工程数学离线作业
国家开放大学工程数学(本)形成性考核作业一、二、三

工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型,做题时对应抽题序号核对题和答案形成性考核作业11、n阶行列式中元素的代数余子式与余子式之间的关系是().1、三阶行列式的余子式M23=().2、若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为(5×4 )矩阵.2、设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB).3、设,则().3、设,则BA-1().4、设A,B均为n阶可逆矩阵,则下列运算关系正确的是().4、设A,B均为n阶方阵,k>0且,则下列等式正确的是().5、下列结论正确的是(对任意方阵A,A+A'是对称矩阵).5、设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().6、方阵A可逆的充分必要条件是().6、设矩阵A可逆,则下列不成立的是().7、二阶矩阵().7、二阶矩阵().8、向量组的秩为(3).8、向量组的秩是(3).9、设向量组为,则()是极大无关组.9、向量组的极大线性无关组是().10、用消元法得的解为().10、方程组的解为().11、行列式的两行对换,其值不变.(错)11、两个不同阶的矩阵可以相加.(错)12、设A是对角矩阵,则A=A'.(对)12、同阶对角矩阵的乘积仍然是对角矩阵.(对)13、若为对称矩阵,则a=-3.(错)13、若为对称矩阵,则x=0.(对)14、设,则.(错)14、设,则.(对)15、零矩阵是可逆矩阵.(错)15、设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)16、 7 .16、设行列式,则 -6 .17、若行列式,则a= 1 .17、是关于x的一个一次多项式,则该多项式一次项的系数是 2 .18、乘积矩阵中元素C23=10 .18、乘积矩阵中元素C21= -16 .19、设A,B均为3阶矩阵,且,则 -72 .19、设A,B均为3阶矩阵,且,则 9 .20、矩阵的秩为 1 .20、矩阵的秩为 2 .形成性考核作业21、设线性方程组的两个解,则下列向量中()一定是的解.1、设线性方程组的两个解,则下列向量中()一定是的解.2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().3、若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(可能无解).3、以下结论正确的是(齐次线性方程组一定有解).4、若向量组线性相关,则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4、若向量组线性无关,则齐次线性方程组(只有零解).5、矩阵的特征值为(-1,4).5、矩阵A的特征多项式,则A的特征值为().6、设矩阵的特征值为0,2,则3A的特征值为(0,6 ).6、已知可逆矩阵A的特征值为-3,5,则A-1的特征值为().7、设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论(x是A+B 的特征向量)成立.7、设是矩阵A的属于不同特征值的特征向量,则向量组的秩是(3).8、设A,B为两个随机事件,则()成立.8、设A,B为两个随机事件,下列事件运算关系正确的是().9、如果(且)成立,则事件A与B互为对立事件.9、若事件A,B满足,则A与B一定(不互斥).10、袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().10、某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().11、线性方程组可能无解.(错)11、非齐次线性方程组相容的充分必要条件是.(对)12、当1时,线性方程组只有零解.(对)12、当1时,线性方程组有无穷多解.(错)13、设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.(对)13、设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(错)14、若向量组线性相关,则也线性相关.(错)14、若向量组线性无关,则也线性无关.(对)15、特征向量必为非零向量.(对)15、若A矩阵可逆,则零是A的特征值.(错)16、当 1 时,齐次线性方程组有非零解.16、若线性方程组有非零解,则-1 .17、向量组线性相关.18、设齐次线性方程组的系数行列式,则这个方程组有非零解。
工程数学离线作业 (1)

浙江大学远程教育学院《工程数学》课程作业姓名: 杜小勇 学 号: 715100202040年级: 15秋 学习中心: 西溪直属————————————————————————————— 《复变函数与积分变换》第一章1.1计算下列各式:(2)(a-b i )3=a3-3a2bi+3a(bi)2-(bi)3=a3-3ab2+i(b3-3a2b)(3)i (i 1)(i 2)--解 i 1.2证明下列关于共轭复数的运算性质:(1)1212()z z z z ±=±(2)1212()z z z z =(3)11222()(0)zz z z z =≠ 1.4将直线方程ax+by+c=0(a 2+b 2≠0)写成复数形式.[提示:记x+i y=z.]1.5将圆周a(x 2+y 2)+bx+cy+d =0(a ≠0)写成复数形式(即用z 与z 来表示,其中z=x+iy ).1.6求下列复数的模与辐角主值:(1i1.8将下列各复数写成三角表示式:1.10解方程:z 3+1=0.1.11指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?(1)2<|z|<3(3)4π<arg z <3π;且1<|z|<3(5)Re z 2<1(7)|arg z |<3π第二章2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z z 2(2)f(z)=x 2+iy 22.3确定下列函数的解析区域和奇点,并求出导数:(1)211z - 2.9由下列条件求解析函数f(z)=u+i v .(1)u(x-y)(x 2+4xy+y 2)(3)u=2(x-1)y, f (0)=-i(4)u=e x (x cos y - y sin y),f (0)=02.13试解方程:(1)e zi2.14求下列各式的值:(1)cos i(3)(1-i)1+i第三章3.1计算积分120[()]d i x y ix z +-+⎰.积分路径为(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平方向向右至1+i.3.2计算积分d ||cz z z ⎰ 的值,其中C 为(1)|z|=2;(2)|z|=4. 3.6计算21d c z z z-⎰ ,其中为圆周|z|=2 3.8计算下列积分值:(1)0sin xi⎰z d z(3)0(32)d i z e z z +⎰3.10计算下列积分:(1)|2|1d 2z z e z z -=-⎰(2)2||221d 1z z z z z =-+-⎰ (4)||d (1)(1)nz r z r z =≠-⎰ 3.11计算I=d (21)(2)cz z z z +-⎰ ,其中C 是(1)|z |=1;(2)|z -2|=1;(3)|z -1|=12;(4)|z |=3.3.13计算下列积分:(2)||22sin d ()2z z z z π=-⎰(3)123cos d C C C z z z -=+⎰ ,其中C 1:|z |=2,C 2:|z |=3.第四章4.2下列级数是否收敛?是否绝对收敛?(1)11i ()2n n n∞=+∑ (2)1i !n n n ∞=∑4.4试确定下列幂级数的收敛半径:(1)11n n nz ∞-=∑(2)211(1)n n n z n ∞=+∑4.5将下列各函数展开为z 的幂级数,并指出其收敛区域:(1)311z + (3)221(1)z + (5)sin 2 z4.7求下列函数在指定点z 0处的泰勒展式:(1)21z ,z 0=1 (2)sin z ,z 0=14.8将下列各函数在指定圆环内展开为洛朗级数:(1)21(1)z z z +- ,0<|z |<1,1<|z |<+∞ (3)2225(2)(1)z z z z -+-+ ,1<|z |<2 (4)cosi 1z- ,0<|z -1|<+∞ 4.9将f(z)=2132z z -+ 在z =1处展开为洛朗级数.第五章5.3下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):(1)221(4)z z z -+ ;(2)3sin z z ;(3)1sin cos z z + ; (4)21(1)z z e - ;(5)ln(1)z z + ;(6)111z e z -- . 5.5如果f(z)与g(z)是以z 0为零点的两个不恒为零的解析函数,则00()()lim lim ()()z z z z f z f z g z g z →→'=' (或两端均为∞). [提示:将()()f zg z 写成0()()()m n z z z z ϕψ--的形式,再讨论.] 5.7求出下列函数在孤立奇点处的留数:(1)1z e z- (2)722(2)(1)z z z -+ (5)1sin z z(6)sh ch z z 5.8利用留数计算下列积分:(1)||1d sin z z z z=⎰ (2)32||2d (1)(3)z z e z z z =-+⎰(4)1||2sin d (1)z z z z z e =-⎰ 5.12求下列各积分之值:(1)20d (1)cos x a a θθ>+⎰ (3)2222d (0)()x x a x a +∞-∞>+⎰ (4)2cos d 45x x x x +∞-∞++⎰第八章 8.4求下列函数的傅氏变换:(1)1,()1,0,f t -⎧⎪=⎨⎪⎩ 10,01,t t -<<<< (2),()0,t e f t ⎧=⎨⎩ 0,0;t t ≤> (3)21,(t)0,t f ⎧-=⎨⎩||1,||1;t t ≤> 8.5求下列函数的傅氏变换,并证明所列的积分等式.(2)sin ,()0,t f t ⎧=⎨⎩ ||,||.t t ππ≤> 证明 20sin ,sin sin d 210,t t πωπωωω+∞⎧⎪=⎨-⎪⎩⎰||,||.t t ππ≤> 8.13证明下列各式:其他(1) f 1(t )* f 2(t )= f 2(t )* f 1(t )8.14设10,()1,f t ⎧=⎨⎩0,0;t t ≤> 20,()e ,t f t -⎧=⎨⎩ 0,0,t t <≥ 求f 1(t )* f 2(t ).8.15设1()F ω= F [f 1(t)], 2()F ω= F [f 2(t)],证明:F [f 1(t)·f 2(t)]=121()*()2F F ωωπ.第九章9.1求下列函数的拉氏变换:(1)3,()1,0,f t ⎧⎪=-⎨⎪⎩02,24,4;t t t ≤<≤<> (2)3,()cos ,f t t ⎧⎪=⎨⎪⎩ 0,2;2t t ππ≤<≥9.2求下列函数的拉氏变换:(1)sin 2t(4)||t9.3求下列函数的拉氏变换:(1)232t t ++(3)2(1)t t e -(5)cos t at9.4利用拉氏变换的性质,计算L [f (t )]:(1)3()sin 2t f t te t -= ;(2)30()sin 2d t t f t t e t t -=⎰9.5利用拉氏变换的性质,计算L -1[F (s )](2)1()ln1s F s s +=- (4)221()(1)F s s =- 9.6利用像函数的积分性质,计算L [f (t )]:(1)sin ()kt f t t = (2)30sin 2d t t e t t t-⎰ 9.8求下列像函数F (s )的拉氏变换:(5)42154s s ++ (7)221s e s-+ 9.11利用卷积定理证明下列等式:(1)L [0()d t f t t ⎰ ]= L [()*()f t u t ]=()F s s ; (2)L -1222sin (0).()2s t at a s a a⎡⎤=≠⎢⎥+⎣⎦《常微分方程》第一章2.验证函数1y cx c =+ (c 是常数)和y =±都是方程1y xy y '=+ 的解.4.验证函数12cos sin y c kx c kx =+ (k,c 1, c 2是常数)是方程20y k y '''+=的解.0.x y +=8.2(1)tan ,(0) 2.y y x y '=-=求下列齐次方程的解: 9.22d 2.d y xy x x y=+ 10.d (1ln ln ).d y y y x x x =+-12.d ,(1) 4.d y y y x x==13.1(1).2xy y y '-==求下列一阶线性方程或伯努利方程的解: 14.2d d y y x x x=- 15.2d 2,(0)2d x y xy x e y x -++== 17.2d 0,(0)1d 2(1)2y xy x y x x y--==- 验证下列方程为全微分方程或找出积分因子,然后求其解: 19.453(5d d )d 0x y x x y x x ++=20.2(d d )d 5d 0,(0)1x x x y x x y y y ++-==第二章求下列方程的通解或特解: 7.40y y '''-=8.20y y ''+=9.20y y y '''-+=10. 4130y y y '''++=11. 00540,|5,|8x x y y y y y ==''''-+=== 求下列方程的通解或特解: 18.y y a ''+= (a 是常数),y (0)=0,y ’(0)=0 19.5420,(0)0,(0)2x y y y e y y ''''++===- 24.22x y y y e -'''++= 26.2002d d cos 2,||2d d t t x x x t x t t ==+===- 27.22d sin ,0d x x at a t+=> 28.22d d 32sin cos d d y y x x x x+=+ 31.225cos y y x '''+=33.22cos x y y y e x -'''-+= 34.4sin 2y y x x ''+=填空题:1. 设2i z e +=,那末Re z =______①______,Im z =_______②_______。
0931《工程数学》作业2参考答案

(0931)《工程数学》作业2参考答案一、填空题:1.123147015-. 2.964.. 3.=AB BA . 4.ABC . 5.23. 6. 12二、选择题:1.B 2.B 3.A 4.B 5.B三、按要求解答:1.计算行列式xy x y y x y x x yx y+++.解:1232()()2()2()xy x y x y y x y y x y x c c c x y x yx x yxy x y xy++++++++++21312()00x y y x y r r xy r r x yx++-----2()x yx y x y x-=+--22332()()2()x y x xy y x y =+-+-=-+2.求矩阵A 的秩,并求它的一个最高阶非零子式,其中321312131370518---⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A . 解:12323213113442213132131337051813441r r A r r -----⎛⎫⎛⎫- ⎪ ⎪=--−−−−→-- ⎪⎪- ⎪ ⎪----⎝⎭⎝⎭ 213113442207119700001r r r r --⎛⎫- ⎪−−−−→--- ⎪ ⎪-⎝⎭所以()3R =A ,且3212137075--=≠是A 的一个最高阶非零子式。
3.判断方程组是否有解?⎪⎪⎩⎪⎪⎨⎧=-+-=+-=++=++-.02,12,0,14332131321321x x x x x x x x x x x解 利用初等变换法求增广矩阵(,)=B A b 的秩.⎪⎪⎪⎪⎪⎭⎫⎝⎛-----021111020111141321r r↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----0211110214130111 14131223r r r r r r -++ ⎪⎪⎪⎪⎪⎭⎫⎝⎛---030013201740011132r r ↔⎪⎪⎪⎪⎪⎭⎫⎝⎛---0300174013200111232r r - ⎪⎪⎪⎪⎪⎭⎫⎝⎛--03001113200111343r r +.3000110013200111⎪⎪⎪⎪⎪⎭⎫⎝⎛-因此()3,() 4.==r A r B 由于()(),≠r A r B 故原方程组无解.四、按要求计算:1.两射手彼此独立地向同一目标射击一次。
工程数学离线作业

浙江大学远程教育学院《工程数学》课程作业姓名:学 号: 年级: 学习中心:————————————————————————————— 教材:《复变函数与积分变换》第一章1.1计算下列各式:(2)(a-b i )3解:(a-bi )3=a 3b 2bi+3a(bi)2-(bi)3=a 3-3ab 2+i (b 3-3a 2-b ); (3)i (i 1)(i 2)-- 1.2证明下列关于共轭复数的运算性质:(1)1212()z z z z ±=±(2)1212()z z z z =(3)11222()(0)zz z z z =≠ 1.4将直线方程ax+by+c=0(a 2+b 2≠0)写成复数形式.[提示:记x+i y=z.]1.5将圆周a(x 2+y 2)+bx+cy+d =0(a ≠0)写成复数形式(即用z 与z 来表示,其中z=x+iy ).1.6求下列复数的模与辐角主值:(1i1.8将下列各复数写成三角表示式:(2)sin a +I cos a1.10解方程:z 3+1=0.1.11指出下列不等式所确定的区域与闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?(1)2<|z|<3(3)4π<arg z <3π;且1<|z|<3(5)Re z 2<1(7)|arg z |<3π第二章2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z z 2(2)f(z)=x 2+iy 22.3确定下列函数的解析区域和奇点,并求出导数:(1)211z - 2.9由下列条件求解析函数f(z)=u+i v .(1)u(x-y)(x 2+4xy+y 2)(3)u=2(x-1)y, f (0)=-i(4)u=e x (x cos y - y sin y),f (0)=02.13试解方程:(1)e zi(4)sin z +cos z =02.14求下列各式的值:(1)cos i(3)(1-i)1+i第三章3.1计算积分120[()]d i x y ix z +-+⎰.积分路径为(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平方向向右至1+i.3.2计算积分d ||cz z z ⎰的值,其中C 为(1)|z|=2;(2)|z|=4. 3.6计算21d c z z z-⎰ ,其中为圆周|z|=2 3.8计算下列积分值:(1)0sin xi⎰z d z(3)0(32)d i z e z z +⎰3.10计算下列积分:(1)|2|1d 2zz e z z -=-⎰ (2)2||221d 1z z z z z =-+-⎰ (4)||d (1)(1)nz r z r z =≠-⎰ 3.11计算I=d (21)(2)cz z z z +-⎰,其中C 是(1)|z |=1;(2)|z -2|=1;(3)|z -1|=12;(4)|z |=3.3.13计算下列积分:(2)||22sin d ()2z z z z π=-⎰(3)123cos d C C C z z z -=+⎰,其中C 1:|z |=2,C 2:|z |=3.第四章4.2下列级数是否收敛?是否绝对收敛?(1)11i ()2n n n∞=+∑ (2)1i !n n n ∞=∑4.4试确定下列幂级数的收敛半径:(1)11n n nz ∞-=∑(2)211(1)n n n z n ∞=+∑4.5将下列各函数展开为z 的幂级数,并指出其收敛区域:(1)311z + (3)221(1)z + (5)sin 2 z4.7求下列函数在指定点z 0处的泰勒展式:(1)21z ,z 0=1 (2)sin z ,z 0=14.8将下列各函数在指定圆环内展开为洛朗级数:(1)21(1)z z z +- ,0<|z |<1,1<|z |<+∞ (3)2225(2)(1)z z z z -+-+ ,1<|z |<2 (4)cosi 1z- ,0<|z -1|<+∞ 4.9将f(z)=2132z z -+ 在z =1处展开为洛朗级数.第五章5.3下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):(1)221(4)z z z -+ ;(2)3sin z z ;(3)1sin cos z z + ; (4)21(1)z z e - ;(5)ln(1)z z + ;(6)111z e z -- . 5.5如果f(z)与g(z)是以z 0为零点的两个不恒为零的解析函数,则00()()lim lim ()()z z z z f z f z g z g z →→'=' (或两端均为∞). [提示:将()()f z g z 写成0()()()m n z z z z ϕψ--的形式,再讨论.] 5.7求出下列函数在孤立奇点处的留数:(1)1z e z- (2)722(2)(1)z z z -+ (5)1sin z z(6)sh ch z z 5.8利用留数计算下列积分:(1)||1d sin z z z z =⎰ (2)32||2d (1)(3)z z e z z z =-+⎰ (4)1||2sin d (1)z z z z z e =-⎰ 5.12求下列各积分之值:(1)20d (1)cos x a a θθ>+⎰ (3)2222d (0)()x x a x a +∞-∞>+⎰ (4)2cos d 45x x x x +∞-∞++⎰第八章 8.4求下列函数的傅氏变换:(1)1,()1,0,f t -⎧⎪=⎨⎪⎩ 10,01,t t -<<<< (2),()0,t e f t ⎧=⎨⎩ 0,0;t t ≤> (3)21,(t)0,t f ⎧-=⎨⎩ ||1,||1;t t ≤> 8.5求下列函数的傅氏变换,并证明所列的积分等式.(2)sin ,()0,t f t ⎧=⎨⎩ ||,||.t t ππ≤> 证明 20sin ,sin sin d 210,t t πωπωωω+∞⎧⎪=⎨-⎪⎩⎰||,||.t t ππ≤> 8.13证明下列各式:其他(1) f 1(t )* f 2(t )= f 2(t )* f 1(t )8.14设10,()1,f t ⎧=⎨⎩ 0,0;t t ≤> 20,()e ,t f t -⎧=⎨⎩ 0,0,t t <≥ 求f 1(t )* f 2(t ).8.15设1()F ω= F [f 1(t)], 2()F ω= F [f 2(t)],证明:F [f 1(t)·f 2(t)]=121()*()2F F ωωπ.第九章9.1求下列函数的拉氏变换:(1)3,()1,0,f t ⎧⎪=-⎨⎪⎩02,24,4;t t t ≤<≤<> (2)3,()cos ,f t t ⎧⎪=⎨⎪⎩ 0,2;2t t ππ≤<≥ 9.2求下列函数的拉氏变换:(1)sin 2t(4)||t9.3求下列函数的拉氏变换:(1)232t t ++(3)2(1)t t e -(5)cos t at9.4利用拉氏变换的性质,计算L [f (t )]:(1)3()sin 2t f t te t -= ;(2)30()sin 2d t t f t t e t t -=⎰9.5利用拉氏变换的性质,计算L -1[F (s )](2)1()ln1s F s s +=- (4)221()(1)F s s =- 9.6利用像函数的积分性质,计算L [f (t )]:(1)sin ()kt f t t = (2)30sin 2d t t e t t t-⎰ 9.8求下列像函数F (s )的拉氏变换:(5)42154s s ++ (7)221s e s-+ 9.11利用卷积定理证明下列等式:(1)L [0()d t f t t ⎰ ]= L [()*()f t u t ]=()F s s ; (2)L -1222sin (0).()2s t at a s a a⎡⎤=≠⎢⎥+⎣⎦教材:《常微分方程》第一章2.验证函数1y cx c =+ (c 是常数)和y =±都是方程1y xy y '=+ 的解.4.验证函数12cos sin y c kx c kx =+ (k,c 1, c 2是常数)是方程20y k y '''+=的解.0.x y +=8.2(1)tan ,(0) 2.y y x y '=-=求下列齐次方程的解: 9.22d 2.d y xy x x y=+ 10.d (1ln ln ).d y y y x x x =+-12.d ,(1) 4.d y y y x x==13.1(1).2xy y y '-==求下列一阶线性方程或伯努利方程的解: 14.2d d y y x x x=- 15.2d 2,(0)2d x y xy x e y x -++== 17.2d 0,(0)1d 2(1)2y xy x y x x y--==- 验证下列方程为全微分方程或找出积分因子,然后求其解: 19.453(5d d )d 0x y x x y x x ++=20.2(d d )d 5d 0,(0)1x x x y x x y y y ++-==第二章求下列方程的通解或特解: 7.40y y '''-=8.20y y ''+=9.20y y y '''-+=10. 4130y y y '''++=11. 00540,|5,|8x x y y y y y ==''''-+=== 求下列方程的通解或特解: 18.y y a ''+= (a 是常数),y (0)=0,y ’(0)=0 19.5420,(0)0,(0)2x y y y e y y ''''++===- 24.22x y y y e -'''++= 26.2002d d cos 2,||2d d t t x x x t x t t==+===- 27.22d sin ,0d x x at a t+=> 28.22d d 32sin cos d d y y x x x x+=+ 31.225cos y y x '''+=33.22cos x y y y e x -'''-+= 34.4sin 2y y x x ''+=答案见教材“习题答案”。
《工程数学》课后作业

《工程数学》课后作业第一章 矩阵1. 计算3111131111311113。
2. 设矩阵⎥⎦⎤⎢⎣⎡--=1111A ,⎥⎦⎤⎢⎣⎡--=1111B ,求AB B A ,+。
3. 若6222321332211321=---c c c a b a b a b a a a ,求321321321c c c b b b a a a 。
4. 设211210111A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求1A -。
5. 设n 阶方阵A满足:12)(,,042-++=+-E A E A E A A 并求可逆试证明 6. 设1234A ⎛⎫=⎪⎝⎭,则*A =( ). (A ).2- (B ).4- (C ).2 (D).47设a b A c d ⎛⎫= ⎪⎝⎭,则=-1A8设行列式333222111c b a c b a c b a =3,求333222111222222222c b a c b a c b a 的值。
9. 设矩阵120311A ⎛⎫= ⎪-⎝⎭,则TA = .10求行列式201141183D =--- 中(3,2)元32a 的余子式和代数余子式。
11. 求矩阵8823122212611132A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭的秩。
第二章 n 维向量1.已知=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=βαβαT 则,120,312 ,=Tαβ .2.判断向量组123(1,2,2),(2,1,1),(4,5,5)T T Tααα===的线性相关性。
3若向量组1α,2α,3α线性无关,123βαα=+,213βαα=+,312βαα=+,试证明123,,βββ也线性无关。
4求向量组T 1=(1,1,0)α,2(0,2,0)T α=,3(0,0,3)Tα=的秩与其极大线性无关组。
5设向量组:A 1(4,1,5,6)T α=---,2(1,3,4,7)T α=---,3(1,2,1,3)Tα=,4(2,1,1,0)T α=-.(1)求向量组A 的秩,并判断其线性相关性;(2)求向量组A 的一个最大线性无关组.第三章 矩阵和向量的应用1.齐次线性方程组⎩⎨⎧=+=+004231x x x x 的基础解系含( )个线性无关的解向量:(A )1 (B )2 (C )3 (D )42. 当k 为多少时,方程0020kx y z x ky z x y z ++=⎧⎪+-=⎨⎪-+=⎩仅有零解?3. 设A 为n m ⨯ 矩阵,则齐次线性方程组0=AX 仅有零解的充分条件是( ) (A )A 的列向量组线性无关 (B )A 的列向量组线性相关 (C )A 的行向量组线性无关 (D )A 的行向量组线性相关4. 求矩阵421201110A⎛⎫⎪=--⎪⎪⎝⎭的特征值与特征向量。
【第4次】2022年国家开放大学工程数学第4次作业及答案

工程数学(本)形成性考核作业4综合练习书面作业(线性代数部分)一、解答题(每小题10分,共80分)1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 解:[]121012101032 130101110111A I -⎡⎤⎡⎤⎡⎤=→→⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 13211A --⎡⎤=⎢⎥-⎣⎦11232311110X BA --⎡⎤-⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦548532-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '= 解:[]012100114010114010,114 010012100012100211001211001037021A I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦114010012100001321⎡⎤⎢⎥→⎢⎥⎢⎥--⎣⎦1101274010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦100532010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 1532742321A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦1532237421532136X A B ---⎡⎤⎡⎤⎢⎥⎢⎥'==-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦131********-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦. 解:AX IX B -=()A I X B -=[]3510,5801A I I ⎡⎤-=⎢⎥⎣⎦35101221⎡⎤→⎢⎥---⎣⎦12213510---⎡⎤→⎢⎥⎣⎦12210153---⎡⎤→⎢⎥--⎣⎦12210153-⎡⎤→⎢⎥-⎣⎦10850153-⎡⎤→⎢⎥-⎣⎦()18553A I --⎡⎤-=⎢⎥-⎣⎦()1X A I B -=-8553-⎡⎤=⎢⎥-⎣⎦1234⎡⎤⎢⎥⎣⎦7442⎡⎤=⎢⎥--⎣⎦4. 求齐次线性方程组12341234134 30240 450x x x x x x x x x x x -+-=⎧⎪--+=⎨⎪-+=⎩的通解.解:113111312114017610450176A ----⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦104501760000-⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦134234450760x x x x x x -+=⎧⎨-+=⎩方程组的一般解为1342344576x x x x x x =-⎧⎨=-⎩(其中34,x x 是自由未知量)令341,0x x ==,得14710X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令330,1x x ==,得25601X -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1122k X k X +(其中12,k k 为任意常数) 5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪的通解.解:13125123111253504A --⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥⎣⎦13120143701437014310--⎡⎤⎢⎥--⎢⎥→⎢⎥--⎢⎥-⎣⎦13120143700000003--⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎣⎦1312310114200010000--⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦131030101400010000-⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5101430101400010000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦13234501430140x x x x x ⎧+=⎪⎪⎪-=⎨⎪=⎪⎪⎩,一般解为132345143140x x x x x ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩(其中3x 为自由未知量) 令314x =,得1245,3,0x x x =-==基础解系为153140X -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦通解为1X kX =(k 为任意常数) 6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 解:将齐次线性方程组的系数矩阵化为阶梯形12112145034372011A λλ⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦103011034λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 103011007λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦故当7λ=时,方程组有非零解方程组的一般解为13233x x x x =-⎧⎨=⎩(其中3x 是自由未知量)令31x =,得方程组的一个基础解系1312X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1kX (其中k 为任意常数) 7. 当λ取何值时,非齐次线性方程组123123123124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩ 有解?在有解的情况下求方程组的通解.解:11111242251A λ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦111103330332λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦111103330005λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦当5λ=时,方程组有解111103330000A ⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦111101110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦102001110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦一般解为132321x x x x =-⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0010X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.解:将方程组的增广矩阵化为阶梯形矩阵12452314382134196A --⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥--⎣⎦124507714014142807714--⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥-⎣⎦1245011200000000--⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦1021011200000000-⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦ 方程组的一般解为1323212x x x x =--⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0120X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)二、证明题(每题10分,共20分) 1. 对任意方阵A ,试证A A +'是对称矩阵. 证明:()()A A A A A A ''''''+=+=+ 故A A '+是对称矩阵2. 设n 阶方阵A 满足2A A I O +-=,试证矩阵A 可逆. 证明:2A A I += A A A I I ⋅+⋅= ()A A I I += 所以矩阵A 可逆。
工程数学作业(第一次)(满分100分).#精选

工程数学作业(第一次)(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=( ).A. 4B. -4C. 6D. -6⒉若000100002001001a a=,则a =( ).A.12 B. -1 C. -12D. 1 ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=( ). A. 1 B. 7 C. 10 D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是( ). A. A B A B +=+ B. AB n A B =C. kA k A =D. -=-kA k A n()⒍下列结论正确的是( ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321 ⒏方阵A 可逆的充分必要条件是( ).A.A ≠0B.A ≠0C. A *≠0D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1( ).A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是( ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈210140001---= . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''= . ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=- .(三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . ⒋写出4阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. (四)证明题(每小题4分,共12分)⒎对任意方阵A ,试证A A +'是对称矩阵.⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1. ⒐若A 是正交矩阵,试证'A 也是正交矩阵.工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为( ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则( )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是( ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内( )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分)⒈当λ= 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 解,且系数列向量ααα123,,是线性 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 . ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。
工程数学作业3参考答案

工程数学作业3参考答案工程数学作业3参考答案在工程数学中,作业是帮助学生巩固所学知识的重要环节。
作业3是一个综合性较强的作业,涉及到多个概念和技巧。
本文将为大家提供一份参考答案,帮助大家更好地理解和掌握工程数学的相关内容。
1. 题目一:求解微分方程给定微分方程 dy/dx = 2x,求解其通解。
解答:首先将方程分离变量,得到 dy = 2x dx。
然后对两边同时积分,得到∫dy = ∫2x dx。
对右边进行积分,得到 y = x^2 + C,其中C为常数。
所以方程的通解为 y = x^2 + C。
2. 题目二:求解线性方程组给定线性方程组:2x + 3y = 54x + 6y = 10求解该线性方程组的解。
解答:首先将方程组写成增广矩阵的形式:[2 3 | 5][4 6 | 10]然后对增广矩阵进行行变换,目标是将矩阵化简为上三角形式。
通过第一行乘以2再减去第二行,得到新的矩阵:[2 3 | 5][0 0 | 0]由于第二行全为0,说明该线性方程组有无穷多个解。
我们可以令x = t,其中t 为任意实数,然后代入第一行方程求解y。
所以该线性方程组的解为:x = ty = (5 - 2t)/33. 题目三:求解极限求极限 lim(x->0) [(sinx)/x]。
解答:将极限表达式化简为不定型,得到 lim(x->0) [(sinx)/x] = 1。
这是一个常见的极限结果,被称为正弦函数的极限。
4. 题目四:求解定积分求解定积分∫(0 to π/2) sinx dx。
解答:对于这个定积分,可以直接使用定积分的性质进行求解。
根据定积分的定义,我们有∫(0 to π/2) sinx dx = [-cosx] (0 to π/2) = -cos(π/2) - (-cos(0)) =-1 - (-1) = 0。
5. 题目五:求解常微分方程的特解给定常微分方程 y'' - 4y' + 4y = 0,求解其特解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江大学远程教育学院《工程数学》课程作业姓名:钟标学号:715129202009年级:2015春学习中心:浙大校内直属学习中心(紫金港)—————————————————————————————《复变函数与积分变换》第一章1.1计算下列各式:(2)、(a-bi)3解(a-bi)3=a3-3a2bi+3a(bi)2-(bi)3=a3-3ab2+i(b3-3a2b) ;(3)、;解====1.2、证明下列关于共轭复数的运算性质:(1);证()-i() ==(2)证===--==()()=--即左边=右边,得证。
(3)=(Z2≠0)证==()====1.4、将直线方程ax+by+c=0 (a2+b2≠0)写成复数形式[提示:记x+iy=z]z+A+B=0,其中A=a+ib,B=2C(实数) 。
解由x=,y=代入直线方程,得()+()+c=0,az+-bi()+2c=0,(a-ib)z+( a+ib)+2c=0,故z+A+B=0,其中A=a+ib,B=2C1.5、将圆周方程a(x2+y2)+bx+cy+d=0 (a≠0)写成复数形式(即用z与来表示,其中z=x+iy)解:x=,y=,x2+y2=z代入圆周方程,得az+()+()+d=0,2az+(b-ic)z+(b+ic)+2d=0故Az++B+C=0,其中A=2a,C=2d均为实数,B=b+ic 。
1.6求下列复数的模与辅角主值:(1)、=2,解arg()=arctan= 。
1.8将下列各复数写成三角表示式:(2)、i;解=1,arg()=arctan()= -a故i=+i。
1.10、解方程:Z3+1=0解方程Z3+1=0,即Z3=-1,它的解是z=,由开方公式计算得Z==+i,k=0,1,2 即Z0==+i,Z1==1,Z2=+ i=i 。
1.11指出下列不等式所确定的区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?(1)、2<<3;解圆环、有界、多连域。
(3)、<arg z<;解圆环的一部分、单连域、有界。
(5)、Re z2<1;解x2-y2<1无界、单连域。
(7)、<;解从原点出发的两条半射线所成的区域、无界、单连域;第二章2.2下列函数在何处可导?何处不可导?何处解析?何处不解析?(1)f(z)=z2;解f(z)=z2=·z·z=·z=( x2+y2)(x+iy)=x(x2+y2)+ iy(x2+y2),这里u(x,y)=x( x2+y2),v(x,y)= y( x2+y2)。
u x= x2+y2+2 x2,v y= x2+y2+2 y2,u y=2xy,v x=2xy 。
要u x= v y,u y =-v x,当且仅当x=y=0,而u x, v y,u y ,v x均连续,故f(z)=·z2仅在z=0可导;z≠0不可导;复平面上处处不解析;(2)、f(z)= x2+ iy2;解这里u= x2,v= y2, u x=2x, u y=0, v x=0, v y=2y,四个偏导数均连续,但u x= v y,u y= -v x仅在x=y处成立,故f(z)仅在x=y上可导,其余点均不可导,复平面上处处不解析;2.3确定下列函数的解析区域和奇点,并求出导数:(1)、;解f(z)=是有理函数,除去分母为0的点外处处解析,故全平面除去点z=1及z=-1的区域为f(z)的解析区域,奇点为z=±1,f(z)的导数为:f’(z)=)’=则可推出==0,即u=C(常数)。
故f(z)必为D中常数。
2.9由下列条件求解析函数f(z)=u+iv(1)、u=(x-y)(x2+4xy+y2);解因==3+6xy-3,所有v=dy=+3x-+ (x),又=6xy+3+ ’(x),而=3-3,所以 ’(x)=-3,则 (x)=-+C。
故f(z)=u+iv=(x-y)(+4xy+)+i(-+C) = (1-i)(x+iy)-(1-i) (x+iy)-2(1+i)-2x(1-i)+Ci=z(1-i)()-2xyi·iz(1-i)+Ci=(1-i)z(-2xyi)+Ci=(1-i)z3+Ci(3)、u=2(x-1)y,f(0)=-i;解因=2y,=2(x-1),由f(z)的解析性,有==2(x-1),v=dx=+(y),又==2y,而=’(y),所以’(y)=2y,(y)=+C,则v=++C,故f(z)=2y+i(++C),由f(2)=i得f(2)=i(1+C)=,推出C=0。
即f(z)=2y+i()=i(+2z)=i(1z)2(4)、u=(x),f(0)=0;解因=(x)+,=(-x),由f(z)的解析性,有==,==(x)+。
则v(x,y)=dx+dy+C =+dy+C=X dy-dy+dy)+C=+C=x-+C,故f(z)=-i()+iC。
由f(0)=0知C=0即f(z)=(x)+ i()=ze z。
2.13试解方程:(1)、=1+i解=1+i=2(+i)=2=(4)、+=0解由题设知=-1,z=k-,k为整数。
2.14求下列各式的值:(1)、解==;(3)、;===·=·=27(-i)。
第三章3.1、计算机积分dz积分路径为(1)自原点至1+i的直线段;(2)自原点沿实轴至1,再由1沿直线向上至1+i;(3)自原点沿虚轴至i,再由i沿水平方向向右至1+i。
解(1)dz=dt=i(1+i)=;注:直线段的参数方程为z=(1+i)t,0≤t≤1 。
(2)C1:y=0,dy=o,dz=dx, C2:x=1,dx=o,dz=idy,dz=+=dx+idy=+i;(3):x=0,dz=idy;:y=1,dz=dx。
dz=+=dy+dx=3.2、计算积分dz的值,其中C为(1)=2;(2)=4。
解令z=r,则dz==2i 。
当r=2时,为4i;当r=4时,为8i 。
3.6、计算dz,其中C为圆周=2;解f(z)==在=2内有两个奇点z=0,1,分别作以0,1为中心的圆周C1, C2, C1与C2不相交,则dz=dz-dz=2i-2i=03.8计算下列积分值:(1)、dz;解dz =πi0=1-;(3)、dz;解dz=(3+) 0i =3= 3。
3.10计算下列积分:(1)、dz;解dz =2i=2i(2)、dz;解dz =2(2)=4i(4)、(r≠1);解为0;r>1时n=1为2i,n≠1为0 。
3.11、计算I=其中C是(1)=1;(2)=1;(3)=;(4)=3。
解(1)被积函数在≤1内仅有一个奇点z=,故I=dz=2()=i;(2)被积函数在≤1内仅有一个奇点z=2,故I=dz=2()=i;(3)被积函数在≤内处处解析,故I=0;(4)、被积函数在≤3内有两个奇点z=,z=2由复合闭路原理,知I= +=dz +dz==i,其中C1为=1,C2为=1。
3.13计算下列积分:(2)、dz;解dz=2()’=2·=0 (3)、dz,其中:=2,:=3。
解dz=dz+dz=2()”2()”=(-1)(-1)=0第四章4.2下列级数是否收敛?是否绝对收敛?(1)、;(2)、;解(1)因=发散。
故发散。
(2)=收敛;故绝对收敛。
4.4试确定下列幂级数的收敛半径:(1)、;(2)、;解(1)==1,故R=1。
(2)===e,故R=4.5将下列各函数展开为z的幂级数,并指出其收敛区域:(1)、;(3)、;(5)、sin2z;解(1)===,原点到所有奇点的距离最小值为1,故<1 。
(3)=·()’=()’==,<1(5)sin2z===,<∞ 。
4.7求下列函数在指定点z0处的泰勒展示:(1)、,z0=1;(2)、,z0=1;解(1)=()’=[]’==,<1(2) ==+=+,<∞4.8将下列各函数在指定圆环内展开为洛朗级数:(1)、,0<<1,1<<+∞;(3)、,1<<2(4)、,0<<+∞;解(1)0<<1时,=(1-)=,当1<<+∞时,0<<1,=(1+)=(1+)=+=+。
(3)====+,1<<2 。
(4)0<<+∞时,==+==。
4.9将=在z=1处展开为洛朗级数解f(z)==。
f(z)的奇点为z1=1,z2=2。
f(z) 在0<<1与>1解析。
当0<<1时f(z)====当>1时0<<1,f(z)==+=+第五章5.3、下列各函数有哪些奇点?各属何类型(如是极点,指出它的阶数):(1)、;(2)、;(3)、;(4)、;(5)、;(6)、-;解(1)令f(z)=,z=0,±2i为f(z)的奇点,因=,所以z=0为简单极点,又==,所以z=2i为二阶极点,同理z=亦为二阶极点。
(2)因==1,所以z=0为二阶极点。
(3)令f(z)==,则的零点为z=k-,k=0,±1,±2,…因()’=(==0,所以都为简单极点。
(4)令f(z)=,=,则的零点为z=,k=0,±1,±2,…。
因=(z++…)=(1++…),z=0为的三阶零点,故f(z)的三阶极点。
又)’=(2z()+)0,故z=为的一阶零点,即为f(z)的简单极点。
(5)令f(z)=,z=0为其孤立奇点。
因==1,所以z=0为可去奇点。
(6)令f(z)=-=,z=0和()为其孤立奇点。
因===,所以z=0为可去奇点,又==(),所以z= ( k=0,±1,±2,…)为的一阶零点,即为f(z)的简单极点。
5.5、如果与g(z)是以z0为零点的两个不恒为零的解析函数,则=(或两端均为)。
[提示:将写成的形式,再讨论。
]证设为的m阶零点,为g(z)的n阶零点,则=,在0,m≥1,g(z)=,在0,n≥1。
因而=,==当m=n时,(1)式==(2)式,当m>n时,(1)式=(2)式=0,当m<n时,(1)式=(2)式=∞ 。
5.7求出下列函数在孤立奇点处的留数:(1)、;(2)、;(5)、;(6)、;解(1)令=,孤立奇点仅有0。
Res[,0]===0(2)z=2为简单极点,z=±i为二阶极点。
Res[,2]===,Res[,i]===。
同理可计算Res[,-i]=。
(5)的孤立奇点为z=0,=kπ(k=±1,±2,…),其中,z=0为二阶极点,这是由于===,在z=0处解析。
且≠0所以Res[,0]====0,易知=kπ(k=±1,±2,…)为简单极点,所以Res[,kπ](k=±1,±2,…)为简单极点,所以Res[,kπ]===(k=±1,±2,…)。
(6)=在整个复平面上解析,无孤立奇点。
5.8利用留数计算下列积分:(1)、=0;(2)、dz=;(4)、=-2解(1)=2Res[,0]=2=2=2=2=2=0(2)dz=2Res[,1]=2=。