2019高三第一轮复习:等比数列

合集下载

2019届高三数学(理)一轮课件:第30讲-等比数列及其前n项和(含答案)

2019届高三数学(理)一轮课件:第30讲-等比数列及其前n项和(含答案)

又���1���
-2=-13≠0,∴数列
1 ������
-2
是首项为-13,公比为13的等
课堂考点探究
[总结反思] 判定一个数列为等比数列的常见方
(1)定义法:若������������ +1=q(d
������������
是常数),则数列
������������
是等
(2)等比中项法:若������2 =anan+2(n∈N*),则数列
a1=3,a1+a3+a5=21,则 a3+a5+a7= ( )
[解
A.21
B.42
C.63
D.84

教学参考
ቤተ መጻሕፍቲ ባይዱ
3.[2013·全国卷Ⅱ] 等比数列{an}的前 n 项 [答
和为 Sn,已知 S3=a2+10a1,a5=9,则 a1= [解
()
A.1
B.-1
S3
教学参考
4.[2017·全国卷Ⅲ] 设等比数列{an}满足
解:(1)证 因为数列 因为 an+
a3=
.
课堂考点探究
探究点一 等比数
例 1 (1)[2017·揭阳二模] 已知等比数列 ������������ 满足 a1+a3=10,a2+a4=5,则 a5= ( )
课堂考点探究
[答案] (1)B (2)A
[解析] (1)设等比数列{an}的公比为 q,依题意有
4
11
课堂考点探究
[总结反思] (1)等比数列的通项公式与前 n 项和 个就能求另外两个(简称“知三求二”). (2)运用等比数列的前 n 项和公式时,注意对 q=

高三数学第一轮总复习课件: 等差、等比数列

高三数学第一轮总复习课件:  等差、等比数列

Sn
a1 an n na
2
q 1 na1 等比数列前n项和 S n a1 1 q n q 1 1 q n 1 S1 2.如果某个数列前n项和为Sn,则 an S n S n1 n 2
nn 1 d 1 2
3.下列命题中正确的是( B
)
A.数列{an}的前n项和是Sn=n2+2n-1,则{an}为等差数列 B. 数列 {an} 的前 n 项和是 Sn=3n-c,则 c=1 是 { an} 为等比数列的 充要条件 C.数列既是等差数列,又是等比数列
D.等比数列{an}是递增数列,则公比q大于1
4. 等差数列 { an} 中, a1>0,且 3 a8=5a13,则 Sn 中最大的是 C ( ) (A)S10 (B)S11 (C)S20 (D)S21
(2n-1)an,当{an}为等比数列时其结论可类似推导得出.
4. 已知数列 { an} 的前 n 项和 Sn=32n-n2,求数列 { |an|} 的前 n 项 Sn 和S’n .
【解题回顾】
:当ak≥0 一般地,数列{an}与数列{|an|}的前n项和Sn与 S n
时,有 S n ak<0时, S n S(n k =1,2,…,n).若在 S;当 n
高三数学第一轮总复习四:等差、等比数列
等差、等比数列的通项及求和公式 等差、等比数列的运用
等差、等比数列的应用 数列的通项与求和
第1课时 等差、等比数列的通项及求 和公式
• • • •
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展
•误 解 分 析
要点·疑点·考点
1.等差数列前n项和
a1,a2,…,an中,有一些项不小于零,而其余各项均小于零, 设其和分别为S+、S-,则有Sn=S++S-,所以

2019年《·高考总复习》数学:第五章 第3讲 等比数列

2019年《·高考总复习》数学:第五章 第3讲 等比数列


a1a2a3·…·an=

2
1 2
n2

7 2
n
,当
n=3

n=4
时,a1a2·…·an
的最大值为 26=64.
2019年4月29日
雨衣专享文档
12
方法二,设等比数列{an}的公比为 q,
由aa12+ +aa34= =15,0,
a1=8, 解得q=12.
则 an=24-n.
a1=8,a2=4,a3=2,a4=1,a5=12,…, 所以当 n=3 或 n=4 时,a1a2·…·an 的最大值为 26=64.
2019年4月29日
雨衣专享文档
23
【互动探究】
2.(2017年新课标Ⅱ)已知等差数列{an}的前n项和为Sn,等 比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式; (2)若T3=21,求S3. 解:设{an}的公差为d,{bn}的公比为q, 则an=-1+(n-1)d,bn=qn-1. 由a2+b2=2,得d+q=3. ①
解得a1=14, q=2,
则 a8=14×27=32.
答案:32
2019年4月29日
雨衣专享文档
15
【规律方法】在解决等比数列问题时,已知a1,an,q, n,Sn中任意三个,可求其余两个,称为“知三求二”.而求 得a1和q是解决等比数列{an}所有运算的基本思想和方法.
2019年4月29日
雨衣专享文档
16
考点 2 等比数列的基本性质及应用
例 2:(1)(2016 年河北衡水中学调研)在等比数列{an}中,若
a4,a8 是方程 x2-3x+2=0 的两根,则 a6 的值是( )

高考数学第一轮复习:《等比数列》

高考数学第一轮复习:《等比数列》

高考数学第一轮复习:《等比数列》最新考纲1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.【教材导读】1.如何推导等比数列的通项公式?采用什么方法?提示:可采用累积法推导.2.b2=ac是a,b,c成等比数列的什么条件?提示:必要而不充分条件,因为b2=ac时,不一定有a,b,c成等比数列(如a=0,b=0,c=1),而a,b,c成等比数列,则必有b2=ac.3.如何推导等比数列的前n项和公式?采用了什么方法?提示:可用错位相减法推导.1.等比数列的相关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.符号表示为a na n-1=q(n≥2),q为常数.(2)等比中项:如果三个数a,G,b成等比数列,则G叫做a和b的等比中项,那么Ga=bG,即G2=ab.2.等比数列的通项公式(1)设等比数列{a n}的首项为a1,公比为q,q≠0,则它的通项公式a n=a1q n-1.(2)通项公式的推广a n=a m·q n-m.3.等比数列的前n 项和公式S n =⎩⎨⎧na 1, q =1,a 1(1-q n )1-q =a 1-a n q1-q , q ≠1.4.等比数列的常见性质(1)在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍然是等比数列.(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.5.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 6.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.1.等比数列x,3x +3,6x +6,…的第四项等于( ) (A)-24 (B)0 (C)12(D)24A 解析:由等比数列的性质和定义进行解题,由等比中项性质得(3x +3)2=x ·(6x +6),因x +1≠0,得x =-3.所以a 4=(6x +6)·3x +3x =18·(x +1)2x =-24.故选A.2.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A)1盏(B)3盏(C)5盏(D)9盏B解析:每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q=2,依题意,得a1(1-27)1-2=381,解得a1=3,选择B.3.已知a1,a2,…,a n,…为各项均大于零的等比数列,公比q≠1,则()(A)a1+a8>a4+a5(B)a1+a8<a4+a5(C)a1+a8=a4+a5(D)a1+a8与a4+a5的大小关系不能由已知条件确定A解析:(a1+a8)-(a4+a5)=a1(1+q7)-a1(q3+q4)=a1(1+q7-q3-q4)=a1(1-q3)(1-q4).q=a na n-1>0且q≠1,当q>1时,q3>1,q4>1,1-q3<0,1-q4<0;当0<q<1时,q3<1,q4<1,1-q3>0,1-q4>0.总之a1(1-q3)(1-q4)>0.∴a1+a8>a4+a5.4.若正项等比数列{a n}满足a n+2=a n+1+2a n,则其公比为()(A)12(B)2或-1(C)2 (D)-1C解析:根据题意,设等比数列{a n}的公比为q,若a n+2=a n+1+2a n,则有a n q2=a n q+2a n,即q2-q-2=0,解可得q=2或-1,由数列{a n}为正项等比数列,可得q=2,故选C.5.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 为________. 解析:若q =1,则S n =na 1,∴{S n }是等差数列; 若q ≠1,则当{S n }是等差数列时,一定有2S 2=S 1+S 3, ∴2·a 1(1-q 2)1-q =a 1+a 1(1-q 3)1-q ,即q 3-2q 2+q =0,故q (q -1)2=0, ∴q =0或q =1,而q ≠0,q ≠1,∴此时不成立. 答案:1考点一 等比数列的基本运算(1)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) (A)31 (B)36 (C)42(D)48解析:(1)解法一 由题意知a 1+4a 1+16a 1=21, 解得a 1=1,所以等比数列{a n }的通项公式为a n =a 1q n -1=4n -1.解法二 由题意可设等比数列{a n }的前3项分别为x 4,x,4x ,则x4+x +4x =21,解得x =4,所以等比数列{a n }的通项公式为a n =a 2q n -2=4×4n -2=4n -1.(2)a 3a 5=a 2a 6=64,因为a 3+a 5=20,所以a 3和a 5为方程x 2-20x +64=0的两根,因为a n >0,q >1,所以a 3<a 5,所以a 5=16,a 3=4,所以q =a 5a 3=164=2,所以a 1=a 3q 2=44=1,所以S 5=1-q 51-q=31.【反思归纳】 等比数列基本运算的方法策略(1)将条件用a 1,q 表示,在表示S n 时要注意判断q 是否为1; (2)解方程(组)求出a 1,q ,消元时要注意两式相除和整体代入; (3)利用a 1,q 研究结论.【即时训练】 (1)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N ).(2)若S n 为数列{a n }的前n 项和,且S n =2a n -2,则S 8等于( ) (A)255 (B)256 (C)510(D)511解析:(1)很明显等比数列的公比q ≠1,则由题意可得:S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=89,解得:q =12,则:a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.(2)当n =1时,a 1=2a 1-2,据此可得:a 1=2, 当n ≥2时:S n =2a n -2,S n -1=2a n -1-2, 两式作差可得:a n =2a n -2a n -1,则:a n =2a n -1, 据此可得数列{a n }是首项为2,公比为2的等比数列, 其前8项和为:S 8=2×(1-28)1-2=29-2=510-2=510.故选C.答案:(1)-12 (2)C考点二 等比数列的判定与证明已知数列{a n }的前n 项和为S n ,且对任意的n ∈N *有a n +S n =n . (1)设b n =a n -1,求证:数列{b n }是等比数列; (2)设c 1=a 1且c n =a n -a n -1(n ≥2),求{c n }的通项公式.(1)证明:由a 1+S 1=1及a 1=S 1得a 1=12. 又由a n +S n =n 及a n +1+S n +1=n +1得 a n +1-a n +a n +1=1,∴2a n +1=a n +1. ∴2(a n +1-1)=a n -1,即2b n +1=b n .∴数列{b n }是以b 1=a 1-1=-12为首项,12为公比的等比数列. (2)解:方法一:由(1)知2a n +1=a n +1. ∴2a n =a n -1+1(n ≥2), ∴2a n +1-2a n =a n -a n -1, ∴2c n +1=c n (n ≥2).又c 1=a 1=12,a 2+a 1+a 2=2,∴a 2=34. ∴c 2=34-12=14,c 2=12c 1.∴数列{c n }是首项为12,公比为12的等比数列. ∴c n =12·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n . 方法二:由(1)b n =-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =⎝ ⎛⎭⎪⎫12n+1.∴c n =-⎝ ⎛⎭⎪⎫12n +1-⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫12n -1+1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n -1⎝ ⎛⎭⎪⎫1-12=⎝ ⎛⎭⎪⎫12n (n ≥2). 又c 1=a 1=12也适合上式,∴c n =⎝ ⎛⎭⎪⎫12n .【反思归纳】 等比数列的判定方法(1)定义法:若a n +1a n=q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则数列{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式写成a n =c ·q n (c 、q 均是不为0的常数,n ∈N *),则数列{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则数列{a n }是等比数列.如果判定某数列不是等比数列,只需判定其任意的连续三项不成等比数列即可. 【即时训练】 已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.解析:(1)假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,这与事实相矛盾.所以对任意实数λ,数列{a n }都不是等比数列.(2)因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1·⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n (a n -3n +21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b 1=0(n ∈N *),此时{b n }不是等比数列; 当λ≠-18时,b 1=-(λ+18)≠0, 则b n ≠0,所以b n +1b n=-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列. 考点三 等比数列的性质及应用(1)等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( ) (A)1 (B)2 (C)3(D)5(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:(1)因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2;同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项,所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3.(2)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:(1)C (2)-12【反思归纳】 在等比数列的基本运算问题中,一般是利用通项公式与前n 项和公式,建立方程(组)求解,但如果灵活运用等比数列的性质,可减少运算量,提高解题速度.【即时训练】 (1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )(A)18 (B)-18 (C)578(D)558(2)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. 解析:(1)因为a 7+a 8+a 9=S 9-S 6,在等比数列中S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=1,即S 9-S 6=18.故选A.(2)利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝ ⎛⎭⎪⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n . 记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:(1)A (2)64等比数列的基本运算教材源题:在等比数列{a n }中: (1)已知a 1=-1,a 4=64,求q 与S 4; (2)已知a 3=32,S 3=92,求a 1与q . 解:(1)由q 3=a 4a 1=-64,解得q =-4,所以S 4=a 1-a 4q 1-q =-1+64×41+4=51.(2)因为S 3=a 1+a 2+a 3=a 3(q -2+q -1+1), 所以q -2+q -1+1=3, 即2q 2-q -1=0,解这个方程得q =1或q =-12. 当q =1时,a 1=32; 当q =-12时,a 1=6.【规律总结】 解决等比数列的基本计算问题主要是利用方程思想,建立方程(组)求解.注意两式相除、整体代换、分类讨论等技巧的应用.【源题变式】 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:因为a 5-a 1=15,a 4-a 2=6.所以⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1)两者相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0,所以q =2或q =12, 当q =2时,a 1=1, 当q =12时,a 1=-16(舍去).所以a 3=1×22=4.答案:4课时作业基础对点练(时间:30分钟)1.已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件B 解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B.2.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( ) (A)(-2)n -1 (B)-(-2)n -1 (C)(-2)n(D)-(-2)nA 解析:∵|a 1|=1,∴a 1=1或a 1=-1.∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2.又a 5>a 2,即a 2q 3>a 2,∴a 2<0.而a 2=a 1q =a 1·(-2)<0,∴a 1=1.故a n =a 1·(-2)n -1=(-2)n -1.故选A.3.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( ) (A)16(1-4-n )(B)16(1-2-n )(C)323()1-4-n (D)323(1-2-n )C 解析:∵a 2=2,a 5=14,∴a 1=4,q =12.a 1a 2+a 2a 3+…+a n a n +1=323(1-4-n ).故选C. 4.在等比数列{a n }中,若a 1=19,a 4=3,则该数列前5项的积为( ) (A)±3 (B)3 (C)±1(D)1D 解析:因为a 4=3,所以3=19×q 3(q 为公比),得q =3,所以a 1a 2a 3a 4a 5=a 53=(a 1q 2)5=⎝ ⎛⎭⎪⎫19×95=1,故选D. 5.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn 等于( )(A)32 (B)32或23 (C)23(D)以上都不对B 解析:设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到:c =1,d =2,则m =a +b =92,n =c +d =3或m =c +d =3,n =a +b =92,则m n =32或m n =23.故选B.6.已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n ,若b 10b 11=2,则a 21=( )(A)29 (B)210 (C)211(D)212C 解析:由b n =a n +1a n,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211.故选C.7.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=________.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ①,∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n-1②,∵①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2016=1-210081-2+2×(1-21008)1-2=3×21008-3.答案:3×21008-38.如图,“杨辉三角”中从上往下共有n (n >7,n ∈N )行,设第k (k ≤n ,k ∈N *)行中不是1的数字之和为a k ,由a 1,a 2,a 3,…组成的数列{a n }的前n 项和是S n ,现有下面四个结论:①a 8=254;②a n =a n -1+2n ;③S 3=22;④S n =2n +1-2-2n .其中正确的结论序号为________.1 1 12 1 13 3 1 14 6 4 1 …… ……解析:a n =2n -2,S n =21+22+…+2n -2n =2(1-2n )1-2-2n =2n +1-2-2n ,故只有①④正确.答案:①④9.设数列{a n },{b n }都是正项等比数列,S n ,T n 分别为数列{lg a n }与{lg b n }的前n 项和,且S n T n =n 2n +1,则log b 5a 5=________.解析:设正项数列{a n }的公比为q ,正项数列{b n }的公比为p ,则数列{lg a n }是公差为lg q 的等差数列,{lg b n }是公差为lg p 的等差数列. 故S n =n lg a 1+n (n -1)2lg q . T n =n lg b 1+n (n -1)2lg p .又S n T n=n 2n +1=lg a 1+n -12lg q lg b 1+n -12lg p.所以log b 5a 5=lg a 5lg b 5=lg a 1+4lg q lg b 1+4lg p =S 9T 9=919.答案:91910.设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大项为27,求数列的第2n 项.解:若q =1,则na 1=40,2na 1=3 280,矛盾. ∴q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q=40 ①a 1(1-q 2n)1-q=3 280 ②①②得1+q n =82,∴q n =81③将③代入①得q =1+2a 1④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列. ∴a n =a 1q n -1=27由③④⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.能力提升练(时间:20分钟)11.已知等比数列{a n }的公比q =2,前100项和为S 100=90,则其偶数项a 2+a 4+…+a 100为( )(A)15 (B)30 (C)45(D)60D 解析:S 100=a 1+a 2+…+a 100=90,设S =a 1+a 3+…+a 99,则2S =a 2+a 4+…+a 100, 所以S +2S =90,S =30,故a 2+a 4+…+a 100=2S =60,故选D.12.已知{a n }是首项为1的等比数列,若S n 是{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )(A)158或4 (B)4027或4 (C)4027(D)158C 解析:设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.而S 6=6,两者不相等,因此不合题意.当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q .解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为1+13+19+127=4027.故选C.13.已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为{a n }的前n 项和,则S 3a 3=( )(A)139 (B)79 (C)3(D)1A 解析:4a 3=3a 2+a 4, 4a 1q 2=3a 1q +a 1q 3, ∴q 2-4q +3=0, q =3或q =1(舍).∴S 3a 3=a 1(1-q 3)1-q a 1q 2 =1-q 3q 2(1-q )=1-279×(-2)=139.故选A.14.已知数列{a n }的各项均为正数,且前n 项和S n 满足S n =16(a n +1)(a n +2).若a 2,a 4,a 9成等比数列,求数列{a n }的通项公式.解析:因为S n =16(a n +1)(a n +2),所以当n =1时,有S 1=a 1=16(a 1+1)(a 1+2), 解得a 1=1或a 1=2;当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2).①-②并整理,得(a n +a n -1)(a n -a n -1-3)=0(n ≥2).因为数列{a n }的各项均为正数,所以a n -a n -1=3(n ≥2).当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立.当a 1=2时,a n =2+3(n -1)=3n -1,此时a 24=a 2a 9不成立.所以a 1=2舍去.故a n =3n -2.15.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }和通项公式.(2)证明:1a 1+1a 2+…+1a n<32.解析:证明:(1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32, 所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1,因为当n ≥1时,23n -1<2+13n -1+1=13n -1,所以1a 1+1a 2+…+1a n <1+13+…+13n -1=⎝⎛⎭⎪⎫1-13n ×32,所以1a 1+1a 2+…+1a n <32.。

等比数列及其前n项和高三新高考一轮复习

等比数列及其前n项和高三新高考一轮复习
添加标题
考查等比数列的前n项和
前n项和的实际应用和例题分析
前n项和的求解方法和技巧
前n项和的公式和推导过程
等比数列的定义和性质
考查等比数列的综合应用
等比数列的定义和性质
等比数列的通项公式和前n项和公式
等比数列在实际生活中的应用,如金融、物理等领域
等比数列在高考中的常见题型和解题方法,如选择题、填空题、解答题等
添加标题
等比数列的性质:等比数列的通项公式为an=a1*q^(n-1),其中a1为第一项,q为公比,n为项数。
添加标题
等比数列的前n项和公式:Sn=a1*(1-q^n)/(1-q),其中Sn为前n项和,a1为第一项,q为公比,n为项数。
添加标题
等比数列在高考中的考查形式:选择题、填空题、解答题等,考查学生对等比数列的定义、性质、前n项和公式的理解和应用。
添加标题
等比中项与等比数列的判定
等比中项:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比数列的判定:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比中项的性质:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比数列的判定方法:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
பைடு நூலகம்
遇到问题时,及时向老师或同学请教,不要独自钻研
制定合理的复习计划,确保复习进度和效果
复习过程中,注重基础知识的掌握,避免盲目刷题
调整心态,积极备考
保持良好的心态:面对考试压力,保持冷静,积极应对
制定合理的复习计划:根据自身情况,制定适合自己的复习计划
注重基础知识:复习过程中,注重基础知识的掌握,避免盲目追求难题

高考数学一轮复习 5.3等比数列课件 文

高考数学一轮复习 5.3等比数列课件 文

问题探究3:如何推导等比数列的通项公式和前n项和公 式?
提示:等比数列从定义到通项公式的形式和推导都可以看 作是等差数列对应的问题的运算升级,等比数列的通项公式的 推导可以利用累乘法或数学归纳法.
等比数列前n项和公式的推导可使用“错位相减法”,推导 过程如下:
设Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1, qSn=a1q+a1q2+…+a1qn-1+a1qn, (1-q)Sn=a1(1-qn). 当q≠1时,Sn=a111--qqn;当q=1时,显然Sn=na1.
(q≠0).
2.等比数列的通项公式
设等比数列{an}的首项为a1,公比为q,则它的通项an= __a_1_·q_n_-_1__.
3.等比中项 若__G_2_=__a_·_b_,那么G叫做a与b的等比中项.
问题探究1:b2=ac是a,b,c成等比数列的什么条件? 提示:必要不充分条件.
4.等比数列的常用性质 (1)通项公式的推广:an=am·__q_n_-_m___,(n,m∈N*). (2)若{an}为等比数列,且k+l=m+n,(k,l,m,n∈N*), 则__a_k_·a_l_=__a_m_·a_n____. (3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0), a1n,{an2},{an·bn},bann仍是等比数列.


数列

第三节
等比数列
高考导航
基础
知识回顾
1.等比数列的定义
如果一个数列___从__第__二__项___起__,__后__项__与__相__邻___前__项__的__比____ __是__一__个__确__定 ___的__常__数__(_不__为__零__)__,那么这个数列叫做等比数 列,这个常数叫做等比数列的_公__比____,通常用字母__q____表示

2019年高中数学·第一轮复习 第30讲 等比数列及其前n项和

第30讲 等比数列及其前n 项和1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).判断正误(正确的打“√”,错误的打“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( ) (2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )答案:(1)× (2)× (3)× (4)×(教材习题改编)等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54解析:选C .由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝⎛⎭⎫325=812.故选C .(教材习题改编)设等比数列{an }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64解析:选C .由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C .在单调递减的等比数列{an }中,若a 3=1,a 2+a 4=52,则a 1=________.解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:4在数列{an }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 解析:由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列, 由S n =2(1-2n )1-2=126,解得n =6.答案:6(教材习题改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 答案:27,81等比数列基本量的运算[典例引领](1)(2017·高考江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.(2)(2017·高考全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式; ②若T 3=21,求S 3.【解】 (1)设等比数列{a n }的公比为q ,则由S 6≠2S 3得q ≠1,则S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q=634,解得q =2,a 1=14,则a 8=a 1q 7=14×27=32.故填32.(2)设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.(ⅰ) ①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)和(ⅱ)解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.②由b 1=1,T 3=21得q 2+q -20=0,解得q =-5,q =4. 当q =-5时,由(ⅰ)得d =8,则S 3=21. 当q =4时,由(ⅰ)得d =-1,则S 3=-6.解决等比数列有关问题的2种常用思想1.(2018·武汉调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1=( )A .-2B .-1C .12D .23解析:选B .由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1.故选B .2.(2018·东北四市模拟)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________.解析:由题意得,2(a 1+a 2+a 3)=8a 1+3a 2,所以2a 3-a 2-6a 1=0.设{a n }的公比为q (q >0),则2a 1q 2-a 1q -6a 1=0,即2q 2-q -6=0,解得q =2或q =-32(舍去).因为a 4=16,所以a 1=2,则S 4=2(1-24)1-2=30.答案:30等比数列的判定与证明[典例引领]设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *). (1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.【解】 (1)因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), 所以当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, 所以a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, 所以a 3=8.综上,a 2=4,a 3=8.(2)证明:因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).① 所以当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -2)S n -1+2(n -1).②①-②,得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2.所以-S n +2S n -1+2=0, 即S n =2S n -1+2, 所以S n +2=2(S n -1+2). 因为S 1+2=4≠0,所以S n -1+2≠0,所以S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.等比数列的4种常用判定方法择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[通关练习]设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.等比数列的性质(高频考点)等比数列的性质是每年高考的重点,多与等比数列基本量的计算综合考查,难度适中,既有选择、填空题,也有解答题,主要命题角度有:(1)等比数列项的性质;(2)等比数列前n 项和的性质.[典例引领]角度一 等比数列项的性质(1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________. 【解析】 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31.【答案】 (1)50 (2)31角度二 等比数列前n 项和的性质(1)等比数列{a n }中,前n 项和为48,前2n 项和为60,则其前3n 项和为________. (2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式为a n =________.【解析】 (1)法一:设数列{a n }的前n 项和为S n . 因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48,①a 1(1-q2n)1-q=60,②②÷①,得1+q n =54,所以q n =14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q=64×⎝⎛⎭⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q n S n , 所以q n =S 2n -S n S n =14,所以S 3n =S 2n +q 2nS n =60+⎝⎛⎭⎫142×48=63.(2)设此数列{a n }的公比为q , 由题意,知S 奇+S 偶=4S 偶, 所以S 奇=3S 偶, 所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64,所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝⎛⎭⎫13n -1.【答案】 (1)63 (2)12×⎝⎛⎭⎫13n -1等比数列常见性质的应用等比数列性质的应用可以分为三类 (1)通项公式的变形; (2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[注意] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.[通关练习]1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18解析:选C .法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C .法二:因为a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C .2.(2018·云南11校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50解析:选B .由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 12=4+8+16+32=60,选B .3.已知等比数列{a n }的首项a 1=-1,其前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:-12等比数列基本量的计算方法等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.判定等比数列的方法要证明一个数列是等比数列,最终需归结到定义上,即证a n +1a n=q (q 是不为0的常数).具体方法见本讲[例2]的[规律方法].求解等比数列问题常用的数学思想 (1)方程思想:如求等比数列中的基本量.(2)分类讨论思想:如求和时要分q =1和q ≠1两种情况讨论,判断单调性时对a 1与q 分类讨论.等比数列中的4个易误点(1)特别注意q =1时,S n =na 1这一特殊情况.(2)由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.(4)S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5D .6解析:选B .由题意知,q ≠1,则⎩⎪⎨⎪⎧3a 1(1-q 3)1-q =a 1q 3-23a 1(1-q 2)1-q=a 1q 2-2,两式相减可得-3(q 3-q 2)1-q =q 3-q 2,即-31-q=1,所以q =4.2.(2018·成都第二次诊断检测)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( )A .12B .18C .36D .24解析:选B .a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78⇒1+q 2+q 4=13⇒q 2=3,所以a 5=a 3q 2=6×3=18.故选B .3.(2017·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B .每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得a 1(1-27)1-2=381,解得a 1=3,选择B .4.(2018·广州综合测试(一))已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A .5-12B .5+12C .3-52D .3+52解析:选A .设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),由a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=2(5-1)(5+1)(5-1)=5-12,故选A .5.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14D .15解析:选C .因为数列{a n }是各项均为正数的等比数列,所以a 1a 2a 3,a 4a 5a 6,a 7a 8a 9,a 10a 11a 12,…也成等比数列.不妨令b 1=a 1a 2a 3,b 2=a 4a 5a 6,则公比q =b 2b 1=124=3.所以b m =4×3m -1.令b m =324,即4×3m -1=324,解之得m =5,所以b 5=324,即a 13a 14a 15=324. 所以n =14.6.在等比数列{a n }中,若a 1a 5=16,a 4=8,则a 6=________.解析:因为a 1a 5=16,所以a 23=16,所以a 3=±4.又a 4=8,所以q =±2. 所以a 6=a 4q 2=8×4=32. 答案:327.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和S n =________.解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n 1-2=2n-1.答案:2n -18.(2018·郑州第二次质量预测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.解析:由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q ,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.答案:289.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10. 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,所以b 1qb 1q 3=9. 解得q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.10.(2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2[-23+(-1)n 2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列.1.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n 等于( )A .3B .4C .5D .6解析:选A .因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2. 又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q 1-q =42,解得q =4.由a n =a 1q n -1=2×4n -1=32,解得n =3.故选A .2.设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0.又a 1=2,则S 101的值为( )A .2B .200C .-2D .0解析:选A .设等比数列的公比为q .由a n +2a n +1+a n +2=0, 得a n (1+2q +q 2)=0.因为a n ≠0,所以1+2q +q 2=0,解得q =-1,所以S 101=a 1=2.故选A .3.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +na m=a n ,则数列{a n }的前n项和S n =________.解析:因为a n +ma m =a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2, 所以{a n }是首项a 1=2,公比q =2的等比数列, S n =2(1-2n )1-2=2n +1-2.答案:2n +1-24.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.解析:设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1q n -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.答案:935.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解:(1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.6.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. 解:(1)证明:因为a n +S n =n ①, 所以a n +1+S n +1=n +1②. ②-①得a n +1-a n +a n +1=1,所以2a n +1=a n +1,所以2(a n +1-1)=a n -1, 当n =1时,a 1+S 1=1,所以a 1=12,a 1-1=-12,所以a n +1-1a n -1=12,又c n =a n -1,所以{c n }是首项为-12,公比为12的等比数列.(2)由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n,所以a n =c n +1=1-⎝⎛⎭⎫12n.所以当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n-⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n.又b 1=a 1=12也符合上式,所以b n =⎝⎛⎭⎫12n.。

高考数学一轮总复习课件:等比数列


等比数列的性质 (1)等比数列{an}中,m,n,p,q∈N*,若m+n=p+q,则 am·an=___a_p·__aq_____. (2)等比数列{an}中,Sn为其前n项和,当n为偶数时,S偶=S 奇·__q___. (3)等比数列{an}中,公比为q,依次k项和为Sk,S2k-Sk, S3k-S2k(Sk≠0)成_等__比__数列,新公比q′=__q_k___.
常用技巧
(1)若等比数列{an}的前n项和Sn=A·qn+B,则A,B满足的 关系式为__A__+_B_=__0___.
(2)三个数成等比数列可设三个数分别为
b q
,b,bq,四个数
成等比数列且公比大于0时,可设四个数分别为qb3,bq,bq,bq3.
1.(课本习题改编)(1)等比数列x,3x+3,6x+6,…的第四 项等于___-_2_4___.
则称数列{an}为等比数列. (2)通项公式an=__a_1·__q_n-_1___=am·__q_n_-m___ (q≠0).
__n_a_1 _,q=1, (3)前n项和公式Sn=____a1_(1_1-_-qq_) _n ____,q≠1. (4)M,N同号时它们的等比中项为_±__M__N___.
满足a1a5=16,a2=2,则公比q=( C )
A.4
5 B.2
C.2
1 D.2
解析
方法一:由题意,得
a1·a1q4=16, a1q=2,
解得
a1=1, q=2

aq1==--21,(舍去).故选C.
方法二:a1a5=a32=16.
由an>0,得a3=4,∴q=aa23=2.
3.(2020·课标全国Ⅰ,文)设{an}是等比数列,且a1+a2+a3 =1,a2+a3+a4=2,则a6+a7+a8=( D )

高考总复习一轮数学精品课件 第六章 数列 第三节 等比数列

= √2,
解得
1 = 5√2-5.
(2)由题意,a2=2a1+2,即a1q=2a1+2,①
a3=2(a1+a2)+2,即a1q2=2(a1+a1q)+2,②
联立①②可得a1=2,q=3,则a4=a1q3=54.故选C.
考点二
等比数列的判断与证明
典例突破
例2.已知数列{an}中,a1=1,它的前n项和Sn满足2Sn+an+1=2n+1-1.
则a6+a8=(a1+a3)q5=1×q5=-32,
所以q5=-32,
10 + 12

5 + 7
=
( 5 + 7 ) 5
=q5=-32.
5 + 7
(2)方法一:设等比数列{an}的公比为q,则由a2a4a5=a3a6,a9a10=-8,
1 = 1,
1 ·1 3 ·1 4 = 1 2 ·1 5 ,
)
D.2
答案 A
解析由已知 a3=S3-S2=2,公比
4
q=
3
=
4
=2,所以
2
3
a1= 2

=
2
22
=
1
.
2
3.(2023全国甲,理5)设等比数列{an}的各项均为正数,前n项和为Sn,若
a1=1,S5=5S3-4,则S4=(
15A. 8) Nhomakorabea65
B. 8
C.15
D.30
答案 C
解析设等比数列{an}的公比为q,易知q>0,且q≠1.

可得 5
8

高三一轮复习 数列的复习

数列的复习【知识整理】:一 、等差数列1.等差数列的通项公式:①a n =a 1+____×d②(推广公式)a n =a m +______×d注意:数列{}n a 是等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,特别地,数列{}n a 是公差不为0的等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,且0≠p .2、等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.注意:①b 是a 、c 的等差中项的充要条件是a ,b ,c 成等差数列;②若a ,b ,c 成等差数列,那么c b b a b c a b c a b ca b -=--=-+=+=;;;22都是等价的;③若数列{}n a 是等差数列,则()*-+∈≥-=-N n n a a a a n n n n ,211,整理得211+-+=n n n a a a . 3、等差数列的性质{}n a 是等差数列,d 为公差.(1)1123121,+---+=+==+=+=+k n k n n n n a a a a a a a a a a 即 (2)若m, n, p, q ∈N*,若m +n =p +q ,则_________________若m, n, p ∈N*,若m +n =2p ,则__________________ (3)()mn a a d d m n a a mn m n --=⇔-+= (m, n, ∈N*,且m ≠ n ).(4)序号成等差数列的项又组成一个等差数列,即 ,,,2m k m k k a a a ++仍成等差数列,公差为()*∈Nm k md ,.(5)若{}{}n n b a ,都是等差数列,则数列{}{}{}{}{}2121,,,,,(λλλλλλb k c b a b a b a ka c a n n n n n n n ++++,,,,均为常数)也是等差数列.(6)连续三个或三个以上k 项和依次组成一个等差数列,即)2(,,,232*∈≥--N k k S S S S S k k k k k 且 成等差数列,公差为d k 2.(7)①当项数为奇数()12+n 项时,其中有()1+n 个奇数项,n 个偶数项.1-+=n a S S 偶奇;()112++=+n a n S S 偶奇; ()nn S S na S a n S n n 1,,111+=∴=+=++偶奇偶奇. ②当项数为偶数n 2项时,()11,-,,+++=+===n n n n a a n S S nd S S na S na S 奇偶奇偶偶奇 ∴1+=n na a S S 偶奇. 能力知识清单:1、等差数列{}n a 中,若()0,,=≠==+nm n n a n m n a m a 则. 2、等差数列{}n a 中,若()()n m S n m n S m S n m m n +-=≠==+则,, 3、等差数列{}n a 中,若()0,=≠=+nm m n S n m S S 则; 4、若{}n a 与{}n b ,为等差数列,且前1-21-2m m m m n n T S b a T S n =,则与项和为二、等比数列1. 等比数列的通项公式:①a n =a 1q n -1 ② a n =a m q n -m2、若﹛a n ﹜为等比数列,m, n, p, q ∈N*,若m +n =p +q ,则___________ 3. 等比数列的前n 项和公式: S n = ⎪⎩⎪⎨⎧=≠)1()1(q qS n = _________________()1≠q4、等比数列{a n }的前n 项和S n ,S 2n -S n ,S 3n -S 2n 成 数列,且公比为________ 7.等比中项:如果a ,b ,c 成等比数列,那么b 叫做a 与c 的等比中项,即b²=_____________________三、判断和证明数列是等差(等比)数列常有四种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高三第一轮复习:等比数列
1.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16
B .8
C .4
D .2 2.已知等差数列的公差为,若成等比数列,则的值为( ) A . B . C . D .
3.已知数列是公比为的等比数列,且成等差数列,则公比的值为( ) A . B .-2 C .1或 D .-1或
4.已知等比数列满足,则( )
A .243
B .128
C .81
D .64
5.在正项等比数列{}n a 中,若657,3,a a a 依次成等差数列,则{}n a 的公比为( ) A .2 B .1
2 C .
3 D .1
3
6.等差数列的公差是2,若成等比数列,则的前项和( )
A .
B .
C .
D .
7.若等差数列的公差且成等比数列,则( )
A .
B .
C .
D .2
8.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64 B .81 C .128 D .243
9.如果数列的前n 项和为,则这个数列的通项公式是()
A .
B .
C .
D .
10.记为数列的前项和,若,则等于
A .
B .
C .
D .
11.若公差为的等差数列的前项和为,且成等比数列,则
A .
B .
C .
D .
12.等比数列中,,则的前4项和为( ) A .48 B .60 C .81 D .124
13.已知是等比数列前项的和,若公比,则( )
A .
B .
C .
D .
14.数列{}n a 的前n 项和为n S ,且13a =,*12()n n a a n N +=∈,则5S 等于( )
A .32
B .48
C .62
D .93 15.等比数列{}n a 的各项均为正数,且544a a =,则212822log log log a a a ++⋯+=( ) A .7
B .8
C .9
D .10 16.等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.
17.已知数列满足,,设. (1)求
;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式.
18.已知等差数列的前项和为,等比数列的前项和为,且,,.
(1)若,求的通项公式;(2)若,求.
19.等比数列{}n a 中,已知142,16a a ==.(1)求数列{}n a 的通项公式; (2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S .
20.已知等差数列{}n a 满足1210a a +=,432a a -=.
(Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?
21.记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;
(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。

参考答案
1.C2.C3.C4.B5.A6.A7.A8.A9.D10.B11.B12.B13.A14.D15.B
16.(1)或 .(2).
17.(1) b 1=1,b 2=2,b 3=4.(2) {b n }是首项为1,公比为2的等比数列.理由见解析.(3) a n =n ·2n -1.
18.(1);(2)5或. 19.(1) 2n
n a =.(2) 2622n S n n =-.
20.(Ⅰ)22n a n =+;(Ⅱ)128. 21.(1)(2)n n a =-;(2)见解析.。

相关文档
最新文档