四年级高思奥数之最值问题一含答案

合集下载

学而思四年级第11讲.最值问题(基础-提高-尖子班)

学而思四年级第11讲.最值问题(基础-提高-尖子班)

349876第十一讲 最值问题(一)例1(2008年日本小学算术奥林匹克大赛初赛)【分析】 答案:247.要使两个五位数的差最小,这两个五位数首位上的数应该尽力接近,且较大数的后四位应尽可能小,较小数的后四位应尽可能大。

较大的五位数的后四位最小为0123,较小的五位数的后四位最大为9876,还剩下4和5两个数,所以较大的数是50123,较小的数是49876,差为5012247−=.例2 (2008年数学解题能力展示)【分析】 答案:50.一共20张牌,点数之和是固定的:2110(123...10)×++++=.由于每轮的点数差做为两人的得分,那么两人的总分之和就是10轮的点数差之和,即10轮中较大数之和-10轮中较小数之和(令它们分别是A 和B,则总分之和=A-B)又因为A+B=110所以A-B 的最大值即110-2B 的最大值,转换成求出B 的最小值即可。

令B 最小,既最小的十张牌之和:1,2,3,4,5,1,2,3,4,5.所以B 最小为30 ,总分之和最大=110-2B=50例3 (第十三届华杯赛)【分析】 极端分析法—答案:2005.通过找规律解决问题,要得到最小值,即让每次划去最多,应该从大往小擦数,最终得到2。

要得到最大值,即让每次划去最少,应该从小往大擦数,最终得到2007,从而最大与最小的差为220052007−=.例4 (2008年日本小学算术奥林匹克大赛初赛)【分析】 极端分析法—答案:155.最倒霉原则:“保证”=“最倒霉”+1. 最倒霉的情况是:取出了两种颜色的全部和其他颜色各9个依然不满足条件,即个,从而1550296154×+×=41155+=1×+556一定能保证满足条件.例5 (2008年日本小学算术奥林匹克大赛初赛)【分析】 极端分析法—答案:92.总表面积固定,当蓝色面积最大时,白色面积最小.因此,让蓝色木块优先占据特殊位置.分析发现,染色后8个角上的正方体3个面有颜色,扣去两角后的每条棱上的3个正方体有2个面。

高斯小学奥数四年级上册含答案第15讲_逻辑推理一

高斯小学奥数四年级上册含答案第15讲_逻辑推理一

某校数学竞赛,A、B、C、D、E、F、G、H这8位同学获得前八名•老师让他们猜一下谁是第一名• A说:“ F或者H是第一名•” B说:“我不是第一名•” C说:“G是第一名.” D说:“B不是第一名•” E说:“A说的不对•” F: “我不是第一名,H也不是第一名.G说:“C不是第一名• ”H说:“我同意A的意见• ”老师指出:8人中有3人猜对了•问: 第一名是谁?「分析」这8位同学中一定有一人是第一名,对第一名逐个试验,似乎可以解决问题.有没有更简单的方法呢?这8个人说的话中有没有哪些人意见相同?有没有哪些人意见相反?练习3小刚、小李、小杨、小王4个人中有一位打破了玻璃•老师问:“这是谁干的?”小王说:“不是我干的.”小刚也说:“不是我干的•”小李说:“是小王干的.”小杨说:“是小李干的•”已知他们4个人中有且仅有一个人没有说真话,那么谁打碎了玻璃?对于多对多的逻辑推理问题,通常状况下都可以通过列表法分析. 虽然分析过程没有变化,但是借助表格我们可以把条件之间的联系变得更加清晰,这正是列表法的优势.徐、王、陈、赵四位师傅分别是木工、车工、电工和钳工,他们都是象棋迷.已知:①木工只和车工下棋,而且总是输给车工;②王、陈两位师傅和木工经常一起看球;③陈师傅与电工下棋互有胜负;④徐师傅比赵师傅棋艺高很多.问:徐、王、陈、赵四位师傅各是什么工种?「分析」这是一个多对多的逻辑推理问题,我们可以用列表分析的方法来解决•比如根据条件②,王师傅和陈师傅都不是木工,我们可以在相应的格子中画k “Y”练习4甲、乙、丙、丁四人进行象棋比赛,并决出了一、二、三、四名•已知:甲比乙的名次靠前;丙、丁喜欢一起踢足球;乙、丁每天一起骑自行车上班;第二名不会骑自行车,也不爱踢足球;第一、三名在这次比赛之前并不认识•请你按照名次给出他们的排名.例题5甲、乙、丙、丁四人对A先生的藏书数目作了一个估计•甲说:“A先生有500本书.' 乙说:“ A 先生至少有1000本书.”丙说:“ A先生的书不到2000本.” 丁说:“ A先生最少有1本书.”实际上这四个人的估计中只有一句是对的.问:A先生究竟有多少本书?「分析」这四句话中只有一句是对的,是哪句呢?大家不妨用假设法试着分析.例题6有三户人家,父亲分别姓王、张、陈,母亲分别姓刘、李、胡,每家一个孩子,分别叫明明(女)、宁宁(女)、松松(男).已知:①王家和李家的孩子都参加了女子体操队;②张家的女儿不叫宁宁;③陈和胡不是一家.请问:哪些人是一家?「分析」本题的条件很杂,既有父母的姓氏,又有孩子的名字和性别,还能用列表法解决吗?大家不妨试一试.课堂内外哪个下落得快?古希腊的哲学家亚里士多德(Aristotle ,公元前前384-322年)认为,物体从高处落下,重的物体下落得快,轻的物体下落得慢.亚里士多德在当时被公认为最博学的人,他所说的结论,没有人不相信,更没有人敢反驳.两千年过去了,直到1590年的某一天,年仅26岁的伽利略(Galileo Galilei,1564-1642)却推翻了亚里士多德的结论.伽利略发现:(1 )假设亚里士多德的结论是对的,则一块10磅重的物体会比一块1磅重的物体下落得快.(2)把一块10磅重的物体和一块1磅重的物体绑在一起,和另一块10磅重的物体同时往下丢.根据亚里士多德的观点,会发生两种现象:A :合起来重11磅的物体,比10磅重的物体下落得快,因为11磅更重.B :合起来重11磅的物体,比10磅重的物体下落得慢•因为其中较轻的1磅重的物体会因为下落较慢而拉扯10磅重的物体,减缓它的下落速度,结果整体速度反而变慢.由此可见,如果亚里士多德的说法是对的,将会得出A和B两个自相矛盾的结论•因此,亚里士多德的说法是错误的.1590年,伽利略在比萨塔上做了“两个铁球同时落地”的实验,得出了重量不同的两个铁球同时下落的结论,从此推翻了亚里士多德“物体下落速度和重量成比例”的学说,纠正了这个持续了1900多年之久的错误理论.作业1. 一天,小黄遇到了疯子、傻子、骗子各一个,傻子只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一个人说:“我和第二个人是兄弟.”第二个人说:“我是骗子.第三个人说:“傻子和疯子是兄弟.”究竟哪个人是骗子?2. 甲、乙、丙、丁四位同学的运动衫上印有不同的号码•赵说:“甲是2号,乙是3号.钱说:“丙是4号,乙是2号•”孙说:“丁是2号,丙是3号•”李说:“丁是1号,乙是3号•”又知道赵、钱、孙、李每人都只说对了一半•请问:丙的号码是几号?3. 赛马比赛前四名观众给A、B、C、D四匹马排名次,甲说:“第一名不是A就是C”;乙说:“ B跑的比D快”;丙说:“如果A得第一,C就得第二” ;丁说:“ B、D都不会得第三”;结果四个人谁也没猜错,那么四匹马的名次是什么?4. 甲、乙、丙三位老师教五年级三班的语文、数学和外语•已知甲老师上课全用汉语,外语老师是一个学生的哥哥,丙是一位女老师,她比数学老师活泼,那么乙老师教什么课?5. 甲、乙、丙三人分别是一班、二班和三班的学生,在校运动会上他们分别获得跳高、百米和铅球冠军•已知:(1)甲不是百米冠军;(2)—班的不是铅球冠军;(3)二班的是百米冠军;(4)乙既不是二班的也不是跳高冠军;问:他们三人分别是哪个班的?分别获得哪项冠军?第十五讲逻辑推理1. 例题1答案:甲牧师、丙骗子、乙赌棍详解:牧师只可能说“我是牧师”,所以甲是牧师•骗子不可能说“我是骗子”,所以乙是赌棍, 那么丙就是骗子.2. 例题2答案:鸡 详解:假设是鸭,则甲说对一半、乙说对一半,不成立;假设是鹅,则甲全对、乙全对,不成 立;假设是鸡,则甲说对一半、乙全错、丙全对,所以成立.3. 例题3答案:B 详解:“几真几假”找矛盾:共八个人,其中,A 、E 、F 、H 这四个人所说的一定是两真两假,B 和D 所说的一定是一样的,而8个人中只有3人猜对了,所以B 和D 所说一定是错的,他们说:“B 不是第一名”,所以第 一名就是B •假设丙对:则其他三人的话可以全错,假设可以成立,此时, A 先生有0本书;假设丁对:则其他三人必须全错,看甲、A 先生藏书不是500本,看乙、A 先生藏书不够1000本,看丙、A 先生藏书至少2000本,出现矛盾,所以假设不成立. 所以,丙说的对,A 先生实际上没有书,0本.4. 例题4 答案:如右表.详解:根据②可知王、陈不是木工;根据③可 知陈不是电工;木工只能是徐或赵,而且木工只和车工下棋, 且总是输给车工,由④可知,赵是木工、徐是 车工.5. 例题5 答案:0本 详解:假设法:假设甲对:则丙也是对的,矛盾,假设不成立; 假设乙对:则丁也是对的,矛盾,假设不成立;6. 例题6答案:三家分别是王、胡、宁宁;张、李、明明;陈、刘、松松 详解:王和李的孩子都是女生,所以不是松松,而且王和李不是一家; 张家女儿是明明.7. 练习1答案:甲是赌棍详解:骗子只能说“我不是骗子”是假话,所以乙是骗子•说“我不是牧师”的人不可能是牧 师,只有是赌棍了,所以甲是赌棍,丙是牧师.8. 练习2答案:甲说对了一半详解:第一种方法:乙和丙说的完全是矛盾的,所以乙和丙一个全对,一个全错,那么甲就是 一半对一半错•如果甲说的不是铁是对的,那么不是铜就是错的,所以这个矿石是铜,那么乙 和丙中没有人全对,矛盾;所以甲说的不是铜是对的,这个矿石是铁,所以乙全错,而丙全对.第二种方法:如果甲说的完全正确,则乙说“不是铁”是正确,只能是乙说对了一半,“而是锡” 是错误的,该矿石不是锡,丙也是说对了一半,矛盾•用同样的方法去分析如果是乙全对或者 丙全对,最后可以确定丙全对.9. 练习3 答案:小李简答:“几真几假”找矛盾:共4个人,其中,小李和小王所说一定是一真一假,而只有一个人说了假话,所以小刚和小样所以,丁既不能是第一名也不能是第三名,丁是第四名; 所以乙只能是第三名、丙是第一名.11. 作业1说的都是真话,所以玻璃是小李打碎的.10. 练习4答案:丙、甲、乙、丁简答:第二名不会骑车、不会踢球,所以乙、丙、丁都不是第二名;第二名是甲,甲比乙靠前,所以乙只能是三或四名;第一、三名之前不认识,而丁和乙、丙都认识,15.12. 13. 14. 答案:第一个人 简答:第二个人只能是疯子,而第一个人不能是说真话的傻子,所以第一个人是骗子.作业 2 答案:丙是 4 号简答:如果“甲是 2号”对,则“乙是 2 号”错,“丙是 4号”对,“丙是 3号”错, 错,矛盾.只能是“乙是 3号”对,“乙是 2号”错,“丙是 4 号”对.作业 3答案:A 第三,B 第二,C 第一,D 第四简答: A 不是第一,否则丙与丁说的矛盾. C 第一, B 比 D 快又都不是第三,只能 第四, A 第三.作业 4 答案:外语 简答:先判断出丙是语文老师,则甲是数学老师,乙是外语老师. 作业 5 答案:甲、一班、跳高;乙、三班、铅球;丙、二班、百米 简答:先判断乙是铅球冠军,是三班的.再判断甲是跳高冠军,是一班的.丙是百米冠军, 班的.丁是 2 号” B 第二, D15.。

第五届高思杯奥数解析

第五届高思杯奥数解析
16、 答案: 853 知识点:最值原理 详解:如果想要乘积最大,那么应该将 8、7 放在百位,6、5 放在十位、4、3 放在个位,又根 据“和同近积大” ,经过调整两个数应该为 853 和 764,较大的为 853
本题评析:在最值问题里,我们经常使用“和同近积大”这一原则.
17、 答案: 2022 知识点:年龄问题 详解:因为年龄差不变,所以设爸爸与妈妈年龄差为“1” ,2010 年时蒙蒙年龄为“3” ,2014 年蒙蒙年龄为“4” ,所以“1”为 4 岁,当蒙蒙年龄是“6” (24 岁)时,应该是 2022 年
20、 答案: 57 知识点:数列数表 详解:可以观察到数列是“S”型排列,1 个周期包含 10 个数,2 行.当前 10 行都填满后,已 经填满了 5 个周期,填到了 50,然后继续往后填第 12 行、第 4 列的数为 57
本题评析:数列数表关键是要观察出数列数表的周期,然后推算出所求数在第几个 周期,然后按照规律填入数字.计算时要仔细,每一个列式都斟酌一下,不要大意.
9、 答案: 58 知识点:小数提取公因数 详解: 原式=5.8 6.7 3.3 =58
本题评析:小数的提取公因数和整数的规律一样,计算时注意小数点.
10、 答案: 20.14 知识点:小数计算 详解: 原式=1.234 20.14 20.14 0.234=20.14 1.234 0.234 =20.14
本题评析:数列数表中一定要仔细弄懂算式的含义,千万不可盲目套用老师上课某 道题的做法,这一点不仅在小学课外数学学习中很重要,而且在中学乃至大学学习 中都很重要. 六、文字材料题
29、 答案: 3;1.5;2 知识点:绝对值定义 详解: 3;1.5;2
本题评析:本题主要考察大家对题目中绝对值的理解,按照题目所说,即可做出.

学而思四年级第11讲.最值问题(基础-提高-尖子班)

学而思四年级第11讲.最值问题(基础-提高-尖子班)

349876第十一讲 最值问题(一)例1(2008年日本小学算术奥林匹克大赛初赛)【分析】 答案:247.要使两个五位数的差最小,这两个五位数首位上的数应该尽力接近,且较大数的后四位应尽可能小,较小数的后四位应尽可能大。

较大的五位数的后四位最小为0123,较小的五位数的后四位最大为9876,还剩下4和5两个数,所以较大的数是50123,较小的数是49876,差为5012247−=.例2 (2008年数学解题能力展示)【分析】 答案:50.一共20张牌,点数之和是固定的:2110(123...10)×++++=.由于每轮的点数差做为两人的得分,那么两人的总分之和就是10轮的点数差之和,即10轮中较大数之和-10轮中较小数之和(令它们分别是A 和B,则总分之和=A-B)又因为A+B=110所以A-B 的最大值即110-2B 的最大值,转换成求出B 的最小值即可。

令B 最小,既最小的十张牌之和:1,2,3,4,5,1,2,3,4,5.所以B 最小为30 ,总分之和最大=110-2B=50例3 (第十三届华杯赛)【分析】 极端分析法—答案:2005.通过找规律解决问题,要得到最小值,即让每次划去最多,应该从大往小擦数,最终得到2。

要得到最大值,即让每次划去最少,应该从小往大擦数,最终得到2007,从而最大与最小的差为220052007−=.例4 (2008年日本小学算术奥林匹克大赛初赛)【分析】 极端分析法—答案:155.最倒霉原则:“保证”=“最倒霉”+1. 最倒霉的情况是:取出了两种颜色的全部和其他颜色各9个依然不满足条件,即个,从而1550296154×+×=41155+=1×+556一定能保证满足条件.例5 (2008年日本小学算术奥林匹克大赛初赛)【分析】 极端分析法—答案:92.总表面积固定,当蓝色面积最大时,白色面积最小.因此,让蓝色木块优先占据特殊位置.分析发现,染色后8个角上的正方体3个面有颜色,扣去两角后的每条棱上的3个正方体有2个面。

高斯小学奥数四年级上册含答案第23讲_最值问题一

高斯小学奥数四年级上册含答案第23讲_最值问题一

第二十三讲最值问题一最值问题,即求最大值、最小值的问题.这类问题中,有时满足题目条件的情况并不多,这时我们就可以用枚举法将所有可能情况一一列出,再比较大小.例题1(1)在五位数12435的某一位数字后面插入一个同样的数字可以得到一个六位数(例如:在2的后面插入2可以得到122435).请问:能得到的最大六位数是多少?(2)在七位数9876789的某一位数字后面再插入一个同样的数字.请问:能得到的最小八位数是多少?「分析」一共有多少种不同的插入数字的方法?你能将它们全部枚举出来吗?练习1在五位数41729的某一位数字前面插入一个同样的数字(例如:在7的前面插入7得到417729),能得到的最大六位数是多少?直接枚举的优点是不用过多思考,大家都能理直气壮地说,直接比较大小得到的答案一定是正确的.事实上,我们应该多想一想,为什么这个答案是最大或最小的,有没有什么道理,其中有没有什么规律.例题2有9个同学要进行象棋比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?「分析」把9个同学分成两组,有多少种情况呢?你能算出这些分法各自对应的比赛场数吗?练习2有7个同学要进行乒乓球单打比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?从例题2我们可以得出:两个数的和相等,当它们越接近时(也就是它们的差越小时),两数乘积越大,也可以简单记成“和同近积大”.“和同近积大”的应用非常广泛,接下来我们分析一下比较典型的“篱笆问题”.例题3墨爷爷要用长20米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?(正方形是特殊的长方形)「分析」长方形面积是长、宽的乘积,要想长、宽乘积最大,可以不可以应用“和同近积大”的道理来解决呢?能找到“和同”吗?练习3墨爷爷要用长30米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?例题4请将1、2、3、4、5、6这六个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□ 「分析」要使得乘积最大,百位应当填哪两个数?十位呢?个位呢?练习4请将1、2、3、4、5、6、7、8这八个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□□□例题5墨爷爷要用长20米的篱笆围成一个靠墙的直角三角形养鸡场,已知靠墙的恰好为三角形斜边,两条直角边长均为整数米,那么怎样围所得的养鸡场面积最大?「分析」长方形篱笆我们已经解决了,三角形的与长方形的有什么联系吗?养鸡场想一想要用篱笆围一个靠墙的三角形,那么锐角三角形、直角三角形、钝角三角形中的哪一种面积会最大呢?在很多问题中,我们都需要先进行整体的思考,再对局部进行一些调整.千万不能“丢了西瓜捡芝麻”!例题6各位数字互不相同的多位数中,数字之和为23的最小数是多少?最大数是多少?「分析」两个多位数比较大小,首先要比较它们的位数.如果位数相同,还要从高位到低位依次比较.课堂内外动物之最最大的动物:蓝鲸(平均长30米,重达160吨)最大的路上动物:非洲象(平均重达9吨)最高的路上动物:长颈鹿(平均高5米)嘴巴最大的陆生哺乳动物:河马最聪明的动物:海豚(人除外)最大的鸟类:鸵鸟(平均身高2.5米,最重可达155千克)翅膀最长的鸟类:信天翁(翅展2~3米)嘴巴最大的鸟:巨嘴鸟(最长24厘米,宽9厘米)形体最小的鸟:蜂鸟飞得最高的鸟:天鹅(最高能达17000米)最耐寒的鸟:企鹅路上奔跑速度最快的动物:猎豹(可高达时速130公里)速度最快的海洋动物:旗鱼(可高达时速190公里)飞行速度最快的动物:军舰鸟(可高达时速418公里)现存最古老的生物:舌形贝(有4.5亿年历史)牙齿最多的动物:蜗牛(共有25600颗牙齿)飞行能力最强的昆虫:蝗虫(每天能够连续飞行近10小时)力气最大的昆虫:屎壳郎(可以支撑或拖走相当于自己体重1141倍的物体)外形最奇特的鱼:海马最大的两栖动物:大鲵(即娃娃鱼)毒性最强的蛇:海蛇(其毒性为眼镜蛇的2倍)寿命最长的动物:海葵(已发现最年长的海葵有2000多岁了)冬眠时间最长的动物:睡鼠(冬眠时间5~6个月)作业1.在六位数129854的某一位数字前面再插入一个同样的数字(例如:可以在2的前面插入2得到1229854),能得到的最小七位数是多少?2.两个自然数之和等于10,那么它们的乘积最大是多少?3.用20根长1厘米的火柴棒围成一个长方形,这个长方形的面积最大是多少平方厘米?4.请将3,4,5,6,7,8这六个数分别填入算式□□□□□□的方格中,使这个乘法算式的结果最大.5.各位数字互不相同的多位数中,数字之和为32的最小数是多少,最大数是多少?第二十三讲 最值问题一1. 例题1答案:(1)124435;(2)98766789详解:(1)枚举:112435、122435、124435、124335、124355,最大的六位数是124435;(2)枚举:99876789、98876789、98776789、98766789、98767789、98767889、98767899,最小的八位数是98766789.2. 例题2答案:20场详解:如果是(1,8),那么共188⨯=场;如果是(2,7),那么共2714⨯=场;如果是(3,6),那么共3618⨯=场;如果是(4,5),那么共4520⨯=场;所以一共最多有20场比赛.3. 例题3答案:长、宽 都为5米时,面积最大为25平方米详解:长方形周长是20米,长、宽之和为10,是固定不变的;长方形面积为长、宽之积,根据“和同近积大”,可知长、宽越接近,面积越大; 当长、宽相等,即篱笆为正方形时,面积最大,最大面积为5525⨯=平方米.4. 例题4答案:631542⨯详解:要使得乘积最大,那么就要百位上的数字最大、个位上的数字最小;所以百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个三位数的和都固定等于5006003040121173+++++=,所以要想让它们的乘积最大,就要让这两个三位数差最小,尝试可得是631542⨯.5. 例题5答案:两条直角边都为10米时,面积最大为50平方米详解:设两条直角边分别为A 、B ,则20+=A B 米;直角三角形面积为“2⨯÷底高”,即面积大小是由“⨯A B ”决定的;A 、B 之和为20米,越接近则乘积越大,所以当10==A B 米时, “⨯A B ”有最大值; 所以,三角形面积最大为1010250⨯÷=平方米.6. 例题6答案:689;8543210详解:数的大小,首先是要考虑位数,再考虑各个数位上的数的大小.(1)最小:即要位数最少,那么就得要让每个数位上的数字都尽量的大,把23拆开:23986=++,所以最小数为689;(2)最大:即要位数最多,那么就得要让每个数位上的数字都尽量的小,把23拆开:230123458=++++++,所以最大数为8543210.7.练习1答案:441729详解:枚举:441729、411729、417729、417229、417299,最大的六位数为441729.8.练习2答案:12场详解:如果是(1,6),那么共166⨯=场;如果是(2,5),那么共2510⨯=场;如果是(3,4),那么共3412⨯=场;所以一共最多有12场比赛.9.练习3答案:长8米,宽7米时,面积最大为56平方米简答:长、宽和为15米,当长为8米、宽为7米时,长、宽最接近,长、宽乘积最大,最大面积为56平方米.10.练习4答案:76428531⨯简答:要使得乘积最大,那么就要千位上的数字最大、个位上的数字最小;所以千位填7、8,百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个四位数的和都固定等于+++++++=,所以要想让它们的乘积最大,就要让这两个四7000800050060030401216173位数差最小,尝试可得是76428531⨯.11.作业1答案:1129854简答:在原数某一位前面插入相同数一共可以得到1129854、1229854、1299854、1298854、1298554、1298544这些数,对比可知1129854最小.12.作业2答案:25简答:两个数的和为10,根据“和同近积大”的原则,当两个数都为5时乘积最大,为25.13.作业3答案:25平方厘米简答:长、宽的和是10厘米,根据“和同近积大”的原则,正方形的时候面积最大,此时边长为5厘米,面积为25平方厘米.14.作业4答案:853764⨯简答:最高位填8和7,十位填6和5,个位填4和3,相差越小乘积越大,所以应为853764⨯.15.作业5答案:26789;98543210简答:3298762=++++,所以最小为26789;3201234589=+++++++,所以最大为98543210.。

高斯小学奥数四年级上册含答案第23讲_最值问题一

高斯小学奥数四年级上册含答案第23讲_最值问题一

第二十三讲最值问题一最值问题,即求最大值、最小值的问题.这类问题中,有时满足题目条件的情况并不多,这时我们就可以用枚举法将所有可能情况一一列出,再比较大小.例题1(1)在五位数12435的某一位数字后面插入一个同样的数字可以得到一个六位数(例如:在2的后面插入2可以得到122435).请问:能得到的最大六位数是多少?(2)在七位数9876789的某一位数字后面再插入一个同样的数字.请问:能得到的最小八位数是多少?「分析」一共有多少种不同的插入数字的方法?你能将它们全部枚举出来吗?练习1在五位数41729的某一位数字前面插入一个同样的数字(例如:在7的前面插入7得到417729),能得到的最大六位数是多少?直接枚举的优点是不用过多思考,大家都能理直气壮地说,直接比较大小得到的答案一定是正确的.事实上,我们应该多想一想,为什么这个答案是最大或最小的,有没有什么道理,其中有没有什么规律.例题2有9个同学要进行象棋比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?「分析」把9个同学分成两组,有多少种情况呢?你能算出这些分法各自对应的比赛场数吗?练习2有7个同学要进行乒乓球单打比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?从例题2我们可以得出:两个数的和相等,当它们越接近时(也就是它们的差越小时),两数乘积越大,也可以简单记成“和同近积大”.“和同近积大”的应用非常广泛,接下来我们分析一下比较典型的“篱笆问题”.例题3墨爷爷要用长20米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?(正方形是特殊的长方形)「分析」长方形面积是长、宽的乘积,要想长、宽乘积最大,可以不可以应用“和同近积大”的道理来解决呢?能找到“和同”吗?练习3墨爷爷要用长30米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?例题4请将1、2、3、4、5、6这六个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□ 「分析」要使得乘积最大,百位应当填哪两个数?十位呢?个位呢?练习4请将1、2、3、4、5、6、7、8这八个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□□□例题5墨爷爷要用长20米的篱笆围成一个靠墙的直角三角形养鸡场,已知靠墙的恰好为三角形斜边,两条直角边长均为整数米,那么怎样围所得的养鸡场面积最大?「分析」长方形篱笆我们已经解决了,三角形的与长方形的有什么联系吗?养鸡场想一想要用篱笆围一个靠墙的三角形,那么锐角三角形、直角三角形、钝角三角形中的哪一种面积会最大呢?在很多问题中,我们都需要先进行整体的思考,再对局部进行一些调整.千万不能“丢了西瓜捡芝麻”!例题6各位数字互不相同的多位数中,数字之和为23的最小数是多少?最大数是多少?「分析」两个多位数比较大小,首先要比较它们的位数.如果位数相同,还要从高位到低位依次比较.课堂内外动物之最最大的动物:蓝鲸(平均长30米,重达160吨)最大的路上动物:非洲象(平均重达9吨)最高的路上动物:长颈鹿(平均高5米)嘴巴最大的陆生哺乳动物:河马最聪明的动物:海豚(人除外)最大的鸟类:鸵鸟(平均身高2.5米,最重可达155千克)翅膀最长的鸟类:信天翁(翅展2~3米)嘴巴最大的鸟:巨嘴鸟(最长24厘米,宽9厘米)形体最小的鸟:蜂鸟飞得最高的鸟:天鹅(最高能达17000米)最耐寒的鸟:企鹅路上奔跑速度最快的动物:猎豹(可高达时速130公里)速度最快的海洋动物:旗鱼(可高达时速190公里)飞行速度最快的动物:军舰鸟(可高达时速418公里)现存最古老的生物:舌形贝(有4.5亿年历史)牙齿最多的动物:蜗牛(共有25600颗牙齿)飞行能力最强的昆虫:蝗虫(每天能够连续飞行近10小时)力气最大的昆虫:屎壳郎(可以支撑或拖走相当于自己体重1141倍的物体)外形最奇特的鱼:海马最大的两栖动物:大鲵(即娃娃鱼)毒性最强的蛇:海蛇(其毒性为眼镜蛇的2倍)寿命最长的动物:海葵(已发现最年长的海葵有2000多岁了)冬眠时间最长的动物:睡鼠(冬眠时间5~6个月)作业1.在六位数129854的某一位数字前面再插入一个同样的数字(例如:可以在2的前面插入2得到1229854),能得到的最小七位数是多少?2.两个自然数之和等于10,那么它们的乘积最大是多少?3.用20根长1厘米的火柴棒围成一个长方形,这个长方形的面积最大是多少平方厘米?4.请将3,4,5,6,7,8这六个数分别填入算式□□□□□□的方格中,使这个乘法算式的结果最大.5.各位数字互不相同的多位数中,数字之和为32的最小数是多少,最大数是多少?第二十三讲 最值问题一1. 例题1答案:(1)124435;(2)98766789详解:(1)枚举:112435、122435、124435、124335、124355,最大的六位数是124435;(2)枚举:99876789、98876789、98776789、98766789、98767789、98767889、98767899,最小的八位数是98766789.2. 例题2答案:20场详解:如果是(1,8),那么共188⨯=场;如果是(2,7),那么共2714⨯=场;如果是(3,6),那么共3618⨯=场;如果是(4,5),那么共4520⨯=场;所以一共最多有20场比赛.3. 例题3答案:长、宽 都为5米时,面积最大为25平方米详解:长方形周长是20米,长、宽之和为10,是固定不变的;长方形面积为长、宽之积,根据“和同近积大”,可知长、宽越接近,面积越大; 当长、宽相等,即篱笆为正方形时,面积最大,最大面积为5525⨯=平方米.4. 例题4答案:631542⨯详解:要使得乘积最大,那么就要百位上的数字最大、个位上的数字最小;所以百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个三位数的和都固定等于5006003040121173+++++=,所以要想让它们的乘积最大,就要让这两个三位数差最小,尝试可得是631542⨯.5. 例题5答案:两条直角边都为10米时,面积最大为50平方米详解:设两条直角边分别为A 、B ,则20+=A B 米;直角三角形面积为“2⨯÷底高”,即面积大小是由“⨯A B ”决定的;A 、B 之和为20米,越接近则乘积越大,所以当10==A B 米时, “⨯A B ”有最大值; 所以,三角形面积最大为1010250⨯÷=平方米.6. 例题6答案:689;8543210详解:数的大小,首先是要考虑位数,再考虑各个数位上的数的大小.(1)最小:即要位数最少,那么就得要让每个数位上的数字都尽量的大,把23拆开:23986=++,所以最小数为689;(2)最大:即要位数最多,那么就得要让每个数位上的数字都尽量的小,把23拆开:230123458=++++++,所以最大数为8543210.7.练习1答案:441729详解:枚举:441729、411729、417729、417229、417299,最大的六位数为441729.8.练习2答案:12场详解:如果是(1,6),那么共166⨯=场;如果是(2,5),那么共2510⨯=场;如果是(3,4),那么共3412⨯=场;所以一共最多有12场比赛.9.练习3答案:长8米,宽7米时,面积最大为56平方米简答:长、宽和为15米,当长为8米、宽为7米时,长、宽最接近,长、宽乘积最大,最大面积为56平方米.10.练习4答案:76428531⨯简答:要使得乘积最大,那么就要千位上的数字最大、个位上的数字最小;所以千位填7、8,百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个四位数的和都固定等于+++++++=,所以要想让它们的乘积最大,就要让这两个四7000800050060030401216173位数差最小,尝试可得是76428531⨯.11.作业1答案:1129854简答:在原数某一位前面插入相同数一共可以得到1129854、1229854、1299854、1298854、1298554、1298544这些数,对比可知1129854最小.12.作业2答案:25简答:两个数的和为10,根据“和同近积大”的原则,当两个数都为5时乘积最大,为25.13.作业3答案:25平方厘米简答:长、宽的和是10厘米,根据“和同近积大”的原则,正方形的时候面积最大,此时边长为5厘米,面积为25平方厘米.14.作业4答案:853764⨯简答:最高位填8和7,十位填6和5,个位填4和3,相差越小乘积越大,所以应为853764⨯.15.作业5答案:26789;98543210简答:3298762=++++,所以最小为26789;3201234589=+++++++,所以最大为98543210.。

2016第七届高思杯(4年级)-数学部分 解析A4

2016第七届高思杯(4年级)-数学部分 解析A4

本题评析:熟练掌握去相同比不同.
12、 答案:25 知识点:和差倍中的比较法 详解: 奇奇、 怪怪的速度和是60+40=100米/分, 10分钟后相遇, 所以两人的路程和是100×10=1000 米,也就是A、B两地的距离,怪怪从B地到A地需要1000÷40=25分钟.
本题评析:熟练掌握相遇公式和行程中的三个基本公式.
本题评析: 本题考查提取公因数,是非常重要的巧算方法.
6、 答案:10100 知识点:乘法分配律 详解:原式=25×4+25×400=100+10000=10100
本题评析:本题考查乘法分配律,注意计算要认真,加法容易出错.
试卷解析
7、 答案:10 知识点:分组配对 详解:原式=(20-19)+(18-17)+……+(2-1)=1×(20÷2)=10
本题评析: 考查分析中点问题,判断是相遇前还是相遇后,并且能够巧妙的设份数.
31、答案:600秒 知识点:中点问题 详解: 阿瓜在阿呆和阿傻的中点, 此时阿瓜已经和阿傻错开, 画出行程图, 全程一共是2+2+2= “6” , 所以“1”=3600÷6=600米,阿瓜所走的路程是“6”=4×600=2400米,阿呆的速度是4米/ 秒,所以行驶时间是2400÷4=600秒. A 呆 6 米/秒 瓜 4 米/秒 “2” “2” “2” B 傻 4 米/秒
本题评析:熟练掌握末位分析法和首位估算,对0、1、5、6的分析也要特别熟练.
20、 答案:550 知识点:数组计算 详解:观察数组规律,第十组应该有10个数,分别是10、20、30、40、……,所以这组所有数之 和是10×(1+2+…+10)=550.
本题评析:学会观察数组规律,并且熟练应用等差数列求和公式.
D

四年级奥数《高斯求和》答案及解析

四年级奥数《高斯求和》答案及解析

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第23讲最值问题一内容概述求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.典型问题兴趣篇1.3个连续奇数相乘,所得乘积的个位数字最小可能是多少?2. 用1、2、4可以组成6个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少?3. 用24根长l厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用22根火柴棒呢?4.三个自然数的和是19,它们的乘积最大可能是多少?5.(1)请将l、2、3、4填人算式“口口×口口”的方格中.要使得算式结果最大,应该怎么填?(2)请将1、2、3、4、5、6填人算式“口口口×口口口”的方格中.要求5、6分别填在百位,4、3分别填在十位,1、2分别填在个位,并使得算式结果最大.应该怎么填?6. 在图23-1的中间圆圈内填一个数,计算每一条线段两端的数之差(大减小),然后把这3个差数相加,所得的和最小是多少?7. 在所有包含3个相同数码的四位数中,与1389之差(大减小)最小的一个是多少?8. 把1、2、3、4、5、6填人算式“□□□-□□□”的空格中,要求前一个三位数比后一个三位数大.这个减法算式的结果最大可能是多少?最小可能是多少?9. 一个自然数是由数字8、9组成的,它的任意相邻两位都可以看成一个两位数,并且这些相邻数字组成的两位数都不相等.请问:满足条件的自然数最大是多少?10. 有7个盘子排成一排,依次编号为1,2,3,…,7.每个盘子中都放有若干玻璃球,一共放了80个.其中1号盘里放了18个玻璃球,并且任意编号相邻的3个盘子里放的玻璃球数之和都相等.请问:第6个盘子中最多可能放了多少个玻璃球?拓展篇1.3个连续自然数相乘,所得乘积的个位数字最大可能是多少?2. (1)在五位数12435的某一位数字后面再插入一个同样的数字(例如:可以在2的后面插入2得到122435),这样得到的六位数最大可能是多少?(2)在七位数9876789的某一位数字后面再插入一个同样的数字,这样得到的八位数最小是多少?3.有9个同学要进行象棋比赛.他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛.他们一共最多能比赛多少场?4.3个互不相同的自然数之和是17,它们的乘积最大可能是多少?5.请将2、3、4、5、6、8填人算式“口口口×口口口”的方格中.要使得算式结果最大,应该怎么填?6.请将6、7、8、9填人算式“口×口+口口”的方格中.要使得算式结果最大,应该怎么填?7.在图23-2的中间圆圈内填一个数,计算每一条线段两端的数之差(大减小),然后把这5个差数相加,所得的和最小是多少?8.如果7个互不相同的自然数之和为100,那么其中最小的数最大可能是多少?最大的数最小可能是多少?9.一个多位数的各位数字互不相同,而且各位数字之和为23.这样的多位数最小可能是多少?最大可能是多少?10.黑板上写着l,2,3,4,…,10各一个.小明每次擦去两个奇偶性相同的数,再写上它们的平均数.最后当黑板上只剩下一个自然数时,这个数最大可能是多少?11.如图23-3,这是一个正方体的展开图.将它折成一个正方体后,相交于同一顶点的3个面上的数之和最大是多少?12.如图23-4,在一个正方体方块的左下角A点处有一只蚂蚁,它要沿着正方体的表面爬行至右上角的B点,去搬运一块食物.为了使得这个蚂蚁所走的路线长度最短,它应该怎么爬行?它可以选择的最短路线一共有几条?超越篇1.一个两位数除以它的各位数字之和,余数最大是多少?2.4个小朋友,每人的体重都是整数千克,而且其中任意3人体重之和都大于99千克.这4个小朋友体重之和最小是多少千克?3.将1至30依次写成一排:123…2930,形成一个多位数.从这个多位数中划掉45个数字,剩下的数最大是多少?如果要求剩下的数首位不为0,这个数最小是多少?4.用1、2、3、4、6、7、8、9这8个数字组成2个四位数,使这2个数的差最小(大减小),这个差最小是多少?5.将2至8这7个自然数填入算式“口口×口口一口口÷口”的方格中.如果算式的计算结果为整数,那么这个结果最大是多少,最小是多少?6.如图23-5,一只木箱的长、宽、高分别为5厘米、3厘米、4厘米.有一只甲虫从A点出发,沿棱爬行,每条棱只允许爬一次.甲虫最多能爬行多少厘米?如果要求甲虫最后回到A点,那么它最多能爬行多少厘米?7.如图23-6,黑板上写有一个三位数减三位数的算式,其中首位已经确定.接下来,甲每次报一个数字,乙就把它放入四个方框中的一个,甲要使得差尽量大,乙要使得差尽量小,如果两人都使用最佳的策略,那么最后的差是多少?8.一栋大楼共33层,电梯停在第1层,现在有32个人分别要去第2层、第3层……第33层,他们可以选择坐电梯或者走楼梯.有一天电梯坏了,电梯只能在某一层停,每个人可以选择走楼梯上楼或乘电梯到这一层再走楼梯.每个人上一层楼梯会有3份不满意,下一层楼梯会有1份不满意.请问:电梯停在哪一层,才能使得所有人不满意的总份数最小?第23讲最值问题一内容概述求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.典型问题兴趣篇1.3个连续奇数相乘,所得乘积的个位数字最小可能是多少?答案:3分析:乘积的个位数字是由这三个奇数的个位数字决定的。

个位数字可能是:1、3、5、7、9。

通过试验个位是7、9、1的三个连续奇数相乘满足条件,7×9×1=63个位最小是3.2. 用1、2、4可以组成6个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少?答案:9分析:要使两个数差最小百位数字相同十位与个位数字相近。

满足条件的是412和421.差是421-412=9.3. 用24根长l厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用22根火柴棒呢?答案:36平方厘米;30平方厘米。

分析:(1)矩形的周长是24厘米。

长和宽的和:24÷2=12(厘米)和为定值的两数的乘积随两数之差的增大而减少。

和是12的两数差为0是积最大。

这两个数相等都是6.即长和宽相等面积是6×6=36(平方厘米)。

(2)周长是22厘米。

长和宽的和是22÷2=11(厘米)和是11差是0时,这样的两个数不是整数。

差是1时两数分别为6和5.积是30.4.三个自然数的和是19,它们的乘积最大可能是多少?答案:252分析:和一定差越小积越大。

19÷3=6……1,6+6+6=18再加1得19,三个数分别是6、6、7时积最大。

最大是6×6×7=252.5.(1)请将l、2、3、4填人算式“口口×口口”的方格中.要使得算式结果最大,应该怎么填?(2)请将1、2、3、4、5、6填人算式“口口口×口口口”的方格中.要求5、6分别填在百位,4、3分别填在十位,1、2分别填在个位,并使得算式结果最大.应该怎么填?答案:(1)41×32 (2)542×631分析:(1)要使积最大,两个数应尽量大所以4、3分别在十位,1、2在个位。

有两种情况A:41×32=1×2+2×40+1×30+40×30=1312B:42×31=1×2+1×40+2×30+40×30=1302比较发现区别在划横线部分,当一个数十位上的数字与另一个数个位上的数字较大的与较大的相乘,较小与较小的数字相乘时积最大。

最大是41×32(2)与(1)同理当十位上4与百位上的6相乘,十位上3与百位上5相乘;个位2与百位上6相乘,个位1与百位5相乘时积最大。

其中一个数百位是6十位是3个位是1即631。

另一个是542.6. 在图23-1的中间圆圈内填一个数,计算每一条线段两端的数之差(大减小),然后把这3个差数相加,所得的和最小是多少?答案:7分析:当中间数是7时和最小,和最小是7。

7. 在所有包含3个相同数码的四位数中,与1389之差(大减小)最小的一个是多少?答案:1411分析:与1389之差(大减小)尽量与1389相近。

所以千位是1,百位是3或4,十位和个位是1.即可能是1311或1411.通过计算与1389之差(大减小)差最小的是1411.8. 把1、2、3、4、5、6填人算式“□□□-□□□”的空格中,要求前一个三位数比后一个三位数大.这个减法算式的结果最大可能是多少?最小可能是多少?答案:最大:531 最小:47分析:满足结果最大,被减数应尽量大,减数应尽量小。

被减数最大是654,减数最小是123。

结果最小,两数应接近。

被减数是412,减数是365时结果最小。

9. 一个自然数是由数字8、9组成的,它的任意相邻两位都可以看成一个两位数,并且这些相邻数字组成的两位数都不相等.请问:满足条件的自然数最大是多少?答案:99889分析:由8和9组成的两位数可能是88、89、99、984种情况。

.要使数最大数的位数尽量大,相邻数字组成的两位数出现以上4种情况。

满足条件的数由高位到低位排列可称为第1位、第2位、第3位…第1位第2位组成的数最大是99,第2位第3位组成的数最大是98第3位第4位组成的数是88,第,4位第5位组成的数是89. 满足条件的自然数最大是99889.10. 有7个盘子排成一排,依次编号为1,2,3,…,7.每个盘子中都放有若干玻璃球,一共放了80个.其中1号盘里放了18个玻璃球,并且任意编号相邻的3个盘子里放的玻璃球组成的数之和都相等.请问:第6个盘子中最多可能放了多少个玻璃球?答案:12分析:任意编号相邻的3个盘子里放的玻璃球组成的数之和都相等。

1、2、3号盘与2、3、4号盘玻璃球一样多。

所以1号和4号盘都有18个。

依次往后推7号盘也有18个。

前6盘有80-18=62个,相邻的3盘有62÷2=31个。

4、5、6这3个盘,4号盘有18个要使第6个盘子中最多5号应最少最少有1个,第6个盘最多有31-18-1=12个。

拓展篇1.3个连续自然数相乘,所得乘积的个位数字最大可能是多少?答案:6分析:只需考虑3个自然数的个位。

个位上有0----9 十种可能。

通过试验得3个连续自然数个位是1、2、3满足条件。

2. (1)在五位数12435的某一位数字后面再插入一个同样的数字(例如:可以在2的后面插入2得到122435),这样得到的六位数最大可能是多少?(2)在七位数9876789的某一位数字后面再插入一个同样的数字,这样得到的八位数最小是多少?答案:最大124435 最小98766789分析:(1)使结果最大所插数字应尽量大且数位尽量靠前。

相关文档
最新文档