动点,且满足,则的最大值为( ) A .B .C .D .【答案】B A BC D --AMD ∠AB AC =BD CD =A BCD -O ABC 1O BCD 2O A BC D--AMD ∠A 1O D 2OAB AC =BD CD =A BCD -ABC ∆BDC ∆BC a =AM DM ==2BCD S ∆=sin()h AM AMD π=-∠=313124A BCD DBC V S h a -∆=⋅==a =32DM =21DO =212O M =2AMD θ∠=21cos 22cos 13θθ=-=-tan θ=22tan 2OO O M θ==O R ==246S R ππ==2ABCD P ABC 433PA PB +=PD 3332【分析】由题意可知,点在所在平面内的轨迹为椭圆,且该椭圆的焦点为、,长轴长为,然后以线段的中点为坐标原点,直线所在直线为轴,以所在直线为轴建立空间直角坐标系,求出椭圆的方程,利用二次函数的基本性质可求得的最大值.【解析】如图所示,在平面内,,所以点在平面内的轨迹为椭圆,取的中点为点,连接,以直线为轴,直线为建立如下图所示的空间直角坐标系,则椭圆的半焦距,长半轴, 所以,椭圆方程为. 点在底面的投影设为点,则点为的中心,, 故点正好为椭圆短轴的一个端点,,则, 因为,故只需计算的最大值.设,则,则,当时,取最大值,即,因此可得,P ABC A B 3AB O AB x CO yPDABC 432PA PB +=>P ABC AB O CO AB x OC y O xyz -1c=a =3b ==()2233104x y z +==D E EABC11333OE OC ===E 23CE OC ==DE ==222PD DE EP =+EP(),,0P xy 0,3E ⎛⎫ ⎪ ⎪⎝⎭22222241543333EP x y y y y y y ⎛=+-=-++=--+ ⎝⎭,933y ⎡=-∈-⎢⎣⎦2EP 22max 516393939EP ⎛⎛=-⨯--⨯-+= ⎝⎭⎝⎭2241640999PD ≤+=故的最大值为.故选B . 【点睛】关键点点睛:本题考查线段长度最值的求解,根据椭圆的定义得知点的轨迹是椭圆,并结合二次函数的基本性质求解的最大值是解题的关键,在求解时也要注意椭圆有界性的应用.5.(四川成都市·高三二模(理))已知四面体,,分别为棱,的中点,为棱上异于,的动点.有下列结论:①线段的长度为1;②若点为线段上的动点,则无论点与如何运动,直线与直线都是异面直线;③的余弦值的取值范围为; ④.其中正确结论的个数为( )A .1B .2C .3 D.4 【答案】B【分析】将正四面体放在正方体中观察,对于①,可根据分别为正方体前后两个面的中心可得出结论; 对于②,取为的中点,取为的中点,此时与相交;对于③,计算可得由逼近思想可作出判断;对于④,空间问题平面化的技巧,将三角形与放在同一平面上,可计算出. 【解析】PD 3P EP ABCD M N AD BC F AB A B MN G MN F G FG CD MFN ∠⎡⎢⎣⎭FMN 1,M N F AB G MN FG CD cos MBN ∠=>ABC ABD 2NFFM在棱长为四面体,显然,分别为正方体前后两个面的中心,故线段的长度为正方体棱长,故 ①对; 对于②:如图,取为的中点,取为的中点,取为的中点,则由正方体的性质易知,该三点在一条直线上,故此时与相交于,故②错;对于③,,,又有,1ABCD ,MN MN 1F ABG MN I CD FG CD I 22BC BN ==BM ===1MN =故,故点无限接近点时,会无限接近,故的余弦值的取值范围不为,③错误; 对于④,如图将等边三角形与铺平,放在同一平面上,故有,当且仅当为中点时取最小值,故在正方体中,故,故④对,故选B .【点睛】把空间中的最短路线问题利用展开图转化为平面上两点间距离最短的问题,从而使问题得到解决,这是求空间中最短路线的一种常用方法6.(内蒙古呼和浩特市·高三一模(理))四面体的四个顶点都在球O 上且,O 的表面积为( )A .B .C .D .【答案】B【分析】作出图形,根据题中的数据证明平面平面,并找出球心的位置,列出等式求出外接球的半径,结合球的表面积公式可得出结果.【解析】131cos MBN +-∠==>F B cos MFN ∠3MFN ∠⎡⎢⎣⎭ABC ABD ''''2N FFM M N F AB 2NFFM FMN 1ABCD 4AB AC BC BD CD =====AD =70π380π330π40πABC ⊥BCD取的中点,连接,设和的外心分别为,分别过点作平面和平面的垂线交于点,则点为外接球球心.由题意可知,和都是边长为4的等边三角形.为的中点,,且,平面,平面,平面平面, 易得,, 平面,平面∥AM ,同理可得∥DM ,则四边形为菱形, ,菱形为正方形,平面,平面,所以外接圆半径为, 因此,四面体的外接球的表面积为,故选B 【点睛】这个题目考查了外接球表面积的计算,找出球心位置,并计算外接球的半径是解答的关键,考查推理能力与计算能力.7.(山东日照市·高三一模)已知直三棱柱的侧棱长为,,.过、的中点、作平面与平面垂直,则所得截面周长为( )A .BC .D .【答案】C【分析】确定平面与各棱的交点位置,计算出截面各边边长,由此可得出所得截面周长.【解析】BC M AM DM 、ABC BCD△F E 、FE 、ABC BCD O O ABC BCD △M BC AM BC ∴⊥AM DM ==222,M A AD A DM D =+=∴AM DM ∴⊥,D C M B M ⋂=AM ∴⊥BCD AM ⊂ABC ∴ABC ⊥BCD 13ME MF AM ===23BE DM ==AM ⊥BCDO E ⊥BCD OE ∴OF OEMF AM DM ⊥OEMF OE ⊥BCD BE ⊂BCD OE BE ∴⊥OB ==ABCD 2804OB 3ππ⨯=111ABC A B C -2AB BC ⊥2AB BC ==AB 1BB E F α11AAC C +α如下图所示,取的中点,连接,取的,连接,取的中点,连接、,,为的中点,则,平面,平面,,,平面,、分别为、的中点,则且,平面, 平面,所以,平面平面,所以,平面即为平面,设平面交于点,在直棱柱中,且,所以,四边形为平行四边形,且, 、分别为、的中点,且, 所以,四边形为平行四边形,且, 且,且,所以,四边形为平行四边形, ,平面,平面,平面, 设平面平面,平面,所以,,,,所以,四边形为平行四边形,可得, 所以,为的中点, AC J BJ AJ D DE 11A C K KJ 1BK AB BC =J AC BJ AC ⊥1AA ⊥ABC BJ ⊂ABC 1BJ AA ∴⊥1AC AA A ⋂=BJ ∴⊥11AAC C D E AJ AB //DE BJ 12DE BJ =DE ∴⊥11AAC C DE ⊂DEF DEF ⊥11AAC C αDEF α11B C I 111ABC A B C -11//AA CC 11AA CC =11AAC C 11//AC AC ∴11AC A C =J K AC 11A C 1//AJ A K ∴1AJ A K =1AA KJ 1//KJ AA ∴1KJ AA =11//BB AA 11BB AA =1//KJ BB ∴1KJ BB =1BB KJ //DE BJ DE ⊄1BB KJ BJ ⊂1BB KJ //DE ∴1BB KJ α1BB KJ FG =DE ⊂α//DE FG //FG BJ ∴//BF GJ BFGJ 11122GJ BF BB KJ ===G KJ延长交于点,,所以,,,又,所以,,,为的中点, 因为平面平面,平面平面,平面平面,,,,,,为的中点, ,,则, 为的中点,,同理, 因为直棱柱的棱长为,为的中点,, 由勾股定理可得,且,平面,平面,平面,,、分别为、的中点,则,, 由勾股定理可得,同理因此,截面的周长为. 故选C .【点睛】思路点睛:本题考查直棱柱截面多边形周长的计算,在画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定,作图时充分利用几何体本身提供的面面平行等条件,可以更快地确定交线的位置.8.(山东滨州市·高三一模)如图,斜线段与平面所成的角为,为斜足.平面上的动点满足,则点的轨迹为( ) DG 11A C H //DJ KH DJG HKG ∠=∠JDG KHG ∠=∠JG KG =DJG HKG ≅△△11122HK DJ AJ KC ∴===H ∴1KC //ABC 111A B C αABC DE =α111A B C IH =//DE IH ∴//DE BJ 1//BJ B K //DE IH 1//IH B K ∴I ∴11B C AB BC ⊥2AB BC ==AC ==J AC 12BJ AC ∴==12DE BJ ==IH =111ABC A B C -2F 1BB 1112BF BB ∴==EF ==IF =1//KJ BB 12KJ BB ==1BB ⊥ABC KJ ∴⊥ABC AC ⊂ABC KJ AC ∴⊥G D KJ AJ 112GJ KJ ==122DJ AJ ==DG ==GH =222DE IH EF IF DH ++++=++=AB απ4B αP π6PAB ∠=PA .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B 【分析】首先建立空间直角坐标系,设,则点的轨迹是椭圆. 【解析】建立如图所示的空间直角坐标系,设所以点的轨迹是椭圆. 故选B .【点晴】方法点睛:本题考查空间向量、轨迹及其方程,涉及方程思想、数形结合思想和转化化归思想,考查空间想象能力逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.9.(山东淄博市·高三一模)四棱锥中,侧面为等边三角形,底面为矩形,,(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22cos ,62(2)112AB AP x y ⇒<>=⇒+-=P (0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22cos ,62(2)11AB AP x y ⇒<>=⇒+-=P S ABCD -SBC ABCD 2BC =,点是棱的中点,顶点在底面的射影为,则下列结论正确的是( )A .棱上存在点使得面B .当落在上时,的取值范围是C .当落在上时,四棱锥的体积最大值是2D .存在的值使得点到面【答案】A 【分析】对于A:取BC 的中点E ,连结DE ,取SC 中点P ,连结PE 、PD .利用面PDE ∥面BFS ,可以证明面; 对于B :利用S 与H 重合,图形不能构成四棱锥,判断B 错误;对于C :求出体积的最大值为1.故C 错误;对于D :先判断当的最大时,点B 到面的距离d 最大;然后求出,判断D 错误. 【解析】对于A :取BC 的中点E ,连结DE ,取SC 中点P ,连结PE 、PD . ∵PE 为△BCS 的中位线,∴ PE ∥BS又面BFS ,面BFS ,∴PE ∥面BFS ;在矩形ABCD 中,E 、F 分别为BC 、AD 的中点,∴DE ∥BF , 又面BFS ,面BFS ,∴DE 面BFS ; 又,∴面PDE ∥面BFS ,∴面.故A 正确;对于B :∵为等边三角形,,∴AB a F AD S ABCD H SC P //PD BSF H AD a (H AD S ABCD -a B SFC //PD BSF a =S ABCD V -S ABCD V -SFC 3d <BS ⊆PE ⊄BF ⊆DE ⊄DEPE E =//PD BSF SBC 2BC =SE =当S 与H 重合,图形不能构成四棱锥,与已知条件相悖,故B 错误;对于C :在Rt △SHE 中,当且仅当时,的最大值为1.故C 错误; 对于D :由选项C 的推导可知:当的最大时,点B 到面的距离d 最大.此时 ∴ ∴.故D 错误. 故选A 【点睛】(1)证明线面平行,用线面平行的判定定理,在面内找一条直线与已知直线平行; (2)等体积法是求三棱锥高的常用方法.10.(湖北武汉市·高三月考)已知三棱锥的各个顶点都在球的表面上,底面,,,,是线段上一点,且.过点作球的截面,若所得截面圆面积的最大值与最小值之差为,则球的表面积为( ) A . B .C .D .【答案】B 【分析】将三棱锥补成长方体,设,计算出球的半径为,计算出截面圆半径的最大值和最小值,根据已知条件可求得的值,可求得球的半径,进而可求得球的表面积. 【解析】平面,,将三棱锥补成长方体,如下图所示:a =SH =1213S ABCD V a-=⨯=≤232a =S ABCD V -S ABCD V -SFC 1122S BFC S ABCD V V --==SFCF ===1122224SFC S SF CF =⨯=⨯=△1325V d S ===<P ABC -O PA ⊥ABC AB AC ⊥6AB =8AC =D AB 2AD DB =D O 25πO 128π132π144π156πP ABC -PQMN ABEC -2PA x =O R =x O O PA ⊥ABC AB AC ⊥P ABC -PQMN ABEC -设,连接、、,可知点为的中点,因为四边形为矩形,,则为的中点,所以,且,设,且,,所以,球的半径为, 在中,,,,, 在中,,, 由余弦定理可得平面,平面,平面,则,,, 设过点的球的截面圆的半径为,设球心到截面圆的距离为,设与截面圆所在平面所成的角为,则.当时,即截面圆过球心时,取最小值,此时取最大值,即;当时,即与截面圆所在平面垂直时,取最大值,即,此时,取最小值,即.由题意可得,,解得所以,,AE BC F=OF DF OD O PE ABEC AE BC F =F AE //OF PA 12OF PA =2PA x =10AE ==PE ∴==O 12R PE ==Rt ABE △2ABE π∠=6AB =10AE =3cos 5AB BAE AE ∠==ADF 243AD AB ==5AF =DF ==PA ⊥ABCD OF ∴⊥ABCD DF ⊂ABCD OF DF ⊥12OF PA x ==OD ∴==D O r O d OD θsin d OD θ==0θ=O d r max r R ==2πθ=OD d max d OD ==r min r ==()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦0xx =R =因此,球的表面积为. 故选B . 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.11.(安徽蚌埠市·高三二模(理))已知直四棱柱,其底面是平行四边形,外接球体积为,若,则其外接球被平面截得图形面积的最小值为( ) A . B .C .D .【答案】A 【分析】由条件可得为矩形,进而可得平面,所以,则四边形为正方形,所以直四棱柱为正四棱柱,设,由余弦定理可得的值,求出的值,由正弦定理可得的外接圆的半径为,由均值不等式可得的最小值,从而得出答案. 【解析】由直四棱柱内接于球,则四点在球面上, 所以四边形为球的一截面圆的内接四边形,所以对角互补. 又四边形是平行四边形,所以为矩形.在直四棱柱中,平面,所以 又,,所以平面,所以所以四边形为正方形,所以直四棱柱为正四棱柱.O 24132S R ππ==1111ABCD A B C D -ABCD 36π1AC BD ⊥11AB D 8π24310π8110π6πABCD BD ⊥1ACC BD AC ⊥ABCD 1111ABCD A B C D -1,AB AD a CC b ===11cos AD B ∠11sin AD B ∠11ABD 2r =r1111ABCD A B C D -,,,A B C D ABCD ABCD ABCD 1111ABCD A B C D -1CC ⊥ABCD 1CC BD ⊥1AC BD ⊥111AC CC C =BD ⊥1ACC BD AC ⊥ABCD 1111ABCD A B C D -由外接球体积为,则球的半径为,由为该外接球的直径,则设,则,则在中,由余弦定理可得所以设的外接圆的半径为,由正弦定理可得所以,即时取得等号,即的最小值为其外接球被平面截得图形面积的最小值为:故选A【点睛】关键点睛:本题考查几何体的外接球的截面面积问题,解答本题的关键是先由线面垂直关系得出直四棱柱为正四棱柱,然后由余弦定理和正弦定理得出的外接圆的半径,由均值不等式求出最小值,属于难题.34363Rππ=3R=1AC16AC=1,ABAD a CC b===2221236AC a b=+=22362b a=-11AB D11AB AD====11B D=2222111111111cos2AD B D ABAD BAD B D+-∠===⋅11sin AD B∠===11AB D r2111362sinaABrAD B-===∠22r⎫===≥==a=r11AB D28S rππ==1111ABCD A B C D-11AB D2r=12.(浙江省宁海中学高三月考)如图,在中,,,点E 为线段AB 上一点,将绕DE 翻折.若在翻折过程中存在某个位置,使得,记为的最小值,则( )A .B .C .D .【答案】C 【分析】易知,A 在以AD 为母线的圆锥上的一部分(弧AF ),与所成的最大角为,只需. 【解析】如图,与所成的最大角为,只需即可. 即, 即,即.故选C . 【点睛】本题考查几何中的翻折问题,考查学生的空间想象能力、转化与化归能力,是一道难题.ABC ∆36A ∠=AD DB BC ==ADE ∆AE CD ⊥θADE∠(15,20]θ∈(20,25]θ∈(25,30]θ∈(30,35]θ∈AE CD FGA ∠90FGA ∠≥AE CD FGA ∠90FGA ∠≥90(54)(90)AFG FAG ADE ADE ≥∠+∠=-∠+-∠27ADE ∠≥27(25,30]θ=∈13.(天津河西区·高三一模)将长、宽分别为和的长方形沿对角线折成直二面角,得到四面体,则四面体的外接球的表面积为( ) A . B .C .D .【答案】A 【分析】取的中点,说明为四面体的外接球的球心,求出球的半径,利用球体的表面积公式可求得结果. 【解析】取的中点,连接、,如下图所示:由题意,因为,为的中点,所以,, 所以,为四面体的外接球的球心,且球的半径为,因此,四面体的外接球的表面积为. 故选A . 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.43ABCD AC A BCD -A BCD -25π50π5π10πAC O O A BCD -O AC OBOD 5AC ==90ABC ADC ∠=∠=O AC 1522OB OD AC OA OC =====O A BCD -O 52R =A BCD -2425R ππ=14.(江西八校4月联考(理))已知三棱锥的外接球的表面积为,,,,,则三棱锥的体积为( )A .8 BC .D .16【答案】A 【分析】求出球的半径得是球直径,中点是球心,取中点,则平面,求得后可得到底面的距离,从而可求得棱锥的高.【解析】设球半径为,则,,而,所以是球的直径,球心是中点,,所以中点是直角外心,所以平面,又平面,所以,,,, 是中点,所以. 故选A .【点睛】关键点点睛:本题考查求棱锥体积,关键是求得棱锥的高,由于已知外接球的表面积,求得 半径后确定就是球的直径,从而利用球的截面圆性质,易得平面的垂线,再由体积公式计算.15.(山西临汾市·高三一模(理))在棱长为2的正方体中,平面,则以平面P ABC-64π2AB=AC =AB AC ⊥8PA =P ABC -3PA PA O BC E OE ⊥ABC OE P R 2464R ππ=4R =8PA =PA O PA AB AC ⊥BC E ABCOE ⊥ABC AE ⊂ABC OE AE ⊥4BC ==122AE BC ==OE ===O AP 11122228332P ABC O ABC ABC V V S OE --==⨯⋅=⨯⨯⨯⨯=△PA ABC 1111ABCD A B C D -1B D α⊥截正方体所得的截面面积最大时的截面为底面,以为顶点的锥体的外接球的表面积为( )A .B .C .D .【答案】B【分析】由正方体的对称性,可知当截面为正六边形时,截面面积最大,再分当球心在棱锥内部时和当球心在棱锥外部时,建立方程求得外接球的半径可得选项. 【解析】如图,由正方体的对称性,可知当截面为正六边形, 设交截面于,则为的中点,所以设正六棱锥外接球的球心为,外接球半径为,当球心在棱锥内部时,有,解得,外接球面积为; 若球心在棱锥外部时,有,解得.∴以为顶点的锥体的外接球的表面积为.故选B . 【点睛】方法点睛:求解几何体外接球半径的思路是依据球的截面的性质:利用球的半径、截面圆的半径及球心到截面的距离三者的关系求解,其中确定球心的位置是关键.16.(浙江省宁海中学高三月考)如图,矩形中,,点在,上,满足,,将沿向上翻折至,使得在平面上的射影落在的重心处,设二面角的大小为,直线,与平面所成角分别为,,则( )α1B 12π253π203π6πEFGHKI EFGHKI 1B D EFGHKI M M 1B D 1112B M B D ==O R )222R R =+R =22543ππ⨯=(222R R =+-R =<1B 253πR r d 222R r d =+ABCD 236AB AD ==(),1,2i i E F i =CD AD 112E F =1221//E F E F 11DE F ∆11E F 11D E F ∆'D 'ABCD 22DE F ∆G D AB C '--αD A 'D C 'ABCD βγA .B .C .D .【答案】A 【分析】作的中垂线,根据几何关系得知点落在左边,故可得,则问题可解. 【解析】作的中垂线,中点为,取中点,故在上, 作交于,连接,如图所示:因为,,,可知点在左边, 则,由图可知,故 易知 ,由于 所以,则故选A 【点睛】关键点点睛:本题的关键在于根据几何图形关系判断.17.(河南高三一模(理))如图,在棱长为1正方体中,为棱的中点,动点αβγ>>γαβ>>αγβ>>βαγ>>AC ML G ML GN GA GC <<AC ML AC O 22E F H G DH GN AB ⊥AB N ,GAGC 112E F =1221//E F E F 3,2AB AD ==G ML GA GC <GA GN >GN GA GC <<tan ,tan ,tan D G D G D GGN GA GCαβγ'''===GN GA GC <<tan tan tan αβγ>>αβγ>>GN GA GC <<1111ABCD A B C D -M AB P在侧面及其边界上运动,总有,则动点的轨迹的长度为( )A .BC .D【答案】A 【分析】分别取、的中点、,连,利用线面垂直的判定定理和性质可证动点的轨迹是线段,求出的长度即可得解. 【解析】如图:分别取、的中点、,连,,,因为为的中点,为的中点,为正方形,所以, 又平面,所以,而,所以平面,所以,同理可得,又,所以平面, 因为平面,所以,因为动点在侧面及其边界上运动,所以动点的轨迹是线段,而,所以动点的11BCC B 1AP D M ⊥P 2π16BC 1BB E F EF P EF EF BC 1BB E F ,,AE AF EF 1,A M DM 1A F M AB E BC ABCD DM AE ⊥1D D ⊥ABCD 1D D AE ⊥1DMD D D =AE ⊥1D DM 1D M AE ⊥1D M AF ⊥AE AF A ⋂=1D M ⊥AEF AP ⊂AEF 1AP D M ⊥P 11BCC B P EF 2EF =P轨迹的长度为.故选A . 【点睛】关键点点睛:作出并证明动点的轨迹是本题解题关键,分别取、的中点、,连,则线段即为动点的轨迹,利用线面垂直的判定定理和性质即可得证.18.(江苏徐州市·高三二模)“帷幄”是古代打仗必备的帐篷,又称“幄帐”.如图是一种幄帐示意图,帐顶采用“五脊四坡式”,四条斜脊的长度相等,一条正脊平行于底面.若各斜坡面与底面所成二面角的正切值均为,底面矩形的长与宽之比为,则正脊与斜脊长度的比值为( )A .B .C .D .1【答案】B 【分析】取幄帐顶部,如图几何体,作平面,垂足为,则到边的距离相等,作于,于,得是二面角的平面角,是二面角的平面角,因此有,设,用表示出,即可得比值.【解析】取幄帐顶部,如图几何体,作平面,垂足为,则到边的距离相等,由平面,平面,得,同理. 作于,于, 因为,平面,所以平面,而平面,所以,所以是二面角的平面角,同理是二面角的平面角,,由已知,2P BC 1BB E F EF EF P 125:33589910ABCD EF -FO ⊥ABCD O O ,AB CD FM AB ⊥M FN BC ⊥N FNO ∠F BC O --FMO ∠F AB O --1tan tan 2FNO FMO ∠=∠=5,3AB a BC a ==a ,EF FB ABCD EF -FO ⊥ABCD O O ,AB CD FO ⊥ABCD BC ⊂ABCD FO BC ⊥FO OB ⊥FM AB ⊥M FN BC ⊥N FOFN F =,FO FN ⊂FON BC ⊥FON ON ⊂FON BC ON ⊥FNO ∠F BC O --FMO ∠F AB O --OM AB ⊥1tan tan 2FNO FMO ∠=∠=由,设,则,所以, 由得,,则, 由上知是正方形,,, 所以.故选B .【点睛】关键点点睛:本题考查由二面角计算线段长,考查学生的空间想象能力.解题是作出各斜坡面与底面所成二面角的平面角,利用它们的正切值均为,并设出底面矩形边长后,用底面矩形边长表示出正脊与斜脊的长度,从而得比值.19.(浙江名校协作体联考)在矩形中,,,E 、F 分别为边、上的点,且,现将沿直线折成,使得点在平面上的射影在四边形内(不含边界),设二面角的大小为,直线与平面所成的角为,直线与直线所成角为,则( )A .B .C .D .【答案】D:5:3AB BC =5,3AB a BC a ==32MO a =313tan 224FO MO FMO a a =⋅∠=⨯=1tan 2FO FNO ON ∠==32ON a =35222EF a a a =-⨯=OMBN 2OB a ==94FB a ===28994EF a FB a ==12ABCD AB =3AD =AD BC 2AE BF ==ABE △BE 1A BE 1A BCDE CDEF 1A BE C --θ1A B BCDE α1A E BCββαθ<<βθα<<αβθ<<αθβ<<【分析】根据题意作出相应的二面角,线面角,线线角,结合点在平面上的射影求解. 【解析】过A 作的垂线,分别交,,于M ,G ,N ,如图,显然.因为,所以直线与所成角即为.当在平面上的射影为G 时,平面,此时.于是当在平面上的射影在线段上时,,所以. 由于,,进而得,.因为是在平面上的射影,所以由线面角最小性知,即.再由二面角的最大性知.故选D .【点睛】关键点点睛:根据二面角平面角、线面角、异面直线所成的的角的定义,分别在图形中作出或找到是解题的关键,再根据位置分析角的变化范围即可比较大小.20.(河南高考适应性考试(理))棱长为的正方体密闭容器内有一个半径为的小球,小球可在正方体容器内任意运动,则其不能到达的空间的体积为( ) A . B . C . D . 【答案】A【分析】由题可得小球在八个角不能到达的空间相当于边长为2的正方体中间挖掉一个半径为1的球的剩余部分,小球在12条边活动不到的空间相当于高为2,底面积为4的正四棱柱中间挖掉底面积为,高为2的圆柱剩下的部分,且有3个,由此可计算出体积.【解析】由题可得小球在八个角不能到达的空间相当于边长为2的正方体中间挖掉一个半径为1的球的剩余部分,其体积为,小球在12条边活动不到的空间相当于高为2,底面积为4的正四棱柱中间挖掉底面积为,高为2的圆柱剩下的部分,且有3个,则其体积为,1A BCDE BE EB EFDC A MN θ'∠=//BC AD A E 'AD βA 'BCDE AE ⊥A EF '2πβ=A 'BCDE GN 2A ED π'∠<A ED β'=∠EA EA '=MA MA '=2EAA β'∠=2MAA θ'∠=AM AA 'ABCD 22EAA MAA βθ''∠=>∠=βθ>θα>,,βθα4122323π-4812π-4283π-13203π-π334421833ππ-⨯=-π()4223246ππ⨯-⨯=-则小球不能到达的空间的体积为.故选A . 【点睛】本题考查几何体体积的计算,解题的关键是得出小球在运动中不能到达的空间的结构特点. 21.(辽宁高三一模(理))球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正的项点都在半径为的球面上,球心到,则、两点间的球面距离为( ) A . B .C .D .【答案】C【分析】设球心为点,计算出,利用扇形弧长公式可求得结果.【解析】设球心为点,平面截球所得截面圆的半径为, 由正弦定理可得,,又,所以,为等边三角形,则,因此,、两点间的球面距离为.故选C . 【点睛】思路点睛:求球面距离,关键就是要求出球面上两点与球心所形成的角,结合扇形的弧长公式求解,同时在计算球的截面圆半径时,利用公式(其中为截面圆的半径,为球的半径,为球心到截面的距离)来计算.22.(湖北武汉市·高三月考)某圆锥母线长为2面面积的最大值为( )A .2B CD .1【答案】A【分析】如图截面为,P 为MN 的中点,设,,进而可得面积最大值. 【解析】()4228+2463233πππ⎛⎫--=- ⎪⎝⎭ABC 2ABC A B π2π23π34πO AOB ∠O ABC O r ==3sin AB ACB =∠233AB π∴==2OA OB ==AOB 3AOB π∠=A B 2233ππ⨯=22d R r -=r R d SMN (0=<≤OP x x =SMNS。

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

2023年高考数学总复习《立体几何》附答案解析

2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >

设所成锐二面角为θ,所以 sinθ

所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD

在 Rt△FCD 中,tan∠FDC 맨

故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,

2023届高考数学专项练习立体几何解答题最全归纳总结含答案

2023届高考数学专项练习立体几何解答题最全归纳总结含答案

2023届高考数学专项练习立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=22,M是PB的中点,四边形OBCH为正方形.(1)设平面POH∩平面PBC=l,证明:l∥BC;(2)设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成角最大时,求MN的长.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB为圆锥底面⊙O的直径,C在线段AB上,且BC=3CA,点D是以BC为直径的圆上一动点;(1)当CD=CO时,证明:平面PAD⊥平面POD(2)当三棱锥P-BCD的体积最大时,求二面角B-PD-A的余弦值.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ..例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.例11.如图,O1,O分别是圆台上、下底的圆心,AB为圆O的直径,以OB为直径在底面内作圆E,C为圆O的直径AB所对弧的中点,连接BC交圆E于点D,AA1,BB1,CC1为圆台的母线,AB=2A1B1=8.(1)证明;C1D⎳平面OBB1O1;(2)若二面角C1-BC-O为π3,求O1D与平面AC1D所成角的正弦值.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD-A1B1C1D1中,AB=4,AD=AA1=2,圆台下底圆心O为AB的中点,直径为2,圆与直线AB交于E,F,圆台上底的圆心O1在A1B1上,直径为1.(1)求A1C与平面A1ED所成角的正弦值;(2)圆台上底圆周上是否存在一点P使得FP⊥AC1,若存在,求点P到直线A1B1的距离,若不存在则说明理由.题型二:立体几何存在性问题例13.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥A-PBC的体积;(2)在线段PC上是否存在一点M,使得BM⊥AC?若存在,求MCPM的值,若不存在,请说明理由.例14.已知四棱锥P-ABCD中,底面ABCD是矩形,且AD=2AB,△PAD是正三角形,CD⊥平面PAD,E、F、G、O分别是PC、PD、BC、AD的中点.(1)求平面EFG与平面ABCD所成的锐二面角的大小;(2)线段PA上是否存在点M,使得直线GM与平面EFG所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.例15.已知三棱柱ABC-A1B1C1中,∠ACB=90°,A1B⊥AC1,AC=AA1=4,BC=2.(1)求证:平面A1ACC1⊥平面ABC;(2)若∠A1AC=60°,在线段AC上是否存在一点P,使二面角B-A1P-C的平面角的余弦值为34若存在,确定点P的位置;若不存在,说明理由.例16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⎳BC,AD⊥CD,且AD=CD,BC=2CD,PA=2AD.(1)证明:AB⊥PC;(2)在线段PD上是否存在一点M,使得二面角M-AC-D的余弦值为1717,若存在,求BM与PC所成角的余弦值;若不存在,请说明理由.例17.如图,△ABC是边长为6的正三角形,点E,F,N分别在边AB,AC,BC上,且AE=AF=BN=4,M 为BC边的中点,AM交EF于点O,沿EF将三角形AEF折到DEF的位置,使DM=15.(1)证明:平面DEF⊥平面BEFC;(2)试探究在线段DM上是否存在点P,使二面角P-EN-B的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED ,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.例20.如图,在五面体ABCDE中,已知AC⊥BD,AC⊥BC,ED⎳AC,且AC=BC=2ED=2,DC=DB =3.(1)求证:平面ABE⊥与平面ABC;(2)线段BC上是否存在一点F,使得平面AEF与平面ABE夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD中,∠DAB=60°,点M,N分别是边BC,CD的中点,AC∩BD=O1,AC∩MN=G.沿MN将△CMN翻折到△PMN的位置,连接PA,PB,PD,得到如图2所示的五棱锥P -ABMND.(1)在翻折过程中是否总有平面PBD⊥平面PAG?证明你的结论;(2)当四棱锥P-MNDB体积最大时,求直线PB和平面MNDB所成角的正弦值;(3)在(2)的条件下,在线段PA上是否存在一点Q,使得二面角Q-MN-P余弦值的绝对值为1010若存在,试确定点Q的位置;若不存在,请说明理由.例22.如图,在等腰直角三角形PAD中,∠A=90°,AD=8,AB=3,B、C分别是PA、PD上的点,且AD⎳BC,M、N分别为BP、CD的中点,现将△BCP沿BC折起,得到四棱锥P-ABCD,连接MN.(1)证明:MN⎳平面PAD;(2)在翻折的过程中,当PA=4时,求二面角B-PC-D的余弦值.例23.如图1,在平面四边形PDCB中,PD∥BC,BA⊥PD,PA=AB=BC=2,AD=1.将△PAB沿BA 翻折到△SAB的位置,使得平面SAB⊥平面ABCD,如图2所示.(1)设平面SDC与平面SAB的交线为l,求证:BC⊥l;(2)点Q在线段SC上(点Q不与端点重合),平面QBD与平面BCD夹角的余弦值为66,求线段BQ的长.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.例26.如图1,四边形ABCD是边长为2的正方形,四边形ABEF是等腰梯形,AB=BE=12EF,现将正方形ABCD沿AB翻折,使CD与C D 重合,得到如图2所示的几何体,其中D E=4.(1)证明:AF⊥平面AD E;(2)求二面角D -AE-C 的余弦值.例27.如图,在梯形ABCD中,AD∥BC,AB=BC=2,AD=4,现将△ABC所在平面沿对角线AC翻折,使点B翻折至点E,且成直二面角E-AC-D.(1)证明:平面EDC⊥平面EAC;(2)若直线DE与平面EAC所成角的余弦值为12,求二面角D-EA-C的余弦值.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.题型四:立体几何作图问题例29.已知四棱锥P -ABCD 中,底面ABCD 为正方形,O 为其中心,点E 为侧棱PD 的中点.(1)作出过O 、P 两点且与AE 平行的四棱锥截面(在答题卡上作出该截面与四棱锥表面的交线,并写出简要作图过程);记该截面与棱CD 的交点为M ,求出比值DM MC (直接写出答案);(2)若四棱锥的侧棱与底面边长均相等,求AE 与平面PBC 所成角的正弦值.例30..如图,已知底面为平行四边形的四棱锥P-ABCD中,平面MNGH与直线PB和直线AC平行,点E为PD的中点,点F在CD上,且DF:FC=1:2.(1)求证:四边形MNGH是平行四边形;(2)求作过EF作四棱锥P-ABCD的截面,使PB与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.例31.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若G为棱BC的中点,是否存在F,使平面D1EF⊥平面DGF,若存在,求出CF的所有可能值;若不存在,请说明理由.例32.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若F,G均为其所在棱的中点,求点G到平面D1EF的距离.例33.如图多面体ABCDEF中,面FAB⊥面ABCD,△FAB为等边三角形,四边形ABCD为正方形,EF⎳BC,且EF=32BC=3,H,G分别为CE,CD的中点.(1)求二面角C-FH-G的余弦值;(2)作平面FHG与平面ABCD的交线,记该交线与直线AB交点为P,写出APAB的值(不需要说明理由,保留作图痕迹).例34.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD⎳EA,且FD =12EA=1.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.例35.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=2π3.AC∩BD=O,且PO⊥平面ABCD,PO=3,点F,G分别是线段PB.PD上的中点,E在PA上.且PA=3PE.(Ⅰ)求证:BD⎳平面EFG;(Ⅱ)求直线AB与平面EFG的成角的正弦值;(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题例36.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1⎳MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO⎳平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.例37.如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=2,PB=2,E,F 分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P-AD-B的余弦值.例38.如图,AEC 是半径为a 的半圆,AC 为直径,点E 为AC的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB =FD =5a ,EF =6a .(1)证明:EB ⊥FD ;(2)已知点Q ,R 为线段FE ,FB 上的点,FQ =23FE ,FR =23FB ,求平面BED 与平面RQD 所成二面角的正弦值.例39.《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P -ABC 中,PA ⊥平面ABC .(1)从三棱锥P -ABC 中选择合适的两条棱填空: BC ⊥ ,则三棱锥P -ABC 为“鳖臑”;(2)如图,已知AD ⊥PB ,垂足为D ,AE ⊥PC ,垂足为E ,∠ABC =90°.(ⅰ)证明:平面ADE ⊥平面PAC ;(ⅱ)设平面ADE 与平面ABC 的交线为l ,若PA =23,AC =2,求二面角E -l -C 的大小.例40.已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)求证:BD⊥AC;(Ⅱ)求直线CA与平面ABD所成角的大小.例41.已知四面体ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)若AD=CD,求证:BD⊥AC;(Ⅱ)求二面角B-CD-A的正切值.题型六:两角相等(构造全等)的立体几何问题例42.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP(1)证明:平面ACD⊥平面BDP;(2)若BD=6,cos∠BPD=-33,求三棱锥A-BCD的体积.例43.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=6,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.例44.如图,四棱锥F-ABCD中,底面ABCD为边长是2的正方形,E,G分别是CD、AF的中点,AF=4,∠FAE=∠BAE,且二面角F-AE-B的大小为90°.(1)求证:AE⊥BG;(2)求二面角B-AF-E的余弦值.例45.如图,四棱锥E-ABCD中,四边形ABCD是边长为2的菱形,∠DAE=∠BAE=45°,∠DAB=60°.(Ⅰ)证明:平面ADE⊥平面ABE;(Ⅱ)当直线DE与平面ABE所成的角为30°时,求平面DCE与平面ABE所成锐二面角的余弦值.例46.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=52,求二面角C-AD-B的余弦值.题型七:利用传统方法找几何关系建系例47.如图:长为3的线段PQ与边长为2的正方形ABCD垂直相交于其中心O(PO>OQ).(1)若二面角P-AB-Q的正切值为-3,试确定O在线段PQ的位置;(2)在(1)的前提下,以P,A,B,C,D,Q为顶点的几何体PABCDQ是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例48.在四棱锥P-ABCD中,E为棱AD的中点,PE⊥平面ABCD,AD⎳BC,∠ADC=90°,ED=BC= 2,EB=3,F为棱PC的中点.(Ⅰ)求证:PA⎳平面BEF;(Ⅱ)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的正切值.例49.三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=2,侧面BCC1B1为矩形,∠A1AB=2π3,二面角A-BC-A1的正切值为12.(Ⅰ)求侧棱AA1的长;(Ⅱ)侧棱CC1上是否存在点D,使得直线AD与平面A1BC所成角的正切值为63,若存在,判断点的位置并证明;若不存在,说明理由.例50.如图,在四棱锥P-ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,PA=AC=2,E是PC的中点,∠DAC=∠AOB(1)求证:BE⎳平面PAD;(2)若二面角P-CD-A的正切值为2,求直线PB与平面PCD所成角的正弦值.例51.如图所示,PA⊥平面ABCD,ΔCAB为等边三角形,PA=AB,AC⊥CD,M为AC中点.(Ⅰ)证明:BM⎳平面PCD;(Ⅱ)若PD与平面PAC所成角的正切值为62,求二面角C-PD-M的正切值.题型八:空间中的点不好求例52.如图,直线AQ⊥平面α,直线AQ⊥平行四边形ABCD,四棱锥P-ABCD的顶点P在平面α上,AB =7,AD=3,AD⊥DB,AC∩BD=O,OP⎳AQ,AQ=2,M,N分别是AQ与CD的中点.(1)求证:MN⎳平面QBC;(2)求二面角M-CB-Q的余弦值.例53.如图,四棱锥S-ABCD中,AB⎳CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB(2)求AB与平面SBC所成角的正弦值.例54.如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=2,DC=SD=2,点M在侧棱SC上,∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S-AM-B的余弦值.例55.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD为直角梯形,其中AB⎳CD,∠CDA=90°,CD=2AB=2,AD=3,PA=5,PD=22,点E在棱AD上且AE=1,点F为棱PD的中点.在棱AD上且AE=1,点F位棱PD的中点.(1)证明:平面BEF⊥平面PEC;(2)求二面角A-BF-C的余弦值的大小.例56.如图,在四棱锥A-BCFE中,四边形EFCB为梯形,EF⎳BC,且EF=34BC,ΔABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=3,CF=212,BF=52.(1)证明:平面F GB⊥平面ABC;(2)求二面角E-AB-F的余弦值.例57.三棱柱ABC-A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为π3,点D在棱AA1上,且AD=32,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B-B1C-A1的平面角的余弦值.例58.如图,将矩形ABCD沿AE折成二面角D1-AE-B,其中E为CD的中点,已知AB+2,BC=1.BD1 =CD1,F1为D1B的中点.(1)求证:CF⎳平面AD1E;(2)求AF与平面BD1E所成角的正弦值.题型九:创新定义例59.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H-ABC,J-CDE,K-EFA,再分别以AC,CE,EA为轴将△ACH,△CEJ,△EAK分别向上翻转180°,使H,J,K三点重合为点S所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为2π-3×π3=π.(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱底面边长为1,侧棱长为2,设BH=x(i)用x表示蜂房(图2右侧多面体)的表面积S(x);(ii)当蜂房表面积最小时,求其顶点S的曲率的余弦值.例60.类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA,PB,PC构成的三面角P-ABC,∠APC=α,∠BPC=β,∠APB=γ,二面角A-PC-B的大小为θ,则cosγ=cosαcosβ+sinαsinβcosθ.时,证明以上三面角余弦定理;(1)当α、β∈0,π2(2)如图2,四棱柱ABCD-A1B1C1D1中,平面AA1C1C⊥平面ABCD,∠A1AC=60°,∠BAC=45°,①求∠A1AB的余弦值;②在直线CC1上是否存在点P,使BP⎳平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.例61.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi i=1,2,3,4,且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi i=1,2,3,4,求该正四面体A1A2A3A4的体积.例62.已知a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )⋅c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,已知四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,4),AD =(4,2,0),AP =(-1,2,1)(1)试计算(AB ×AD )⋅AP 的绝对值的值,并求证PA ⊥面ABCD ;(2)求四棱锥P -ABCD 的体积,说明(AB ×AD )⋅AP 的绝对值的值与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )⋅AP 的绝对值的几何意义.立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,。

2024届高考数学一轮总复习专题五立体几何中的热点问题课件

2024届高考数学一轮总复习专题五立体几何中的热点问题课件
专题五 立体几何中的热点问题
题型一 平面图形的翻折问题 平面图形翻折为空间图形问题,重点考查平行、垂直关系, 解题关键是看翻折前后线面位置关系的变化,根据翻折的过程找 到翻折前后线线位置关系中没有变化的量和发生变化的量,这些 不变的和变化的量反映了翻折后的空间图形的结构特征.
[ 例 1](2021年中卫市模拟)如图51,在四边形ABCD中, AD∥BC,∠BAD=90°,AB=BC= 2,AD=2 2,E,F 分别是 线段 AD,CD 的中点.以 EF 为折痕把△DEF 折起,使点D到达点 P 的位置,G 为线段 PB 的中点.
令 x=1,解得yz==4-,1,
∴n=(1,-1,4).
∵AD⊥平面 ABC,
∴平面 ABC 的一个法向量为A→D=(0,0,1),
∴|cos〈A→D,n〉|=||A→A→DD|··|nn||=3
4
=2 2
3
2,即平面
BDE
与平
面 ABC 所成角的余弦值为2 3 2.
(2)∵A1(0,0,4),B(4,0,0),C(0,4,0),E(0,4,2), ∴A→1B=(4,0,-4),B→C=(-4,4,0). 假设在线段 A1B1 上存在点 F(t,0,4)(0<t<4),使得 EF∥平 面 A1BC,则E→F=(t,-4,2), 设平面 A1BC 的法向量 m=(a,b,c),
【题后反思】三步解决平面图形翻折问题
【互动探究】 1.图 5-4 是由矩形 ADEB,Rt△ABC 和菱形 BFGC 组成的一个
平面图形,其中 AB=1,BE=BF=2,∠FBC=60°.将其沿 AB, BC 折起使得 BE 与 BF 重合,连接 DG,如图 5-5.
图 5-4
图 5-5

高考数学压轴题突破训练——立体几何(含详解)

高考数学压轴题突破训练——立体几何(含详解)

高考数学压轴题突破训练——立体几何1. 1. 如图,平面如图,平面VAD VAD⊥平面⊥平面ABCD ABCD,△,△,△VAD VAD 是等边三角形,是等边三角形,ABCD ABCD 是矩形,是矩形,AB AB AB∶∶AD AD==2∶1,F 是AB 的中点.的中点.(1)求VC 与平面ABCD 所成的角;所成的角; (2)求二面角V-FC-B 的度数;的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.的距离.2.2.如图正方体如图正方体ABCD-1111D C B A 中,中,E E 、F 、G 分别是B B 1、AB AB、、BC 的中点.的中点.(1)证明:F D 1⊥EG EG;; (2)证明:F D 1⊥平面AEG AEG;; (3)求AE <cos ,>B D 1.3. 3. 在直角梯形在直角梯形P 1DCB 中,中,P P 1D//CB D//CB,,CD//P 1D 且P 1D D = = 6,BC = = 33,DC =6,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置,使二面角P -CD CD--B 成45°角,设E 、F 分别是线段AB AB、、PD 的中点.的中点. ((1)求证:)求证:AF//AF//AF//平面平面PEC PEC;; ((2)求平面PEC 和平面PAD 所1. 1. 如图,平面如图,平面VAD VAD⊥平面⊥平面ABCD ABCD,△,△,△VAD VAD 是等边三角形,ABCD 是矩形,是矩形,AB AB AB∶∶AD AD==2∶1,F 是AB 的中点.的中点.D B C F E A P (1)求VC 与平面ABCD 所成的角;所成的角; (2)求二面角V-FC-B 的度数;的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.的距离.2.2.如图正方体如图正方体ABCD-1111D C B A 中,中,E E 、F 、G 分别是B B 1、AB AB、、BC 的中点.的中点.(1)证明:F D 1⊥EG EG;; (2)证明:F D 1⊥平面AEG AEG;; (3)求AE <cos ,>B D 1.3. 3. 在直角梯形在直角梯形P 1DCB 中,中,P P 1D//CB D//CB,,CD//P 1D 且P 1D D = = 6,BC = = 33,DC =6,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置,使二面角P -CD CD--B 成45°角,设E 、F 分别是线段AB AB、、PD 的中点.的中点. ((1)求证:)求证:AF//AF//AF//平面平面PEC PEC;; ((2)求平面PEC 和平面PAD 所成的二面角的大小;所成的二面角的大小; ((3)求点D 到平面PEC 的距离.的距离. 成的二面角的大小;成的二面角的大小; ((3)求点D 到平面PEC 的距离.的距离.BC DA P 1 DBCF E A P4. 4. 如图四棱锥如图四棱锥ABCD P -中,中,^PA 底面ABCD ,4=PA 正方形的边长为2 (1)求点A 到平面PCD 的距离;的距离;(2)求直线PA 与平面PCD 所成角的大小;所成角的大小; (3)求以PCD 与PAC 为半平面的二面角的正切值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转化 转化 2009届高考数学压轴题预测 专题五 立体几何 1. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1;(II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点, ∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1.(2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1. 点评:2.平行问题的转化:面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理.2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。

(1)求证:BM∥平面PAD ;A B CA B CEx y z(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦。

解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1) M 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形 ∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面 (4分)(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E 在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z 由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y ∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥ (8分) (3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32 (12分)解法二:(1) M 是PC 的中点,取PD 的中点E ,则 MECD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面 (4分)(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴AE AB ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE ∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥ (8分)(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32 点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来3. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值. 解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC .又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP 3 ∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°. ……6分 (II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图,则(3,0,0),(0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C . 由M 为PB 中点,∴33(1,M . ∴33(,2,),(3,0,3),DM PA ==(0,2,0)DC =. ∴333203)0PA DM⋅=⨯-=, 03200(3)0PA DC ⋅=⨯+⨯-=.∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .……4分 (III)33(,0,),(3,1,0)CM CB ==.令平面BMC 的法向量(,,)n x y z =,则0n CM ⋅=,从而x +z =0; ……①, 0n CB ⋅=,从而30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(1,3,1)n =-.由(II)知平面CDM 的法向量可取(3,0,3)PA =, ∴2310cos ,||||56n PA n PA n PA ⋅-<>===⋅ 10 ……6分 法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO ,则四边形OCMN 为,V C B所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MCCD C =,则PA MCD ⊥平面 (Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角,在Rt PAB ∆中,易得6,PA =22226210PB PA AB =+=+=10cos 510AB PBA PB ∠===, 10cos cos()NMB PBA π∠=-∠=故,所求二面角的余弦值为10点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.4. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°。

(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由。

解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算。

答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==设平面BEF 的法向量x z y x -=则),,,( 0,02==++y z y ,则可取)0,1,2(=, ∴向量)1,0,2(=和所成角的余弦为1010)2(21220222222=-++-+⋅。

即BD 和面BEF 所成的角的余弦1010。

(2)假设线段EF 上存在点P 使过P 、A 、C三点的平面和直线DB 垂直,不妨设EP 与PF的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=),2,11,121(m m m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以。

点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求。

5. 已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点, ∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形 ∴BF//ED.,EF AED BF AED ⊂⊄平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GD∆ACD 为正三角形,∴AC=AD.∴CG=GD.G 在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF 中,AF=3a ,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.32AG a ∴= 在Rt ∆ADE 中, AH DE AE AD ⋅=⋅5AH a ∴=. 25GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线。

相关文档
最新文档