无刷同步发电机
斯坦福无刷发电机励磁介绍

底脚
A.V.R. 装在 A.V.M上
出线盒
P.M.G P.M.G 转子 定子
一、斯坦福发电机的结构 1.主定子
一、斯坦福发电机的结构 2. 转子
过渡轮毂 过渡盘片
单轴承主转子总成
发电机的驱动端由发动机的飞轮支撑.
励磁转子
轴承 (密封)
主转子
风叶
轴承 (密封)
轴
PMG转子 (建议用于 UC 机整)流模块
康明斯/斯坦福凸极同步发电机
STAMFORD发电机
产品型号识别
I
型号
控制系统
MX341/ MX321 SX440/ SX421
陆用 船用
机座号
极数
轴承数
铁芯长度
STAMFORD发电机
产品型号的识别
型号
轴的中心高 (厘米)
M - 船用 I - 陆用l
轴承数 极数
铁芯长度
控制系统
3 - PMG / AVR
7 8
X XX
永磁机励磁无刷发电机工作原理
• 发电机工作时,永磁机定子输出P2、P3、P4,电压值约 为130-150VAC之间,此电压值输入到稳压板(AVR)的 P2、P3、P4 端子,经AVR内部的二极管予以整流后, 输出×、××(空载时约8-9VDC)到电球的励磁机定子 线圈,励磁机转子线圈感应出交流电,经安装在励磁机转 子线圈上的6个二极管整流出直流。此直流电流到主转子 线圈,主转子线圈在旋转状态下产生一个磁场,主定子线 圈感应出交流电(如400VAC输出)。
MX321
MX321
通过检测发电机主绕组的 电压,以控制提供给 励磁机定子以及主 转子的电流,来维持发电机输 出电压介于指定的范围内,并补偿负载、转速、 温度及发电机的功率因数。而三相的RMS 检测可 提供更准确的电压调节,设有可 调节的缓慢起动 电路可控制发电机输 出电压的平滑建立。
无刷相复励发电机组

无刷相复励发电机组无刷同步发电机组是一种常见的发电机组类型,它采用无刷励磁方式,通过自激励的方式来产生激磁电流,从而实现发电的过程。
无刷同步发电机组相较于传统的励磁方式更为先进和高效。
无刷同步发电机组的主要组成部分包括转子、定子和无刷励磁系统。
转子是发电机组的旋转部分,由磁铁和线圈组成。
定子是发电机组的静止部分,包括定子线圈和铁芯。
无刷励磁系统是发电机组的关键部分,它通过电子设备来控制和调节发电机组的励磁电流,从而实现发电。
无刷同步发电机组相较于传统的励磁方式具有许多优势。
首先,无刷励磁方式可以减少机械磨损和能源损耗,提高发电机组的使用寿命和效率。
其次,无刷励磁方式可以实现自动调节和稳定输出功率,适应不同负载需求。
此外,无刷励磁方式还可以减少电磁干扰和噪音,提升发电机组的工作环境和安全性能。
无刷同步发电机组在实际应用中具有广泛的用途。
例如,在电力系统中,无刷同步发电机组可以作为主要的电源发电设备,满足电网的基本负荷需求。
在船舶和飞机等交通工具中,无刷同步发电机组可以作为主要的动力来源,驱动船舶和飞机的运行。
在工业生产中,无刷同步发电机组可以作为备用电源,保证生产设备的正常运行。
无刷同步发电机组的工作原理是基于电磁感应和自激励的原理。
当发电机组开始旋转时,转子的磁铁和定子的线圈之间会产生磁场的变化,从而在定子线圈中感应出电流。
这个感应电流经过无刷励磁系统的调节和控制,形成励磁电流,进而产生磁场,完成发电的过程。
无刷同步发电机组的优点不仅在于其高效和稳定的发电性能,还在于其自动调节和可靠性。
无刷励磁系统可以根据负载的变化自动调节励磁电流,保持发电机组的稳定输出功率。
同时,无刷同步发电机组还具有过载保护和短路保护等功能,保证发电机组的安全运行。
无刷同步发电机组是一种先进和高效的发电机组类型。
它采用无刷励磁方式,通过自激励的方式来产生励磁电流,从而实现发电的过程。
无刷同步发电机组具有自动调节、稳定输出功率和可靠性等优点,在电力系统、交通工具和工业生产等领域有广泛的应用前景。
(整理)无刷交流同步发电机原理与构造.

无刷交流同步发电机原理与构造国民经济建设和人民生活时刻离不开电能,同步发电机由原动机驱动而旋转,把机械能转换成电能,向用电设备提供交流电源。
无刷同步发电机由于其无线电干扰小,无电刷,维护工作量少,运行可靠,性能优越,又便于实现无人值守,当今国内外己普遍推广应用。
第一节无刷同步发电机工作原理一、电与磁的关系(一)通电导体周围有磁场在导体中通入电流之后,导体周围便产生磁场,而且沿导体全部长度上都存在着,该磁场的强弱决定于电流的大小,电流越大,磁场强度越强,磁场的方向按右手定则决定,如图8-1所示,将右手姆指伸直表示电流方向,将其余四指卷曲,这时四指所指的方向,就是磁场方向。
通电线圈或螺线管周围也产生磁场。
磁场的强度与线圈匝数及电流大小成正比 , 磁场方向也以右手定则决定 , 如图 8一2 所示 , 伸出右手姆指,其余四指卷曲,使四指的方向符合线圈中电流方向 , 那么伸直的姆指所指的方向就是磁场方向。
发电机的磁场就是在磁极铁心外套上线图通以直流电而形成南、北磁极。
当线圈断电后,磁极铁心仍有一定的磁性,俗称“剩磁”,这是发电机自建电压的必不可少的条件。
(二)电磁感应当导体(线)在磁场中运动或磁场在导体周围运动,两者互相切割时,在导体(线)中便感应电动势,这种现象称为电磁感应。
感应电动势的方向与导体运动方向和磁场方向有关,可用“右手定则”来判定。
伸右手于磁场内,手心对着N极,四指与大姆指互相垂直,让大姆指指向导体运动方向,那么四指所指方向就是感应电动势方向。
发电机就是根据这个原理工作的。
如图8-3所示。
感应电动势的大小e与磁感应强度B,导体切割磁力线的速度 v和导体长度l成正比。
e=B1v要增大感应电动势,可采用下列办法:1、增加被切割的磁力线数目,即增强磁场强度,磁场越强,感应电动势越大。
2、增加导体切割磁力线速度,速度越快,感应电动势越大。
3、增加切割磁场的导体有效长度,即增加线圈匝数,匝数越多,感应电动势越大。
无刷同步发电机的工作原理

无刷同步发电机的工作原理无刷同步发电机,也称为无刷永磁发电机,是一种将机械能转换成电能的设备。
相比传统的刷式发电机,无刷同步发电机具有结构简单、效率高、运行稳定等优势。
本文将介绍无刷同步发电机的工作原理。
无刷同步发电机由大致分为定子部分和转子部分。
定子部分包含电磁线圈,其绕组围绕在发电机的外部定子上。
转子部分则是由永磁体组成,永磁体通常用稀土磁铁或永磁材料制成。
这些永磁体被固定在转子上,与转子轴一起旋转。
无刷同步发电机的工作原理可通过以下几个步骤来解释:1. 磁场建立:当外部机械力作用于转子上时,转子开始旋转。
随着转子的旋转,永磁体创建了一个旋转的磁场。
2. 感应电动势产生:定子绕组中的电磁线圈被连接到外部电路中。
当转子的旋转磁场通过定子绕组时,由于磁感应现象,定子绕组中将会产生感应电动势。
3. 电流流动:感应电动势引起定子绕组中的电流流动,电流的流动方向根据法拉第电磁感应定律由磁场输入的方向决定。
4. 变换电流:通过逆变器将定子绕组中产生的交流电流转换为直流电流。
5. 输出电能:直流电流通过整流器和逆变器进行进一步处理后,即可用于供电或储存。
总结起来,无刷同步发电机的工作原理是通过转子上的永磁体与定子绕组之间的旋转磁场相互作用,产生感应电动势,并将其转换成可输出的电能。
相比传统的刷式发电机,无刷同步发电机由于无需刷子与外界进行接触,因此摩擦和磨损小,能够提供更长的使用寿命和更高的效率。
无刷同步发电机在实际应用中有着广泛的用途,例如电动汽车、风力发电、水力发电等。
其高效、稳定的特性使其成为可再生能源开发中的重要组成部分。
随着科技的进步和永磁材料的发展,无刷同步发电机将继续在能源领域发挥重要作用。
无刷同步发电机

无刷同步发电机同步发电机是把机械能转换为交流电能的转换设备。
自备电站过去的柴油发电机组同步发电机的励磁,是广泛采用直流发电机提供励磁电流来发电的。
这种励磁方式,由于应用直流发电机,交流电变为直流电通过整流子进行交换,而励磁电流又通过同步发电机的铜环和炭刷向励磁绕组提供,因此,给维护和保证安全运行方面都带来很多问题。
为了改进这种励磁方式。
20世纪60年代主要发展了带静止硅整流器的自励恒压的同步发电机,这种发电机依然存在炭刷和滑环,仍需要经常维护,而且产生无线电磁干扰。
为了从根本解决存在的问题,现代的同步发电机,通过改进和发展,广泛采用同轴交流无刷励磁机和旋转整流器的无刷同步发电机。
一、无刷同步发电机的结构同步发电机的基本类型/同步电机按其运行方式和功率转换方向可分为同步发电机、同步电动机和同步补偿机三大类型。
同步发电机是把机械能转换为交流电能的设备;同步电动机是把交流电能转换为机械能的设备;同步补偿机则是专门用于电网的无功功率的装置,以改善电网的功率因数。
从原理上讲,任何一台同步发电机,即可作发电机,也可作电动机与补偿机,即同步电机具有可逆性。
同步发电机的基本型式分为旋转电枢式和旋转磁极两种类型。
这两类同步发电机虽然结构上有所不同,但基本原理是相同的,即磁场与导线的相对运动,切割磁力线,导线产生感应电势。
1、旋转电枢式发电机旋转电枢式发电机的磁场是固定的,面电枢则由原动机拖动旋转,三相交流电流通过滑环和电刷的引接输送到负载。
这类发电机的优点是铁芯硅钢片的利用率较高,而且定子是机座可以作磁轭,以节约钢材。
其缺点是输出的容量受到限制,电压也不能太高,这是因为:电枢绕组的电流是通过滑环和电刷的连接引到外电路的,如果输出的电流过大,会引起滑环与电刷之间产生过大的火花,若输出电压过大,则滑环和电刷的绝缘不易解决,因此电压一般不超过500V;由于电枢所占的空间有限,若绕组匝数过多和绝缘层过厚,制作困难,这限制了电压增高和容量增大;当电枢转速较高时,由于离心力的作用和振动增大,容易造成电枢损坏,因此,限制发电机的运行;这类发电机结构较复杂,造价也较贵。
1FC6系列无刷励磁三相同步发电机实用操作方法

1FC6系列无刷励磁三相同步发电机实用操作方法一、启动前的准备工作1.检查发电机的外部和内部连接线路是否牢固,无松动现象。
2.检查电气元件的绝缘状况,确保绝缘良好。
3.检查励磁系统的连接线路是否正常,主要检查励磁电流传感器的连接。
4.检查压电传感器和转速传感器的连接线路是否正常。
二、启动操作步骤1.打开发电机电源总开关,并将电压调节器的输出电压调至合适值,一般为出厂设置值。
2.打开励磁开关,启动励磁系统,确保励磁电流传感器电流值正常。
3.启动主机,让其达到额定转速。
4.打开功率开关,并调整输出功率至所需值,可以通过电压调节器来实现。
三、停止操作步骤1.先关闭发电机的功率开关,断开与外部负载的连接。
2.将功率调整至最小值,并稳定输出电压,然后关闭电压调节器。
3.关闭主机,并等待其完全停下后再关闭励磁开关。
4.最后关闭发电机电源总开关,断开发电机与电源的连接。
四、应急处理方法1.当发电机出现故障或异常时,应立即关闭功率开关,并停止发电机运行。
2.检查并处理故障的可能原因,如电气元件及连接线路是否异常,励磁系统是否正常。
3.在处理故障前,应待发电机冷却一段时间后再进行检查和维修,避免触摸高温部件而造成伤害。
五、定期维护和保养1.定期检查发电机的外观和内部电气元件的连接,确保无松动和损坏。
2.定期清洗发电机,保持机体的干净,并检查散热装置的工作情况,若发现堵塞或故障,要及时清理或更换。
3.定期检测发电机的励磁电流传感器和压电传感器,确保其正常工作。
4.定期检查和校准电压调节器的输出电压值,确保其与预设值一致。
5.定期对主机进行维护保养,清洁润滑部件,更换磨损和老化的零件。
6.定期对发电机进行性能测试,包括输出功率、效率、负载能力等。
六、注意事项1.在使用发电机时,要遵守相关的安全操作规程,确保自身和设备的安全。
2.在发电机运行期间,要及时监控相关参数,并保持发电机的正常工作状态。
3.如果发电机出现故障或异常,应立即停止其运行,并进行检查、维修。
无刷同步发电机的工作原理

无刷同步发电机的工作原理一、转子原理无刷同步发电机的转子由永磁体组成,这些永磁体分布在转子表面,形成一组磁极。
当外部电源接通,形成交变电流通过定子线圈时,通过磁极磁场的作用,会在定子的线圈中感应出交变电动势。
根据法拉第电磁感应定律,线圈所感应到的电动势与磁场变化的速度成正比。
因此,转子中的永磁体随着转速的变化,使得磁场变化的速度也发生改变,在定子中感应出电动势。
这样,通过转子和定子之间的磁场变化,可以实现能量的转换与传输,使得机械能转化为电能。
二、定子原理无刷同步发电机的定子由线圈组成,这些线圈固定在发电机的定子上。
当外部电源接通,形成直流电流通过定子线圈时,在线圈中产生一个恒定的极性磁场。
同时,通过转子上的永磁体与定子上的线圈的磁场相互作用,产生一个交变磁场。
根据电磁感应定律,一个磁场线与一个线圈切割速度的改变会在线圈中感应出电动势。
当永磁体随着转子的转动,在定子线圈上产生一个变化的磁场时,就会在定子线圈中感应出交变电动势。
这样,通过定子线圈与转子永磁体之间的磁场作用,可以实现机械能向电能的转化。
无刷同步发电机的工作过程中,通过转子和定子之间磁场变化的作用,实现能量的转换与传输,从而将机械能转化为电能。
同时,无刷同步发电机的转子由永磁体组成,因此不需要额外的励磁电源,能够直接产生电磁场,大大提高了转子的效率。
此外,无刷同步发电机的定子线圈可根据需要进行串联或并联,以满足不同功率需求的发电机。
总结起来,无刷同步发电机的工作原理可以归结为转子原理和定子原理两个方面。
转子原理是通过转子中的永磁体随转速的变化,在定子中感应出电动势来实现机械能向电能的转化;定子原理则是通过定子线圈产生的恒定磁场与转子上的永磁体产生的变化磁场相互作用,在线圈中感应出交变电动势,实现机械能向电能的转化。
无刷同步发电机由于无需外部励磁电源,具有高效率和可靠性的特点,广泛应用在发电领域。
无刷同步发电机的工作原理

无刷同步发电机的工作原理无刷同步发电机(Brushless Synchronous Generator)是一种先进的电动机和发电机技术,由于其高效、可靠和低噪音等优点,被广泛应用于各个领域。
本文将介绍无刷同步发电机的工作原理,以及其在实际应用中的特点和优势。
一、工作原理无刷同步发电机是通过电子换相技术实现定子和转子之间的电磁耦合,并在转子上使用永磁材料产生磁场,从而实现电能的转换和传递。
它与传统的刷子式直流发电机相比,在结构和工作原理上有所不同。
无刷同步发电机主要由定子、转子和电子换相器组成。
定子上有三个相互平衡的绕组,每个绕组120度相位差,与转子上的磁场相互作用,产生感应电动势。
而转子上的永磁材料通过电子换相器的控制,实现定子和转子之间的磁场交替变化,从而使无刷同步发电机实现稳定的电能输出。
具体工作过程如下:当转子上的磁场与定子的绕组之间的磁场相互作用时,产生感应电动势,根据洛伦兹力原理,电动势将推动电流在绕组中流动。
然后,电子换相器控制转子上的磁场的极性变化,使得磁场交替在不同的绕组之间产生,从而使电流方向也随之改变。
二、特点和优势1. 高效能:无刷同步发电机采用电子换相技术,消除了传统刷子与集电环之间的机械摩擦,大大减少了能量的损耗,提高了发电机的效率。
与传统发电机相比,其效率可提高10%以上。
2. 可靠性高:无刷同步发电机不使用刷子和集电环,减少了零部件的磨损和故障的可能性,增加了设备的寿命和可靠性。
同时,无刷设计也降低了维护和保养的成本。
3. 低噪音:无刷同步发电机由于不使用机械刷子,消除了机械刷子与集电环之间的摩擦声音,工作时噪音水平较低,不会对周围环境和人员造成干扰。
4. 尺寸小巧:由于无刷同步发电机不需要机械刷子和集电环,结构较为简单,体积小巧,重量轻。
因此,它可以被用于空间有限的应用,如移动设备和车辆等领域。
5. 高精度控制:无刷同步发电机采用电子换相技术,可以精确控制转子上的磁场变化,实现对发电机输出电能的精密调节,满足各种应用场景的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、三相交流同步发电机
3.1同步发电机概况
同步发电机按其运行方式和功率转换方向可分为同步发电机、同步电动机和同步补偿机三大类型。
同步发电机是把机械能转换为交流电能的设备;同步电动机是把交流电转换为机械能的设备;同步补偿机则是专门用于调节电网的无功功率的装置,以改善电网的功率因数。
同步发电机的基本型式分为旋转电枢式和旋转磁极式两种类型。
这两类同步发电机虽然结构上有所不同,但基本原理是相同的,即磁场与导线相对运动,切割磁力线,导线产生感应电势。
旋转电枢式发电机的磁场是固定的,而电极则由原动机拖动旋转,三相交流电流通过**和电刷的连接输送到负载,这类发电机的优点是铁芯硅钢片的利用率高,而且定子的机座可作磁轭,以节约钢材,其缺点是输出的容量受到限制,电压也不能太高,因此,用这类发电机供电已很少采用,通常采用无刷发电机作交流励磁机用。
旋转磁极式发电机的电枢是固定的,而磁极是旋转的,电枢绕组均匀分布在整个铁心槽内,按磁极的形状,又可分为凸极式和隐极式两种。
凸极式发电机有明显的磁极,在磁极铁芯上套有集中磁极绕组,电的气隙是不均匀的,极弧下气隙较小,而极间部分气隙较大.
阴极式发电机没有明显的磁极,磁极绕组分散嵌在转子铁芯槽内,由于转子制成圆柱形,因此气隙是均匀的。
3.2无刷同步发电机
3.2.1无刷同步发电机的基本结构
无刷同步发电机无论是凸极式还是隐极式可分为两大部分,即定子和转子,静止部分称为定子,包括机座、定子铁芯、定子绕组、端盖、轴承盖及交流励磁机的定子等;转动部分称为转子,包括转子铁芯、磁极绕组、转轴、轴承、风扇、交流励磁机的电枢及旋转整流器等。
3.2.2同步发电机的工作原理及工作特性
同步发电机所谓同步,就是说发电机的转子由发动机拖动旋转后,在定子和转子之间的气隙里产生一个旋转磁场,这个旋转磁场是发电机的主磁场,又称为转子磁场。
当主磁场切割三相电枢绕组的线圈时,就会产生三相感应电势,接通负载后,在电枢绕组中流过感应电流,这个*变电流也会在发电机的气隙中产生一个旋转磁场,这个旋转磁场称为电枢磁场,又称为定子磁场。
主磁场被发动机拖动旋转时,它拉着电枢旋转,就像两块磁铁之间有相互吸引力一样,就是说,发电机的转子带动电枢磁场以同一转速旋转,二者之间保持同步,故称为同步发电机。
电枢磁场的转速称为同步转速。
由于定子三相绕组在空间的位置是对称的,彼此相差120°电角度,因此,定子绕组切割磁力线时,将产生对称三相感应电势。
定子每相绕组感应电势的有效值为:
3.2.3同步发电机的电枢及电势波形改善
同步发电机运转并接上三相相对称负载后,定子绕组中会产生三相对称电流及三相旋转磁场,此磁场称为电枢磁场,这两个磁场以相同的转速、相同的方向旋转,两者之间没有相对运动,它们叠加在一起形成同步发电机气隙中的合成磁场,这时同步发电机的感应电势是由气隙中的合成磁场感应产生的,因此,定子绕组电势不仅决定于转子磁场的强弱,而且还受电枢磁场的影响。
由此可知,当同步发电机接负载运行时,由于电枢磁场的出现,气隙中的磁场由空载时的主磁场变为合成磁场,无论大小和位置都发生变化,这种现象称为电枢反应。
如果发电机所接的负载性质不同,那么定子绕组中的电流和电势的相位也不同,所以同步发电机电枢反应的程度不仅和定子电流大小有关,而且与负载性质有关。
根据四种负载的不同情况,可以分为纯电阻性负载时的电枢反应、纯电感性电枢反应、纯电容性电枢反应和混合性电枢反应。
3.2.3.2感应电势中的高次谐波
在同步发电机气隙中的磁感应强度是难以做到完全校正弦规律分布的,一般是近似梯形分布,因此,发电机定子每相绕组中的感应电势也是非正弦的梯形波。
3.2.3.3感应电势波形的改善
高次谐波的存在,不仅使感应电势的波形变坏,而且谐波电势在发电机中将引起额外的附加损耗,使发电机效率下降,温升增高
,同时输电线中的高次谐波所产生的电磁场对其附近的通信还将产生有害的干扰。
改善发电机电势波形有:①采用短距绕组;②采用分布绕组;③三次谐波的消除。