空间向量与立体几何知识点
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r运算律:⑴加法交换律:a b b a ϖϖϖρ+=+⑵加法结合律:)()(c b a c b a ϖϖϖϖρϖ++=++⑶数乘分配律:b a b a ϖϖϖϖλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρϖ//。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数,x y 使p xa yb =+r r r。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x z y x OP 其中5. 空间向量基本定理:如果三个向量,,a b c r r r不共面,那么对空间任一向量p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r。
数学选修2-1苏教版:第3章 空间向量与立体几何 3.1.1

§3.1 空间向量及其运算 3.1.1 空间向量及其线性运算学习目标 1.了解空间向量的概念,掌握空间向量的几何表示与字母表示.2.掌握空间向量的线性运算(加法、减法和数乘)及其运算律.知识点一 空间向量的概念思考 类比平面向量的概念,给出空间向量的概念. 答案 在空间,把具有大小和方向的量叫做空间向量.梳理 (1)在空间,把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 空间向量也用有向线段表示,有向线段的长度表示向量的模,向量a 的起点是A ,终点是B ,则向量a 也可记作AB →,其模记为|a |或|AB →|. (2)几类特殊的空间向量知识点二 空间向量及其线性运算 1.空间向量的线性运算已知空间向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,AB →=c ,与平面向量的运算一样,空间向量的加法、减法与数乘运算的意义为:OB →=OA →+AB →=a +c ; BA →=OA →-OB →=a -b =-c .若P 在直线OA 上,则OP →=λa (λ∈R ).2.空间向量的加法和数乘运算满足如下运算律: (1)a +b =b +a ;(2)(a +b )+c =a +(b +c ); (3)λ(a +b )=λa +λb (λ∈R ). 知识点三 共线向量(或平行向量)1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.若向量a 与b 平行,记作a ∥b ,规定零向量与任意向量共线. 2.共线向量定理:对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是存在实数λ,使b =λa .1.在空间中,单位向量唯一.(×)2.在空间中,任意一个向量都可以进行平移.(√) 3.在空间中,互为相反向量的两个向量必共线.(√)4.空间两非零向量相加时,一定可用平行四边形法则运算.(×)类型一 空间向量的概念及应用例1 如图所示,以长方体ABCD -A 1B 1C 1D 1的八个顶点的两点为始点和终点的向量中:(1)试写出与AB →相等的所有向量; (2)试写出AA 1—→的相反向量;(3)若AB =AD =2,AA 1=1,求向量AC 1—→的模.解 (1)与向量AB →相等的所有向量(除它自身之外)有A 1B 1—→,DC →及D 1C 1—→,共3个. (2)向量AA 1—→的相反向量有A 1A —→,B 1B —→,C 1C —→,D 1D —→,共4个. (3)|AC 1—→|=|AB →|2+|AD →|2+|AA 1—→|2=22+22+12=9=3. 引申探究如图,在长方体ABCD -A ′B ′C ′D ′中,AB =3,AD =2,AA ′=1,则分别以长方体的顶点为起点和终点的向量中:(1)单位向量共有多少个? (2)试写出模为5的所有向量.解 (1)由于长方体的高为1,所以长方体的四条高所对应的向量AA ′—→,A ′A —→,BB ′—→,B ′B —→,CC ′—→,C ′C ——→,DD ′—→,D ′D ——→,共8个向量都是单位向量,而其他向量的模均不为1,故单位向量共有8个.(2)由于长方体的左右两侧面的对角线的长均为5,故模为5的向量有AD ′—→,D ′A ——→,A ′D ——→,DA ′—→,BC ′—→,C ′B ——→,B ′C ——→,CB ′—→.反思与感悟 在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反. 跟踪训练1 给出以下结论:①两个空间向量相等,则它们的起点和终点分别相同; ②若空间向量a ,b 满足|a |=|b |,则a =b ; ③在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中不正确的命题的序号为________. 答案 ①②解析 两个空间向量相等,它们的起点、终点不一定相同,故①不正确;若空间向量a ,b 满足|a |=|b |,则不一定能判断出a =b ,故②不正确;在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1—→成立,故③正确;④显然正确.类型二 空间向量的线性运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′——→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AD ′—→.(2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′——→=AB ′—→+B ′C ′——→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.引申探究利用本例题图,化简AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→. 解 结合加法运算,得AA ′—→+A ′B ′——→=AB ′—→,AB ′—→+B ′C ′——→=AC ′—→,AC ′—→+C ′A —→=0. 故AA ′—→+A ′B ′——→+B ′C ′——→+C ′A —→=0.反思与感悟 1.化简向量表达式时,要结合空间图形,分析各向量在图形中的表示,然后利用运算法则,把空间向量转化为平面向量解决,并化简到最简为止.2.首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量;若首尾相接的若干个向量构成一个封闭图形,则这些向量的和为0.跟踪训练2 在如图所示的平行六面体中,求证:AC →+AB ′—→+AD ′—→=2AC ′—→.证明 ∵平行六面体的六个面均为平行四边形,∴AC →=AB →+AD →,AB ′—→=AB →+AA ′—→,AD ′—→=AD →+AA ′—→, ∴AC →+AB ′—→+AD ′—→=(AB →+AD →)+(AB →+AA ′—→)+(AD →+AA ′—→) =2(AB →+AD →+AA ′—→). 又∵AA ′—→=CC ′—→,AD →=BC →,∴AB →+AD →+AA ′—→=AB →+BC →+CC ′—→=AC →+CC ′—→=AC ′—→. ∴AC →+AB ′—→+AD ′—→=2AC ′—→. 类型三 向量共线定理的理解与应用例3 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E —→=2ED 1—→,F 在对角线A 1C 上,且A 1F —→=23FC —→.求证:E ,F ,B 三点共线. 证明 设AB →=a ,AD →=b ,AA 1—→=c , 因为A 1E —→=2ED 1—→,A 1F —→=23FC →,所以A 1E —→=23A 1D 1—→,A 1F —→=25A 1C —→,所以A 1E —→=23AD →=23b ,A 1F —→=25(AC →-AA 1—→)=25(AB →+AD →-AA 1—→)=25a +25b -25c . 所以EF →=A 1F —→-A 1E —→=25a +25b -25c -23b =25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1—→+A 1A —→+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,又因为EF →与EB →有公共点E ,所以E ,F ,B 三点共线.反思与感悟 1.判定共线:判定两向量a ,b (b ≠0)是否共线,即判断是否存在实数λ,使a =λb .2.求解参数:已知两非零向量共线,可求其中参数的值,即利用若a ∥b ,则a =λb (λ∈R ). 3.判定或证明三点(如P ,A ,B )是否共线 (1)是否存在实数λ,使P A →=λPB →.(2)对空间任意一点O ,是否有OP →=OA →+tAB →.(3)对空间任意一点O ,是否有OP →=xOA →+yOB →(x +y =1).跟踪训练3 如图,在四面体ABCD 中,点E ,F 分别是棱AD ,BC 的中点,用AB →,CD →表示向量EF →.解 EF →=AF →-AE → =12(AB →+AC →)-12AD → =12AB →-12(AD →-AC →)=12AB →-12CD →.1.下列说法中正确的是________.(填序号)①若|a |=|b |,则a ,b 的长度相等,方向相同或相反; ②若向量a 是向量b 的相反向量,则|a |=|b |; ③空间向量的减法满足结合律;④在四边形ABCD 中,一定是AB →+AD →=AC →. 答案 ②解析 若|a |=|b |,则a ,b 的长度相等,方向不确定,故①不正确;相反向量是指长度相同,方向相反的向量,故②正确;空间向量的减法不满足结合律,故③不正确;在▱ABCD 中,才有AB →+AD →=AC →,故④不正确.2.在平行六面体ABCD -A ′B ′C ′D ′的各条棱所在的向量中,与向量A ′B ′→相等的向量有________个. 答案 33.在正方体ABCDA 1B 1C 1D 1中,已知下列各式:①(AB →+BC →)+CC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→;③(AB →+BB 1—→)+B 1C 1—→;④(AA 1—→+A 1B 1—→)+B 1C 1—→.其中运算的结果为AC 1—→的有________个. 答案 4解析 根据空间向量的加法运算以及正方体的性质逐一进行判断:①(AB →+BC →)+CC 1—→=AC →+CC 1—→=AC 1—→;②(AA 1—→+A 1D 1—→)+D 1C 1—→=AD 1—→+D 1C 1—→=AC 1—→; ③(AB →+BB 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→; ④(AA 1—→+A 1B 1—→)+B 1C 1—→=AB 1—→+B 1C 1—→=AC 1—→. 所以4个式子的运算结果都是AC 1—→.4.化简2AB →+2BC →+3CD →+3DA →+AC →=________. 答案 0解析 2AB →+2BC →+3CD →+3DA →+AC →=2AB →+2BC →+2CD →+2DA →+CD →+DA →+AC →=0. 5.若非零空间向量e 1,e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k =________. 考点 空间向量的数乘运算 题点 空间共线向量定理及应用 答案 ±1解析 由k e 1+e 2与e 1+k e 2共线, 得k e 1+e 2=λ(e 1+k e 2),即⎩⎪⎨⎪⎧k =λ,1=λk ,故k =±1.空间向量加法、减法运算的两个技巧:(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.一、填空题1.下列命题中,假命题是________.(填序号) ①任意两个向量都是共面向量;②空间向量的加法运算满足交换律及结合律; ③只有零向量的模等于0; ④共线的单位向量都相等. 答案 ④解析 容易判断④是假命题,共线的单位向量是相等向量或相反向量.2.已知空间四边形ABCD 中,AB →=a ,BC →=b ,AD →=c ,则CD →=________.(用a ,b ,c 表示) 答案 c -a -b 解析 如图,∵AB →+BC →+CD →+DA →=0, 即a +b +CD →-c =0, ∴CD →=c -a -b .3.在长方体ABCD -A 1B 1C 1D 1中,AB →-CD →+BC →-DA →=________. 答案 2AC →解析 AB →-CD →+BC →-DA →=(AB →+BC →)-(CD →+DA →) =AC →-CA →=2AC →.4.对于空间中的非零向量AB →,BC →,AC →,有下列各式:①AB +BC →=AC →;②AB →-AC →=BC →;③|A B →|+|B C →|=|A C →|;④|A B →|-|A C →|=|B C →|.其中一定不成立的是____________.(填序号) 答案 ②解析 根据空间向量的加减法运算,对于①:A B →+B C →=A C →恒成立;对于③:当A B →,B C →,A C →方向相同时,有|A B →|+|B C →|=|A C →|;对于④:当B C →,A B →,A C →在一条直线上且B C →与A B →,A C →方向相反时,有|A B →|-|A C →|=|B C →|. 只有②一定不成立.5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________. 答案 0解析 延长DE 交边BC 于点F ,则AB →+12BC →=AF →,32DE →+AD →=DF →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=AF →-AF →=0.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB →+AD →+AA 1→=________,DD 1→-AB →+BC →=________.答案 AC 1—→ BD 1—→解析 AB →+AD →+AA 1—→=AB →+BC →+CC 1—→=AC 1—→, DD 1—→-AB →+BC →=DD 1—→-(AB →-AD →) =DD 1—→-DB →=BD 1—→.7.在直三棱柱ABCA 1B 1C 1中,若C A →=a ,C B →=b ,C C →1=c ,则A 1B —→=________.答案 -a +b -c 解析 如图,A 1B —→=A 1A —→+AB →=C 1C —→+(CB →-CA →) =-CC 1—→+CB →-CA →=-c +b -a .8.在正方体ABCD -A 1B 1C 1D 1中,A 1E —→=14A 1C 1—→,AE →=x AA 1—→+y (AB →+AD →),则x =________,y =________. 答案 1 14解析 ∵AE →=AA 1—→+A 1E —→=AA 1—→+14A 1C 1—→=AA 1—→+14AC →=AA 1—→+14(AB →+AD →),∴x =1,y =14.9.已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-n AA 1—→,则m ,n 的值分别是________. 答案 12,-12解析 由于AF →=AD →+DF →=AD →+12(DC →+DD 1—→)=AD →+12AB →+12AA 1—→,所以m =12,n =-12.10.在空间四边形ABCD 中,若E ,F ,G ,H 分别为AB ,BC ,CD ,DA 边上的中点,则下列各式中成立的是________.(填序号) ①EB →+BF →+EH →+GH →=0; ②EB →+FC →+EH →+GE →=0; ③EF →+FG →+EH →+GH →=0; ④EF →-FB →+CG →+GH →=0. 答案 ②解析 易知四边形EFGH 为平行四边形, 所以EB →+FC →+EH →+GE →=EB →+BF →+GE →+EH → =EF →+GH →=0.11.如图,已知在空间四边形ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC ,BD 的中点分别为E ,F ,则EF →=________.(用向量a ,b ,c 表示)答案 3a +3b -5c解析 设G 为BC 的中点,连结EG ,FG ,则EF →=EG →+GF →=12AB →+12CD → =12(a -2c )+12(5a +6b -8c ) =3a +3b -5c二、解答题12.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,化简下列表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′—→;(3)AB →+CB →+AA ′—→;(4)AC ′—→+D ′B —→-DC →.解 (1)AB →+BC →=AC →.(2)AB →+AD →+AA ′—→=AC →+AA ′—→=AC ′—→.(3)AB →+CB →+AA ′—→=AB →+DA →+BB ′—→=DA →+AB →+BB ′—→=DB ′—→.(4)AC ′—→+D ′B —→-DC →=(AB →+BC →+CC ′—→)+(DA →+DC →+C ′C —→)-DC →=DC →.13.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,求x ,y 的值.解 ∵AE →=AB →+BC →+CE →=OB →-OA →+OC →-OB →-12OC → =-OA →+12OC →=-OA →+12(OD →+DC →) =-OA →+12(OD →+AB →) =-OA →+12OD →+12(OB →-OA →) =-32OA →+12OD →+12OB →, ∴x =12,y =-32. 三、探究与拓展14.设e 1,e 2是空间两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,且A ,B ,D 三点共线,则k =________.答案 -8解析 ∵BD →=BC →+CD →=(-e 1-3e 2)+(2e 1-e 2)=e 1-4e 2,又∵A ,B ,D 三点共线,∴AB →=λBD →,即2e 1+k e 2=λ(e 1-4e 2),∴⎩⎪⎨⎪⎧2=λ,k =-4λ,∴k =-8.15.如图,设点A 是△BCD 所在平面外的一点,点G 是△BCD 的重心.求证:AG →=13(AB →+AC →+AD →).证明 连结BG ,延长后交CD 于点E ,由点G 为△BCD 的重心,知BG →=23BE →. ∵E 为CD 的中点,∴BE →=12BC →+12BD →. ∴AG →=AB →+BG →=AB →+23BE → =AB →+13(BC →+BD →) =AB →+13[(AC →-AB →)+(AD →-AB →)] =13(AB →+AC →+AD →).。
立体几何与空间向量知识点归纳总结材料

立体几何与空间向量知识点归纳总结材料一、立体几何知识点归纳总结:1.点、线、面的几何特性:-点:没有大小和形状,只有位置;两个不同的点确定一条直线,三个不共线的点确定一个平面。
-线:有长度但没有宽度和厚度;平行线、垂直线、相交线等性质。
-面:有长度和宽度但没有厚度;平面的平行关系、垂直关系、相交关系等。
2.空间几何形体的特性:-点:在空间中指定位置的几何实体。
-直线:长度无限延伸的几何实体。
-射线:以一个端点和无限延伸的直线为基础的几何实体。
-平面:无限延伸的、具有长度和宽度的几何实体。
-多面体:由平面构成的立体图形,如三角形、四面体、五棱柱等。
-圆锥、圆柱、圆球等。
3.空间几何的距离公式:-两点之间的距离公式:设点A(x1,y1,z1)和点B(x2,y2,z2),则AB 的距离为√[(x2-x1)²+(y2-y1)²+(z2-z1)²]。
-点到直线的距离公式:设直线L的方程为Ax+By+Cz+D=0,点P(x0,y0,z0),则点P到直线L的距离为d=,Ax0+By0+Cz0+D,/√(A²+B²+C²)。
二、空间向量知识点归纳总结:1.空间向量的定义:空间中具有大小和方向的有向线段。
2.空间向量的表示方法:-定点表示法:以一个固定点为起点,用一条线段的另一端点表示向量。
-坐标表示法:向量的起点为原点O,终点坐标为(x,y,z),则向量的坐标表示为(x,y,z)。
-分解表示法:将向量沿着坐标轴分解成若干个坐标分量的和。
3.空间向量的运算:-向量的加法:向量的加法满足三角形法则,即向量的和等于它们的起点相同的两个边相加的结果。
-向量的减法:向量的减法等于将减向量取反后与被减向量相加。
-向量的数乘:向量的数乘等于向量的每个分量与一个常数的乘积。
4.向量的数量积和向量积:-数量积(点积):设向量A(x1,y1,z1)和向量B(x2,y2,z2),则数量积AB=A·B=x1x2+y1y2+z1z2,具有交换律和分配律。
立体几何与空间向量知识梳理

立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示*同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
\r0B = 0A+ AB = a + b ; BA= OA- OB 二 运算律:⑴加法交换律:a + b = b + a⑵加法结合律:(a + b).+ C = a + (b + C) ⑶数乘分配律:A (a + b) = + A b 运算法则:三角形法则、平行四边形法则、 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直 线向量或平行向量,a 平行于b ,记作a//b(2) 共线向量定理:空间任意两个向量i(3) 三点共线:A 、B 、C 三点共线v=>AB = kAC<=> OC xOA yOB(其中(+ y= 1) a(4) 与a 共线的单位向量为±二 4.共面向量(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
. 斗(2) 共面向量定理:如果两个向量a,b 不共线,p 与向量a,b 共面的条件是存在实数X, y 使 P - xa + yb 。
(3)四点共面:若A 、B 、C 、P 四点共面v=>AP=xAB+yAC平行六面体法则线平行或重合,那么这些向量也叫做共b (b 工0), a //b 存在实数 入 使a =7b 。
A<=> OP 二xOA + yOB + zOC(其中■i I •・x+y+z=1) 45.空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量P,存在一个唯一的有序实数组x,y, z,使P =xa+yb+zc。
屮.若三向量a,b,C不共面,我们把{a,b,C}叫做空间的一个基底,a,b,C叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)运算律:⑴加法交换律:a b b a⑵加法结合律:(a b ) c a (b c)⑶数乘分配律:(a b )a b运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。
(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作a//b 。
(2) 共线向量定理:空间任意两个向量 a 、b ( b 丰0 ), a//b 存在实数入,使a =A b 。
(3) 三点共线:A 、B 、C 三点共线<=>ABACi i■.1<=> OC xOA yOB (其中( y 1)—*■一a (4)与a共线的单位向量为 —a4. 共面向量(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2) 共面向量定理:如果两个向量 a,b 不共线,p 与向量a,b 共面的条件是存在实数 x, y 使uOw A go购Bgorarap xa yba- r b r b rb •7d3a d 3a3a2aR(3)四点共面:若A 、B 、c 、P 四点共面<=> AP xAB yAC<=>OP xOA yOB zOC (其中 x y z 1)r ,r r r5. 空间向量基本定理:如果三个向量 a,b,C 不共面,那么对空间任一向量 P ,存在一个唯一的有r i r r 1 r r 1 r若三向量a,b,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向量,空间任意 三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示•同向等长的有向线段表示同一或相等的向量 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)运算律:⑴加法交换律:abba ⑵加法结合律:(a b ) c a (b c ) ⑶数乘分配律:(a b ) a b运算法则:三角形法则、平行四边形法则、 平行六面体法则3.共线向量。
(1)如果表示空间向量的有向线段所在的直 线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作a // b 。
(2) 共线向量定理:空间任意两个向量a 、b ( b 工0 ), a //b 存在实数 入使a = 7b 。
(3) 三点共线:A 、B 、C 三点共线<=> ABAC<=>OC XOA yOB (其中( y 1)f一 a(4)与a 共线的单位向量为— a4. 共面向量(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2) 共面向量定理:如果两个向量a,b 不共线,p 与向量a,b 共面的条件是存在实数r r rx, y 使 p xa yb 。
(3)四点共面:若A 、B 、C 、P 四点共面v=>AP xAB yAC <=>OP xOAyOB zOC (其中 x y z 1)一 r 「「一 一 一 r5.空间向量基本定理:如果三个向量a,b,c 不共面,那么对空间任一向量 p ,存在一ra 加B gor br r r r个唯一的有序实数组x,y, z,使p xa yb zc or r r r ,r r r ,r r 若三向量a,b,c不共面,我们把{a,b,c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.. . .. . . S. . . . . .. 立体几何空间向量知识点总结 知识网络:
知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.
2、当a、b为非零向量时.0abab是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.
3、公式cos,ababab是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直
证明两条直线垂直,只需证明两条直线的方向向量垂直,即0abab. .. . .. . . S. . . . . .. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角
利用公式cos,ababab, 但务必注意两异面直线所成角θ的围是0,2, 故实质上应有:coscos,ab. (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议: .. . .. . . S. . . . . .. 1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力. 2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法. 4、加强运算能力的培养,提高运算的速度和准确性.
第一讲 空间向量及运算 一、空间向量的有关概念 1、空间向量的定义 在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量. 2、空间向量的表示方法 空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大
小,用有向线段的方向表示向量的方向.若向量a对应的有向线段的起点是A,终点是B,
则向量a可以记为AB,其模长为a或AB. 3、零向量
长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”. 4、单位向量 模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量
长度相等且方向相同的空间向量叫做相等向量.若向量a与向量b相等,记为a=b.零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关. 6、相反向量
长度相等但方向相反的两个向量叫做相反向量.a的相反向量记为-a 二、共面向量 1、定义 平行于同一平面的向量叫做共面向量. 2、共面向量定理
若两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x、y,使得p=xayb。 .. . .. . . S. . . . . .. 3、空间平面的表达式 空间一点P位于平面MAB的充要条件是存在有序实数对x、y使MPxMAyMB或对空间任一定点O,有或OPxOAyOBzOM(其中1xyz)这几个式子是M,A,B,P四点共面的充要条件.
三、空间向量基本定理 1、定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在唯一的有序实数组x、y、z,使p=xaybzc 2、注意以下问题 (1)空间任意三个不共面的向量都可以作为空间向量的一个基底.
(2)由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0。 (3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念.
由空间向量的基本定理知,若三个向量a、b、c不共面。那么所有空间向量所组成的
集合就是|,,,ppxaybzcxyzR,这个集合可看做是由向量a、b、c生成的,所以我们把,,abc称为空间的一个基底。a、b、c叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底. 3、向量的坐标表示 (1)单位正交基底 如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基
底,常用,,ijk表示. (2)空间直角坐标系
在空间选定一点O和一个单位正交基底,,ijk以点O为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫坐标轴.则建立了一个空间直角坐标
系O-xyz,点O叫原点,向量i、j、k都叫坐标向量. (3)空间向量的坐标
给定一个空间直角坐标系和向量a,且设i、j、k为坐标向量,存在唯一有序数组(x,y,z)使axiyjzk,有序数组(x,y,z)叫做a在空间直角坐标系O-xyz中的坐.. . .. . . S. . . . . .. 标,记为a=,,xyz。 对坐标系中任一点A,对应一个向量OA,则OA=axiyjzk。在单位正交基底i、j、k中与向量OA对应的有序实数组(x,y,z),叫做点A在此空间直角坐标系中
的坐标,记为A(x,y,z).
四、空间向量的运算 1、空间向量的加法 三角形法则(注意首尾相连)、平行四边形法则,
加法的运算律:交换律 abba
结合律 abcabc 2、空间向量的减法及几何作法
几何作法:在平面任取一点O,作,OAaOBb,则BAab,即从b的终点指向a的终点的向量,这就是向量减法的几何意义. 3、空间向量的数乘运算 (1)定义
实数与a的积是一个向量,记为a,它的模与方向规定如下:
① aa ② 当0时,a与a同向;当0时,a与a异向;当0时.0a 注意:
① 关于实数与空间向量的积a的理解:我们可以把a的模扩大(当>1时),也可以缩小(< 1 时),同时,我们可以不改变向量a的方向(当0时),也可以改变向量a的方向(当0时)。 . ② 注意实数与向量的积的特殊情况,当0时,0a;当0,若0a时,有0a。 ③ 注意实数与向量可以求积,但是不能进行加减运算.比如a,a无法运算。 (2)实数与空间向量的积满足的运算律 设λ、μ是实数,则有