四年级高思奥数之统筹与对策含答案
四年级下册数学奥数题统筹规划_通用版

四年级下册数学奥数题统筹规划_通用版小学四年级奥数题:统筹规划1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算202019+20199+2019+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。
问李老师和王刚各多少岁?3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。
小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。
”问大象妈妈有多少岁了?5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。
问大、小熊猫各几岁?6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。
小学四年级奥数题练习及答案解析-学而思入学必备

小学四年级奥数题练习及答案解析-学而思入学必备work Information Technology Company.2020YEAR四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少这时共需耗油多少升【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
小学四年级奥数题及答案[1]
![小学四年级奥数题及答案[1]](https://img.taocdn.com/s3/m/cf3ac56b7375a417866f8f57.png)
小学四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)2010-03-25 15:42:36 来源:奥数网整理网友评论1条【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
小学四年级奥数练习及答案解析十一讲-可编辑修改

小学四年级奥数练习及答案解析十一讲小学四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
小学四年级奥数题练习及答案解析-学而思入学必备

四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
高斯小学奥数四年级上册含答案第10讲_游戏策略

第十讲游戏策略对策论又称博弈论,研究的现象与政治、经济、军事乃至人们的日常生活学习都有密切的联系.一般地,在具有竞争或对抗性质的行为中,参加竞争对抗的各方具有不同的目标.为了达到各自的目标,各方既要制定出对自己最有利的方案,又要考虑到对手所有可能采取的方案.对策论就是研究竞争对抗中各方是否存在最佳行动方案,以及如何找到这个最佳方案.我们将要学习的对策问题,主要是研究在两人的游戏过程中如何使自己取胜的策略问题.如果说“统筹规划”所研究的是“死的”对象的话,那么“对策问!题”所研究的就是一个“活的”对手,因而在考虑问题时需要设想对手可能采取的各种方案,并使己方的策略能在对手所有可能采取的方案中都处于有利位置, 我们将这种状态称作“必胜状态”(否则称为“必败状态”).那么在给定的游戏 规则下,是否存在必胜状态,以及为了达到必胜状态所采取的策略就成了问题的 关键.需要强调的是,我们的目标不是“可能胜” 而是“必胜” 我们不能存在侥幸心理,不能寄希望于对方的失误,而是要在假定双方都足够聪明的前提下寻找必胜策略.例题 1有 12 枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取 1 枚,最多取 3 枚.如果谁取走最后一枚棋子谁赢,那么谁有必胜策略? 如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什 么?「分析」直接考虑 12 枚棋子并不容易,大家不妨试试棋子较少时谁有必胜策略,看看能否找到规律.练习 1有 15 枚棋子,甲、乙两人轮流取,规定甲先取,每人每次至少取 1 枚,最多取 2 枚.如果谁取走最后一枚棋子谁赢.那么谁有必胜策略?如果谁取走最后一枚棋子谁输,那么谁有必胜策略?必胜策略是什么?情况很复杂时,我们往往需要先从比较简单的情况开始尝试,在逐渐变复杂的过程中,寻找规律进而解决题目.这其实是一种非常重要的数学思想,高年级乃至往后的数学学习中应用的递推、数学归纳法等都是以此为基础的.利用互补的想法,我们有更一般的结论.“有 m 枚棋子,两人轮流取棋子,规定每人每次可以取走 1 至 n 枚,直到把棋子取完为止,谁取得最后的一枚棋子谁胜.”其取胜策略是:每次取走棋子数除以 (n + 1) 的余数枚棋子,让对方面对(n + 1) 的倍数枚棋子——必败状态,则可保证取到最后的一枚棋子而获胜.例题2现有2014根火柴.甲、乙两个人轮流从中取出火柴,规定甲先取,每人每次至少从中取出2根,最多取出4根.如果谁无法取出火柴谁就赢,请问谁一定能赢?策略是什么?「分析」本题中每人每次最少要取出2根火柴,如果恰好剩下1根火柴,就已经无法再次取出了.能否像例题1那样,从火柴较少的情况入手,找出规律呢?练习2现有2009个糖豆,甲、乙两个人轮流取从中出糖豆,每次至少从中取出2个,最多取出5个,谁无法取出糖豆谁就赢.如果甲先取,请问谁一定能赢?策略是什么?在一定能分出胜负的对策问题中,一方要么处于必胜状态,要么处于必败状态.处于必胜状态的一方,总能进行一次适当的操作后,把必败状态留给对手.反之,处于必败状态的一方,无论采取什么策略,都只能把必胜状态留给对手.在很多对策问题中,具有对称性的状态往往是解决问题的关键.例题3甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取,个数不为零即可.规定取到最后一个球的人赢,甲先取球.如果开始时两堆分别有五个球和八个球,那么谁有必胜策略?请说明理由.「分析」直接考虑5个和8个并不容易,你能像之前一样,从最简单的情况开始分析,找到规律吗?练习3甲、乙两个海盗分金币:有两堆金币,一堆有2009枚,一堆有2014枚.甲、乙轮流从中拿金币,每次只能从同一堆中拿,个数不为零即可.规定拿到最后一枚金币的人获胜,胜者可以获得所有金币.如果甲先拿,那么谁有必胜策略?请说明理由.例题4B如下图,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿45°角走1步,最终将棋子走到方格B的人获胜.请问:A谁一定能获胜?必胜策略是什么?「分析」在棋盘中,有一些是必胜格,有一些是必败格.一方想要获胜,必须每次都把棋子走到必胜格子中,使得对手下一步无论采取什么操作,都不得不进入必败格子.本题中方格B就是必胜格.那么其他的格子中哪些是必胜格?哪些是必败格?B 练习4如右图,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿45°角走1步,A最终将棋子走到方格B的人获胜.请问:谁有必胜策略?必胜策略是什么?例题5如下图,方格A中放有一枚棋子,甲先乙后B 轮流移动这枚棋子,只能向上、向右或向右上方沿45角走1步,最终将棋子走到方格B的人获胜.请问:(1)谁一定能获胜?必胜策略是什么?(2)如果每次允许往同一方向(上、右或A右上)走任意多步,结果又如何呢?「分析」第(1)问中,每次只能走1步,那么B为必胜格,则它相邻的左、下、左下三个格子全是必败格;第(2)问中,每次可以走任意多步,那么B为必胜格,则由B可以直接找出多少个必败格呢?“ 例题 6桌上有一块巧克力,它被直线划分成 3 行 7 列的 21 个小方块,如图 所示.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:①每人每次只许沿一条直线把巧克力切成两块; ②拿走其中一块,把另一块留给对手再切;③不断重复前两步,最后谁能恰好留给对手一个小方块,谁获胜. 如果你首先切巧克力,那么你第一次应该切走多少个小方块,才能保证自己最后获胜?「分析」直接分析并不容易,还是先来看看简单情况吧!如果只有一行或一列的小方块,谁会获胜?两行或两 列呢?你能发现什么规律呢?在对策问题中,要想取得胜利,必须使自己能始终保持在必胜状态中,而使对手总是处于必败状态.明确了这一点,我们就知道了解决对策问题的关键在于弄清楚什么是必胜状态,什么是必败状态. 知己知彼,百战不殆.”哪一方的策 略更胜一筹,哪一方就会取得最终的胜利.课堂内外田忌赛马田忌很喜欢赛马.有一回他和齐威王约定,进行一次比赛.将马分成上、中、下三等,比赛的时候,上等马对上等马,中等马对中等马,下等马对下等马.由于齐威王每个等级都比田忌的强,三场比下来,田忌都失败了.田忌觉得很扫兴,垂头丧气地准备离开赛马场.这时,田忌发现,他的好朋友孙膑也在人群里.孙膑招呼田忌过来,拍着他的肩膀,说:“从刚才的情形看,齐威王的马比你的马快不了多少呀……”孙膑还没说完,田忌瞪了他一眼,说:“想不到你也来挖苦我!”孙膑说:“我不是挖苦你,你再同他赛一次,我有办法让你取胜.” 田忌疑惑地看着孙膑:“你是说另换几匹马?” 孙膑摇摇头,说:“一匹也不用换.”田忌没有信心地说:“那还不是照样输!”孙膑胸有成竹地说:“你就照我的主意办吧.”齐威王正在得意洋洋地夸耀自己的马,看见田忌和孙膑过来了,便讥讽田忌:“怎么,难道你还不服气?”田忌说:“当然不服气,咱们再赛一次!”齐威王轻蔑地说:“那就来吧!”一声锣响,赛马又开始了.孙膑让田忌先用下等马对齐威王的上等马,第一场输了.接着进行第二场比赛.孙膑让田忌拿上等马对齐威王的中等马,胜了第二场.齐威王有点儿心慌了.第三场,田忌拿中等马对齐威王的下等马,又胜了一场.这下,齐威王目瞪口呆了.比赛结果,田忌胜两场输一场,赢了齐威王.还是原来的马,只调换了一下出场顺序,就可以转败为胜.作业1.10枚正面朝下的硬币排成一排放在桌子上,两个小朋友玩翻硬币游戏.规定:每人每次只能翻动一枚或两枚硬币使之正面朝上,翻过的硬币不能再翻.两人轮流翻硬币,翻动最后一枚硬币的人获胜.请问:谁有必胜策略?必胜策略是什么?2.现有200个石子.甲、乙两个人轮流从中取出石子,每次最少从中取出2个,最多取出4个,谁无法取出石子谁就赢.如果甲先取,那么谁有必胜的策略?必胜策略是什么?3.甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取任意多个,但不能不取.规定取到最后一个球的人输,甲先取球.(1)如果开始时两堆各有两个球,那么谁有必胜策略?请说明理由;(2)如果开始时两堆分别有两个球和三个球,那么谁有必胜策略?请说明理由.4.甲、乙二人轮流在一个正十二边形中画对角线(即两个不相邻顶点的连线)规定新画.的对角线不能与已经画出的对角线相交,谁不能继续画谁输.甲先画,请问谁有必胜策略?必胜策略是什么?\5.如下图所示,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿45角走1步,最终将棋子走到方格B的人获胜.请问:谁一定能获胜?必胜策略是什么?BA第十讲游戏策略1.例题1答案:(1)乙有必胜策略;(2)甲有必胜策略详解:(1)如果剩不到4枚棋子,先取的人把所有棋子取走后获胜;如果剩4枚棋子,无论先取的人如何取,所剩的棋子数都不到4枚,所以后取的人获胜;如果有12枚棋子,甲取1枚时乙取3枚,甲取2枚时乙取2枚,甲取3枚时乙取1枚,在每次甲取完后,乙可以取适当数量的棋子以保证两人一个回合共取4枚棋子,这样乙可以拿到最后1枚,乙胜.(2)如果剩1枚,那么先取的人必败;如果剩2至4枚,先取的人可以剩1枚不取,所以后取的人败.12枚的情况与4枚的情况类似,甲先取3枚,剩下9枚.之后乙取1枚时甲取3枚,乙取2枚时甲取2枚,乙取3枚时甲取1枚,甲保证两人一个回合共取4枚棋子.最后1枚必然被乙拿到,甲胜.2.例题2答案:甲有必胜策略详解:根据上题经验,第二个人总可以保证和第一个人共取6根火柴,2014÷6=335L L4,所以2014根火柴的情况与4枚火柴的情况相同.4枚火柴时甲先取2根火柴即可获胜,因此2014根火柴时甲也先取2根火柴,之后乙无论怎么取,甲再取时都可以保证两人一个回合共取6根火柴.(2014-2)÷6=335L L2,最后剩下的2根火柴留给了乙,甲无法取出火柴,甲获胜.3.例题3答案:甲必胜详解:甲先从8个球的那堆中取出三个球,使得两堆球一样多.之后每次乙取几个球,甲就在另一堆中取相同数量的球,甲获胜.4.例题4答案:甲必胜详解:我们给必胜格子(如方格B)标记“√”,给必败格子标记“×”.从方格B逆推,能一步走到B的格子都要标记“×”.特别地,最上边一行和最右边一列为“√”和“×”相间的标记,如左图.对于左图中的格子1和格子3,对方有办法把它移到必胜格子中,所以格子1和格子3都是必败格子.如果把棋子移到格子2中,对手无论怎么移,都只能移到必败格子中,因此格子2是必胜格子.用类似的方法分析,得到右图.因此甲有必胜策略,每次把棋子移到标有“√”的格子中即可.×√×B1××23√A××√×B ×××××√×√××××5.例题5答案:(1)甲必胜;(2)甲必胜详解:(1)我们给必胜格子(如方格B)标记“√”,给必败格子标记“×”.从方格B逆推,能一步走到B的格子都要标记“×”.特别地,最上边一行和最右边一列为“√”和“×”相间的标记,如左图.对于左图中的格子1和格子3,对方有办法把它移到必胜格子中,所以格子1和格子3都是必败格子.如果把棋子移到格子2中,对手无论怎么移,都只能移到必败格子中,因此格子2是必胜格子.用类似的方法分析,得到右图.因此甲有必胜策略,每次把棋子移到标有“√”的格子中即可.√×√×√×B1××23√×√√×√×√×B ×××××××√×√×√×√×××××××√×√×√×√A×A××××××(2)与第(1)问方法类似,得到下图.甲有必胜策略,每次把棋子移到标有“√”的格子中即可.××××××B××××√×××××××√××√××××××××××××A××√×××6.例题6答案:切走12个小方块详解:当只剩1行(或1列)时,但不是一个小方块,先切的人只要切剩下一个小方块就赢了.当剩2行(或2列)时,如果剩2⨯2的方块,那么先切的人切完后成为1⨯2的方块,所以后切的人必胜;如果剩2⨯3、2⨯4、…等情况,先切的人只要切剩下一个2⨯2的方块就可以取胜.当剩3行(或3列)时,如果剩3⨯3的方块,先切的人切一刀后只能剩下1⨯3或2⨯3的方块,此时后切的人获胜.当有3⨯7块时,先切的人切走3⨯4=12块,给对手留下一个3⨯3的正方形,接着每次都给对手留下一个1⨯1或2⨯2的正方形即可获胜.7.练习1答案:(1)乙必胜;(2)甲必胜详解:(1)甲取1枚时乙取2枚,甲取2枚时乙取1枚,乙只要保证两人一个回合共取3枚棋子,即可拿到最后1枚获胜.(2)甲先取2枚,剩下13枚.之后乙取1枚时甲取2枚,乙取2枚时甲取1枚,甲保证两人一个回合共取3枚棋子,最后1枚必然被乙拿到,甲胜.8.练习2答案:甲必胜详解:2009÷(2+5)=287,甲先取5个糖豆,之后乙无论怎么取,甲再取时都可以保证两人一个回合共取7个糖豆,最后剩下的2个糖豆留给了乙,甲无法再次取出糖豆,甲获胜.9.练习3答案:甲必胜简答:甲先从2014个金币中取出5个金币,使两堆金币一样多.之后每次乙拿几个金币,甲就在另一堆中拿相同数量的金币,最后肯定甲拿走最后一个金币,甲获胜.10.练习4答案:甲必胜简答:策略是每次把棋子走到下图中标有“√”的格子内.√×√×B×××××√×√×√A××××11.作业1答案:先翻动的人必胜简答:先翻硬币的小朋友翻1枚硬币,以后对手翻1枚时自己翻2枚,对手翻2枚时自己翻1枚,保证两人一个回合共翻3枚,即可保证自己翻到最后1枚.12.作业2答案:乙必胜简答:甲取2个乙就取4个,甲取3个乙也取3个,甲取4个乙就取2个.200÷6=33L L2,最后剩下2个石子,甲取完,乙无法再取,乙获胜.13.作业3答案:(1)乙必胜;(2)甲必胜简答:(1)甲取1个乙就取2个,甲取2个乙就取1个.(2)必胜策略是从三个球的那堆中取1个球,之后乙取1个甲就取2个,乙取2个甲就取1个.14.作业4答案:甲必胜简答:策略是先画一条经过正十二边形中心的对角线,以它为对称轴,把图形分成对称的两部分.之后乙每画一条对角线,甲就在对称的位置上画出对角线.最后肯定是乙不能继续画,甲胜.15.作业5答案:乙必胜简答:策略是每次把棋子走到下图中标有“√”的格子内.√×√×√×B×××××××A×√×√×√。
四年级下册数学奥数题统筹规划_通用版

小学四年级奥数题:统筹规划1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
要过河时间最少?是多少?四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算202019+20199+2019+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999) 4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。
四年级奥数:统筹规划应用题

四年级奥数:统筹规划应用题四年级奥数:统筹规划应用题现在的奥数,其难度和深度远远超过了同级的义务教育教学大纲。
小编整理了相关的内容,欢迎欣赏与借鉴。
例1 有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【解析】依题意,大卡车每吨耗油量为10÷5=2(公升)小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升) 例2 烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【解析】先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
例3 用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【解析】一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
例4 甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的'总时间最少,并求出这个总时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16 讲统筹与对策内容概述生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法. 各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析对一般从简单情形出发进行逆推.典型问题1.妈妈让冬冬给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.冬冬估算了一下,完成这些工作要花20分钟. 为了尽快给客人沏茶,你认为最合理的安排,最少需要多少分钟?2.理发店里同时来了A、B、C三个顾客,A理板寸需要7分钟,B理光头需要10分钟,C烫卷发需要40分钟.请问:如何安排这三个人的理发顺序才能使得他们三人所花的时间总和最短?这个最短的时间是多少?3.西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元,要给47位同学每人发1个面包最少要花多少钱?4.如图16-1的方格屏幕上,每个小方格的边长是1厘米,一条贪吃蛇从左下角出发,沿着格线爬行,如果它想吃掉图中的3个“★”,最少要爬多远?请画出路线.5.如图16-2所示,一条环形公路上有A、B、C、D四个仓库.A仓库存盐40吨,B仓库存盐5吨,C仓库存盐35吨,D仓库没有盐.现在要调整存放数量,计划A、B、C、D每个仓库各存盐20吨.已知每吨盐运l千米需要运费2元.试问:为完成上述调运计划,最少需要多少元运费?(图16-2中公路旁的数字表示相邻仓库间的里程数,单位为千米)6.2008个小方格从左到右排成一行,甲、乙两人轮流在空格内放棋子,每人每次放一枚.规定如下:每个空格至多放一枚棋子;当甲放好一枚棋子后,乙必须在紧挨着这枚棋子的空格内放;而当乙放好棋子后,甲必须隔一个位子放;谁放不了就判谁输.如果乙一开始在左数第一个方格内放了一枚棋子,谁将有必胜策略?7.有9根火柴,甲、乙两人轮流取,规定每次可以取1根或者2根火柴,以取走最后一根火柴的人为胜者.试问:如果甲先取,谁有必胜的策略?8.有100根火柴,甲、乙两人轮流取,规定每次可以取1根、2根、3根或4根火柴,谁取到最后一根火柴谁输.甲先取.问:谁有必胜的策略?9.黑板上写有l,2,3,4,5,…,2009这些自然数,甲先乙后,两人轮流擦去一个自然数.如果最后剩下的两个自然数奇偶性不同,那么甲就胜,否则乙胜.请问:谁有必胜的策略,具体的策略是怎样的?10.两人轮流往一个圆桌面上放同样大小的硬币,规则是:每人每次只能放一枚,硬币不许重叠,谁放完最后一枚硬币而使对方再也无处可放,谁就获胜.问:先放者如何取胜?拓展篇1.小悦中午做烧豆腐,共需要七道工序,每道工序的时间如下:切豆腐2分钟,切肉片2分钟,准备葱姜蒜3分钟,准备佐料1分钟,烧热锅2分钟,烧热油2分钟,炒菜4分钟.那么小悦烧好这道菜最短需要多少分钟?2.小杂货店里有一位售货员卖货,同时来了A、B、C、D、E五个顾客.A买糖果需要2分钟;B买大米需要6分钟;C买香烟和啤酒需要4分钟;D买水果需要3分钟;E买蔬菜需要5分钟.请问:售货员应该如何安排五个人的顺序,使得这五个人排队等候的时间总和最短?这个最短的时问是多少?(只计算每个人排队的时间,不计算买东西的时间.)3.有47位小朋友,老师要给每人发1支红笔和1支蓝笔.商店中每种笔都是5支一包或3支一包,不能打开零售.5支一包的红笔61元,蓝笔70元,3支一包的红笔40元,蓝笔47元.老师买所需要的笔最少要花多少元?4.图16-3是一张道路图,每段路旁标注的数值表示小悦走这段路所需的分钟数.问:小悦从A出发走到B最快需要多少分钟?5.如图16-4,一条路上从西向东有A、B、C、D、E五所学校,分别有200人、300 人、400人、500人、600人.任意相邻的两所学校之间的距离都是100米,现在要在某所学校的门口修建一个公共汽车站,要使所有人到达车站的距离之和最小,车站应该建在什么地方?距离的总和最少是多少?6.北京和上海分别制成同样型号的车床10台和6台,这些车床准备分配给武汉11台、西安5台,每台车床的运费如图16-5所示,单位为百元.那么总运费最少是多少元?7.甲拿若干枚黑棋子,乙拿若干枚白棋子,他们轮流向如图16-6所示的3×3的方格中放棋子,每次放1枚,谁的棋子中有3枚连成一条线(横、竖、斜均可),谁就获胜.如果甲首先占据了中问位置,乙要想不败,第1枚棋子应该放在哪里?8.有12枚棋子,甲、乙两人轮流取,规定每次至少取1枚,最多取3枚,以取走最后一枚棋子者为胜者.如果甲先取,那么谁有必胜策略?如果取走最后一枚棋子者为败者,并且仍然是甲先取,那么谁有必胜策略?9.现有2008根火柴,甲、乙两个人轮流从中取出火柴.每次最少从中取出2根,最多取出4根.谁无法再次取出火柴谁就赢.如果甲先取,请问谁有必胜的策略?10.甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同一堆中取,个数不为零即可,规定取到最后一个球的人赢,现在甲先取球.(1)如果开始时两堆球数分别是两个和两个,那么谁有必胜策略?请说明理由;(2)如果开始时两堆球数分别是两个和三个,那么谁有必胜策略?请说明理由;(3)如果开始时两堆球数分别是五个和八个,那么谁有必胜策略?请说明理由.11.如图16-7,方格A中放有一枚棋子,甲先乙后轮流移动这枚棋子,只能向上、向右或向右上方沿450角走1步,最终将棋子走到方格B的人获胜.请问:谁有必胜策略,策略是什么?如果每次允许往同一方向(上、右或右上)走任意多步,结果又如何呢?12.桌上有一块巧克力,它被直线划分成3行7列的21个小方块,如图16-8所示.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:①每次只许沿一条直线把巧克力切成两块;②拿走其中一块,把另一块留给对手再切;③谁能留给对手恰好是一个小方块,谁就取胜.如果请你首先切巧克力,那么你第一次应该切走多少个小方块,才能使你最后获胜?超越篇1.甲、乙、丙三名车工准备在同样效率的三个车床上车出七个零件,加工各零件所需要的时间分别为4、5、6、6、8、9、9分钟.三人同时开始工作。
问:经过合理分工,最少经过多少分钟可以车完全部零件?2.图16-9是某县的道路分布图.小唐要驾车从县城出发,经过甲、乙、丙、丁、戊这些乡镇中的每个至少一次,并且最后回到县城.已知道路旁边的数值表示汽车通过此段公路所需的分钟数,那么小唐完成计划的行程最少需要多少分钟?3.如图16-10,有10个村坐落在从县城出发的一条公路上,图中的数字表示各段公路的长度,单位是千米.现在要安装水管,从县城送自来水供给各村.可以用粗细两种水管,粗管足够供应所有各村用水,细管只能供一个村用水。
粗管每千米要用8000元,细管每千米要用2000元.把粗管和细管适当搭配,互相连接,可以降低工程的总费用.按你认为最节约的办法,费用应是多少元?4.甲和乙两人做数学游戏:在黑板上写一个自然数,轮到谁走时,谁就从该自然数中减去它的某个非零数字,并用所得的差替换原数.两人轮流走.谁所得到的数是零,就算谁赢.如果开始在黑板上写着数1994,并且甲先走,问谁有必胜策略?5.如图16-11,五角星上共有10个交点和15条小线段.甲首先将一枚棋子放在A点上,并由此出发沿某条小线段将棋子移到相邻的一个交点上,之后乙再将棋子沿某条小线段移到下一个相邻的交点上,之后甲再走,……,如此下去.如果要求每条小线段都不能重复经过,并且轮到某人无路可走时便判其失败,那么甲是否有必胜策略?6.把一枚棋子放在图16-12中左下角的方格内,甲、乙两人玩这样一个游戏:双方轮流移动棋子,只能向上、向右或者向右上方沿450角移动,一次可以移动任意多格.谁把棋子移到了右上角的方格中即为输,试问:如果甲先走,是否有必胜的策略,为什么?7.冬冬中午要炒一个菜,煮一锅饭,烧一壶水.用煤气炉炒菜每道工序的时间如下:切菜4分钟,准备佐料4分钟,烧热锅2分钟,烧热油2分钟,炒菜4分钟.用煤气炉烧水每道工序的时间如下:洗水壶2分钟,用火烧水15分钟,把开水灌到热水瓶中需要2分钟.用电饭锅煮饭每道工序的时间如下:淘米4分钟,煮饭18分钟.冬冬家的煤气炉只有一个煤气灶.请问:冬冬做完这三件事情最短需要多少分钟?8.甲、乙两人轮流报数,每人都只能报2、3、5、7中的一个,把两人报的数累加.如果某个人报完数后,累加的和第一次为三位数,那么这个人就获胜.请问:谁有必胜策略?第16 讲统筹与对策内容概述生活中的统筹规划问题,包括合理安排顺序、选择最短或最长路线、人员分配、货物调度等,一般采用枚举、比较和逐步调整的方法. 各种游戏对策问题,在必胜方案中通常要占据关键位置或选取特殊数值,分析对一般从简单情形出发进行逆推.典型问题1.妈妈让冬冬给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.冬冬估算了一下,完成这些工作要花20分钟. 为了尽快给客人沏茶,你认为最合理的安排,最少需要多少分钟?答案:16分钟解析:在试题中,烧开水之前一定要洗开水壶,但是在烧开水的同时,可以把洗茶壶、洗茶杯、拿茶叶三件事都做完。
所以根据先洗水壶,然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶,共需要1+15=16分钟。
2.理发店里同时来了A、B、C三个顾客,A理板寸需要7分钟,B理光头需要10分钟,C烫卷发需要40分钟.请问:如何安排这三个人的理发顺序才能使得他们三人所花的时间总和最短?这个最短的时间是多少?答案:A先理发,然后B,最后C;81分钟解析:因为理发时间固定,为使所花时间总和最短,则只需三人等待时间最短,因此按照理发时间从短到长的顺序理发,这样A只理板寸,花费7分钟,B等待A并理光头,共花费7+10=17分钟,C等待A、B并烫卷发,共花费7+10+40=57分钟,三人共花费7+17+57=81分钟。
3.西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元,要给47位同学每人发1个面包最少要花多少钱?答案:76元解析:5个一袋的面包单价为8÷5=1.6元,3个一袋的面包单价为5÷3=1.67元,1.6<1.67,所以要尽量多购买5个一袋的面包,同时不要让面包有剩余。
47÷5=9……2,2不能被3整除,将两袋5个的与剩余的两个凑成12个,可正好换成4袋3个的,因此需购买7袋5个的和4袋3个的,共花8×7+5×4=76元。
4.如图16-1的方格屏幕上,每个小方格的边长是1厘米,一条贪吃蛇从左下角出发,沿着格线爬行,如果它想吃掉图中的3个“★”,最少要爬多远?请画出路线.答案:8厘米解析:路线如右图红线所示5.如图16-2所示,一条环形公路上有A、B、C、D四个仓库.A仓库存盐40吨,B仓库存盐5吨,C仓库存盐35吨,D仓库没有盐.现在要调整存放数量,计划A、B、C、D每个仓库各存盐20吨.已知每吨盐运l千米需要运费2元.试问:为完成上述调运计划,最少需要多少元运费?(图16-2中公路旁的数字表示相邻仓库间的里程数,单位为千米)答案:700元解析:每个仓库各存盐20吨,则A仓库需运出20吨,B仓库需运入15吨,C仓库需运出15吨,D仓库需运入20吨,为使运费最少,则我们只选择相邻仓库进行转运。