(优选)经典神经递质

合集下载

神经递质名词解释

神经递质名词解释

神经递质名词解释神经递质是一种特殊的分子,它们可以在神经系统中的不同区域之间建立联系,起到信息传递的作用。

它们是神经系统h活动的基本结构和功能单元,可以跨越神经元之间的距离,实现记忆、控制行为、感知感官信息、识别环境信息以及其他一系列功能。

神经递质主要包括氨基酸类、肽类和其他有机化合物。

其中氨基酸类神经递质包括乙酰胆碱(Ach)、谷氨酸(Glu)、火腿氨酸(Asp)、γ-氨基丁酸(GABA)等;肽类神经递质包括催乳激素(OT)、促肾上腺皮质激素(CRH)、突触促肾上腺皮质激素(CPP)、β-多巴胺(DA)、5-羟色胺(5-HT)等;其他有机化合物主要包括胆碱胆硷(CA)和爱普斯汀(EP)。

乙酰胆碱(Ach)是一种常见的氨基酸类神经递质,它可以促进肌肉的收缩和抑制,参与记忆机制、感官信息的传递和识别环境信息。

它是体内最活跃的神经递质之一,可以刺激神经元的持续发放,并且可以调节神经元的活动强度和发放速率。

谷氨酸(Glu)也是一种常见的氨基酸类神经递质,主要调节记忆、感知信息和行为控制。

它不仅可以激活神经元,还可以抑制神经元的发放,从而调节信息传递的强度和速度。

肽类神经递质具有多种功能,其中催乳激素(OT)是最重要的一种,它可以调节情绪、睡眠和性欲,还可以参与生理功能的恢复和维护。

促肾上腺皮质激素(CRH)能够促进肾上腺皮质的分泌,可以调节机体压力水平,对改善情绪、控制焦虑症有一定的作用。

突触促肾上腺皮质激素(CPP)和β-多巴胺(DA)是两种重要的肽类神经递质,它们都可以调节记忆、行为控制和情绪等。

5-羟色胺(5-HT)是一种抑制神经系统功能的神经递质,可以调节心理情绪,对调节情绪和心里健康有一定的作用。

胆碱胆硷(CA)是一种少见的有机化合物,它可以促进肌肉的收缩,促进神经元的发放,可以参与记忆、感官信息传递和行为控制等。

爱普斯汀(EP)是另一种有机化合物,它可以调节机体压力水平,还可以调节生物钟,维持身体的生理活动周期。

神经递质名词解释

神经递质名词解释

神经递质名词解释神经递质是指一类化学物质,它们在神经元之间传递信号并调节神经系统的功能。

神经递质在神经元的突触间隙释放,并与接受器结合,从而传递信号。

下面是一些常见的神经递质及其功能的解释。

1. 乙酰胆碱:乙酰胆碱是一种主要的神经递质,它在中枢神经系统中发挥重要作用。

乙酰胆碱参与了大脑的学习、记忆和认知功能。

2. 多巴胺:多巴胺是一种与情绪、奖励和动机有关的神经递质。

它参与了运动控制、情感调节和上瘾行为等功能。

多巴胺不平衡与帕金森病和精神疾病等疾病相关。

3. 谷氨酸:谷氨酸是一种兴奋性神经递质,在大脑中起到兴奋性传递信号的作用。

它与学习、记忆和神经元的发育和存活等功能有关。

4. γ-氨基丁酸:γ-氨基丁酸(GABA)是一种主要的抑制性神经递质,它通过抑制神经元的兴奋性来平衡大脑的兴奋性和抑制性。

GABA参与了焦虑、睡眠和情绪等功能调节。

5. 色胺类神经递质:色胺类神经递质包括血清素和去甲肾上腺素,它们在情绪调节、睡眠、认知和注意力等方面起到重要作用。

不平衡的色胺类神经递质与抑郁症和焦虑症等心理疾病有关。

6. 肽类神经递质:肽类神经递质包括内啡肽、脑啡肽和神经肽Y等,它们参与了许多生理和行为过程,如疼痛传导、食欲和受奖赏行为。

7. 脑钠素:脑钠素是一种神经递质和神经调节物质,它对血管收缩和血压调节起重要作用。

这些神经递质在神经系统中相互配合,协调和调节各种生理和行为功能。

当神经递质的平衡受到破坏,神经系统可能出现功能异常,导致神经性疾病的出现。

因此,研究神经递质的功能和调控机制对于理解神经系统的工作原理以及开发相关药物治疗具有重要意义。

神经科学中的神经递质和神经元知识点

神经科学中的神经递质和神经元知识点

神经科学中的神经递质和神经元知识点神经科学是研究神经系统结构和功能的学科。

在神经科学领域中,神经递质和神经元是两个重要的知识点。

本文将深入探讨这两个知识点,以便更好地理解神经科学的基本原理。

一、神经递质神经递质(Neurotransmitter)是一种化学物质,可以在神经元间传递信息。

它们起到了神经元间信号传递的媒介作用。

下面是几个常见的神经递质及其功能:1. 乙酰胆碱(Acetylcholine,简称ACh):ACh是一种常见的神经递质,在神经肌肉接头和中枢神经系统中起到重要作用。

它在运动控制、记忆和学习等方面发挥着关键性的作用。

2. 多巴胺(Dopamine):多巴胺是一种控制情绪、记忆和运动的神经递质。

它参与了奖赏和快乐等感受的产生,不足或过剩都会对行为和情绪产生重要影响。

3. γ-氨基丁酸(Gamma-Aminobutyric Acid,简称GABA):GABA是一种抑制性神经递质,主要控制神经元的兴奋性。

它对于调节情绪、焦虑和抑郁等方面至关重要。

4. 谷氨酸(Glutamate):谷氨酸是一种兴奋性神经递质,在学习和记忆以及神经发育过程中发挥重要作用。

二、神经元神经元(Neuron)是神经系统的基本单位,负责接收、处理和传递信息。

每个神经元都有一个细胞体(cell body)和多个突触(synapse)。

以下是神经元的几个重要组成部分:1. 细胞体:也称为胞体或体细胞,是神经元的主要结构,其中包含细胞核和细胞质。

2. 树突:树突是神经元的延伸,用于接收其他神经元传递的信号。

3. 轴突:轴突是神经元的延伸,负责将信息从细胞体传递到其他神经元。

4. 突触:突触是神经元之间传递信号的连接点。

包括突触前膜、突触间隙和突触后膜。

5. 神经膜:神经膜是神经元的外部边界,控制着离子和分子的运输,维持神经元内外不同的电位。

三、神经递质和神经元的交互作用神经递质和神经元之间的交互作用是神经系统正常功能的基础。

高三神经递质的知识点

高三神经递质的知识点

高三神经递质的知识点神经递质是指在神经系统中起到传递信号的化学物质,它们扮演着高度重要的角色,参与了大脑功能、情绪调节、运动控制等多种生理和行为过程。

在高三生物学学习中,了解神经递质的知识点对于理解大脑的功能和高考相关考点至关重要。

本文将介绍几种常见的神经递质及其作用。

第一节:乙酰胆碱乙酰胆碱(Acetylcholine,ACh)是一种常见的兴奋性神经递质,它参与了学习、记忆和注意力等认知功能的调节,同时也参与了肌肉的收缩和运动控制。

乙酰胆碱可以通过兴奋性突触传递信号,从而促使下游神经元兴奋并触发神经冲动。

第二节:多巴胺多巴胺(Dopamine,DA)是一种重要的神经递质,常与奖赏、动机、快乐等激活情感相关。

多巴胺能够影响人的情绪、思维和行为,参与了快乐、满足感的产生,并在运动控制中发挥重要作用。

多巴胺功能的不平衡与一些神经系统疾病如帕金森病、注意缺陷多动障碍等相关。

第三节:谷氨酸谷氨酸(Glutamate,Glu)是一种常见的兴奋性神经递质,参与了学习、记忆和感知等认知活动。

谷氨酸通过与神经元上的谷氨酸受体结合,触发神经元的兴奋反应,并在大脑中形成神经传递。

第四节:γ-氨基丁酸γ-氨基丁酸(Gamma-Aminobutyric Acid,GABA)是一种常见的抑制性神经递质,它在神经系统中发挥抑制作用,可以减少神经元的兴奋性,维持神经系统的稳定。

GABA参与了情绪、焦虑、睡眠和癫痫等方面的调节。

第五节:血清素血清素(Serotonin,5-HT)是一种重要的神经递质,参与了情绪、睡眠、食欲和社会行为等多种生理和心理功能调节。

血清素在大脑中的平衡与心理健康密切相关,不平衡则可能引发抑郁症、焦虑症等疾病。

总结:神经递质在大脑和神经系统的功能中起着不可或缺的作用,涉及到学习、记忆、情绪调节和运动控制等各个方面。

乙酰胆碱、多巴胺、谷氨酸、GABA和血清素都是神经递质的重要类型,每一种神经递质在特定的脑区和神经回路中发挥不同的调节作用。

神经递质的种类及其作用机制

神经递质的种类及其作用机制

神经递质的种类及其作用机制神经递质是神经元之间进行信号传递的化学物质,在神经系统的正常功能中起到重要的作用。

神经递质的种类众多,每一种都有其特定的作用机制和功能。

本文将介绍一些常见的神经递质及其作用机制。

一、乙酰胆碱(Acetylcholine)乙酰胆碱是最早被发现的神经递质之一,主要在神经肌肉接头处进行转运,参与神经肌肉传递。

乙酰胆碱可以激活肌肉收缩,对于人体的运动功能至关重要。

二、多巴胺(Dopamine)多巴胺是一种重要的神经递质,在中枢神经系统中起到调节情绪、运动、奖励等方面的重要作用。

多巴胺与奖励回路的活动相关,参与调节人体的情绪和动机。

三、去甲肾上腺素(Noradrenaline)去甲肾上腺素是一种担任兴奋神经介质的化学物质,广泛分布于外周和中枢神经系统中,对人体的应激反应和警觉性起着重要调节作用。

四、5-羟色胺(5-Hydroxytryptamine)5-羟色胺,又称为血清素,是一种可以调节情绪、睡眠、食欲等生理功能的神经递质。

它主要存在于中枢神经系统中,在调节人体情绪和情感上发挥重要作用。

五、γ-氨基丁酸(Gamma-aminobutyric acid,GABA)GABA是一种神经抑制性递质,其作用是抑制神经元的兴奋性,参与调节中枢神经系统的抑制功能。

GABA的不平衡与多种神经系统疾病有关。

六、谷氨酸(Glutamate)谷氨酸是一种兴奋性神经递质,是中枢神经系统中最主要的兴奋性递质之一。

谷氨酸参与脑细胞之间的信息传递,对于学习、记忆和感觉的处理起到关键作用。

七、亚硝酸一氮化合物(Nitric oxide)亚硝酸一氮是一种短寿命的气体分子,作为非典型的神经递质,在神经递质研究中扮演重要角色。

它对于神经递质释放、能量代谢和细胞间信号转导机制有影响。

以上是一些常见的神经递质及其作用机制的简要介绍。

它们在神经系统中发挥着重要的调节作用,对于人体的感知、思考、情绪和运动等多个方面至关重要。

神经递质的种类及其作用

神经递质的种类及其作用

神经递质的种类及其作用神经递质,是一种化学物质,由神经元释放,通过神经突触作用于另一神经元、肌肉、腺体或血管。

神经递质的种类众多,每种都有不同的作用。

本文将会介绍一些常见的神经递质及其作用。

1. 乙酰胆碱乙酰胆碱是最早被发现的神经递质之一,是中枢和外周神经系统中唯一的兴奋性神经递质。

它通过神经突触作用于肌肉,导致肌肉收缩。

此外,乙酰胆碱还参与调节学习、记忆和注意力,是神经系统中重要的调节分子。

2. 多巴胺多巴胺是一种在中枢神经系统中存在的神经递质,作用于脑下垂体和大脑皮质。

它与愉悦感和满足感有关,是引起物质依赖的原因之一。

此外,多巴胺还参与肌肉调节和运动控制。

3. 谷氨酸谷氨酸是一种兴奋性神经递质,参与调节神经元的兴奋性。

它通过兴奋NMDA受体,使神经元受到激活,对于学习、记忆和认知功能的维持具有至关重要的作用。

4. γ-氨基丁酸γ-氨基丁酸是一种抑制性神经递质,参与调节神经元的抑制性作用。

它通过兴奋GABA受体,抑制神经元的活动,调节神经元之间的信息传递。

γ-氨基丁酸的不足与抑郁和焦虑等神经系统疾病密切相关。

5. 血清素血清素是一种中枢神经系统的神经递质,它通过作用于神经元和负责情绪和认知的大脑皮层而发挥作用。

血清素的不足与抑郁症和其他情绪障碍有关,增加血清素水平可能会改善抑郁症状。

6. 去甲肾上腺素去甲肾上腺素是一种神经递质和荷尔蒙,参与兴奋中枢神经系统和调节心率、血压、血糖和内分泌等生理功能。

去甲肾上腺素与应激反应有关,当我们处于压力和紧张的状态下,去甲肾上腺素水平会增加。

总之,神经递质在神经系统中具有重要的作用,参与调节神经元之间的信息传递和心理生理功能。

不同的神经递质在不同的环境下发挥不同的作用,了解它们的功能和相互作用可以帮助我们理解大脑的复杂性。

同时,神经递质的不足或失衡也可能会导致各种神经系统疾病,因此对神经递质的研究也具有重要的临床意义。

高二生物神经递质知识点

高二生物神经递质知识点

高二生物神经递质知识点神经递质是指位于神经元之间的信息传递的化学物质。

它们在神经系统中起着至关重要的作用。

本文将介绍一些高二生物课程中的神经递质知识点。

一、乙酰胆碱 (Acetylcholine, ACh)乙酰胆碱是最早被发现的神经递质之一。

它存在于中枢神经系统和周围神经系统中。

乙酰胆碱主要负责神经冲动的传递,在神经肌肉接头中起到特殊的作用。

乙酰胆碱参与调节心率、血压以及平衡身体的运动控制。

二、去甲肾上腺素 (Noradrenaline, NE)去甲肾上腺素是主要存在于交感神经系统中的神经递质。

它参与调节人体的应激反应,如心率的增加和血压的上升。

此外,去甲肾上腺素也与注意力、情绪和觉醒状态等方面有关。

三、多巴胺 (Dopamine, DA)多巴胺是一种由酪氨酸合成的神经递质。

它在中枢神经系统中发挥重要作用,调节情绪、动机和奖赏等方面。

多巴胺还参与控制肌肉的协调运动,并在运动障碍疾病如帕金森病中发挥关键作用。

四、血清素 (Serotonin, 5-HT)血清素是一种存在于中枢神经系统和外周神经系统中的神经递质。

它调节睡眠、情绪、食欲和疼痛感知等功能。

血清素的不平衡可以导致抑郁和焦虑等心理障碍。

五、γ-氨基丁酸 (Gamma-Aminobutyric Acid, GABA)γ-氨基丁酸是一种抑制性神经递质,存在于中枢神经系统中。

它的主要作用是抑制神经元的兴奋性,从而调节大脑的兴奋性和抑制性平衡。

GABA在焦虑和抽搐等神经系统疾病的治疗中具有重要作用。

六、谷氨酸 (Glutamate, Glu)谷氨酸是一种主要的兴奋性神经递质,在中枢神经系统中广泛存在。

它参与了学习、记忆、注意力和大脑发育等重要过程。

谷氨酸的失调与神经系统疾病如阿尔茨海默病和帕金森病等有关。

七、肌动蛋白 (Endorphins)肌动蛋白是一类内源性阿片样物质,具有镇痛和愉悦的作用。

它可以通过改变疼痛的感知来减轻痛感,并增加身体的舒适感。

神经递质的种类与功能

神经递质的种类与功能

神经递质的种类与功能神经递质是神经元之间传递信息的化学物质,有多种种类,并且在神经系统中担当着不同的功能。

一、乙酰胆碱(Acetylcholine)乙酰胆碱是最早被发现的神经递质之一,主要存在于运动神经元和毁损性神经元中。

它在中枢神经系统中通过参与认知与记忆等功能发挥作用。

在神经肌肉接头处乙酰胆碱与乙酰胆碱受体结合,使神经肌肉递质能够被释放并引起肌肉收缩。

缺乏乙酰胆碱会导致肌无力、认知障碍等一系列疾病。

二、多巴胺(Dopamine)多巴胺是一种神经递质,可以在大脑中设置和调节许多不同的功能。

通常与奖励、快乐和满足感有关,并在向运动神经元发出信号时扮演重要角色。

多巴胺异常释放或吸收是许多心理疾病的根源,如巴金森氏症、躁郁症等。

三、去甲肾上腺素(Norepinephrine)去甲肾上腺素主要涉及自主神经系统,作用包括提高心率和收缩血管等。

这种神经递质也负责情绪,如焦虑、抑郁等情绪与思考的正常功能。

去甲肾上腺素的异常释放或吸收可能导致焦虑症或抑郁症等神经系统疾病。

四、谷氨酸(Glutamate)谷氨酸是一种兴奋性神经递质,存在于大脑的各个部分,并在发挥多种功能方面发挥作用。

如记忆、学习、认知和神经可塑性的形成上都扮演着重要角色。

在正常情形下,谷氨酸释放是在一定的平衡状态下进行的。

然而,过多的谷氨酸释放会导致心脏病、神经退行性疾病等疾病。

五、谷神经酰胺(GABA)谷神经酰胺是神经系统神经递质中的一种抑制性物质,可以减缓神经元的活动。

主要通过GABA A 和 GABA B 受体来发挥作用,平衡神经元间信号传输。

缺乏谷氨酸可导致焦虑、抑郁等情绪疾患。

六、血清素(Serotonin)血清素存在于中枢神经系统中,并广泛分布于人体的各种组织中,对心情、情绪、食欲等功能起着调节作用。

血清素抑制性神经递质,可以减缓神经元的活动。

血清素的数量不足可以导致多种神经系统疾病,如抑郁症、精神分裂症等。

七、肽类(Peptides)肽类是一种神经递质,它们通常通过神经元之间传递信号,调节愉悦感、疼痛和荷尔蒙分泌等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Na+/ K+依赖性递质转运体家族:兴奋性递质转运体是 Na+/ K+依赖性转运体
(优选)经典神经递质
神经递质和内源性活性物质的研究概况
1.1904,Elliott,冲动传导到交感神经末梢,可能从那里释放 肾上腺素,在作用于效应器细胞。
2.1921,Loewi,通过蛙心灌流发现“迷走素” 3.Dale,发现神经肌肉接头处的神经递质是ACH。 Loewi, Dale
共享1936年诺贝尔奖。 4.1921,Cannon,将刺激交感神经后,从肝脏中分离出的物质
依赖方式阻断,或被受体激动剂模拟。
递质有大分子神经肽和小分子经典递质
目前已有30多种分子被确定为递质,从分子大小来分 大致有两类:
一类是神经肽,相对分子量数百至数千。
神经肽的含量为pmol级
另一类小分子递质,相对分子量100或数百, 1 氨基酸类(谷氨酸、门冬氨酸、-氨基丁酸、甘氨酸),氨基酸类递
如何区别递质和调质
1首先证明它在神经细胞内合成并参与神经调 节。 2确定在神经冲动传来时,它们被从神经末梢 释出以及它们所引起的特定功能效应的性质。 一般认为,单胺、乙酰胆碱和氨基酸是神经 递质,神经肽则可能多为神经调质。
二、神经递质的代谢
▪ (一)底物和酶是合成的限速因素 ▪ (二)囊泡储存是递质储存的主要方式 ▪ (三)依赖Ca2+的囊泡释放及其它释放形式 ▪ (四)递质释放的突触前调制 ▪ (五)递质通过重摄取、酶解和弥散在突触
(三)依赖Ca2+的囊泡释放及其它释放形式
▪ 囊泡释放是递质释放的主要形式,囊泡的胞 裂外排在所有递质都相似,但在释放的速度 上有所差异。小分子递质的释放比神经肽快。
▪ 不依赖Ca2+的胞浆释放, ▪ 胞膜转运体反方向转运的释放。 ▪ 弥散方式释放。如前列腺素、NO和CO ▪ 少量的漏出(leak out)。
(二)囊泡储存是递质储存的主要方式 ▪ 递质合成后通过囊泡转运体储存在囊泡内,
囊泡内可以有数千个递质分子。待释放的活 动囊泡聚集在突触前膜活动区,为递质的胞 裂外排作好准备。小分子递质如乙酰胆碱、 氨基酸类递质储存在小的清亮囊泡;而神经 肽储存在大的致密核心囊泡;单胺类递质储 存的囊泡既可有小的致密核心囊泡,也可是 大的的致密囊泡。
三、膜转运体
膜转运体(Plasma membrane transporter)是一种膜蛋 白,一般由600个左右的氨基酸组成。依赖细胞内 外Na+的电化学梯度提供转运的动力,此外也需要 Cl-或K+共同转运,膜转运体有两大家族:
Na+/ Cl-依赖性递质转运体家族:单胺类递质和抑制性 氨基酸递质的转运体
① 递质必须在神经元内合成,并储存在神经末梢,同 时存在合成该递质的底物和酶。
② 递质的释放依靠突触前神经去极化和Ca2+进入突触 前末梢。
③ 突触后膜存在特异的受体,并被相应的递质激活后 使膜电位发生改变。
④ 释放至突触间隙的递质有适当的失活机制。 ⑤ 递质的作用可以被外源性受体竞争性拮抗剂以剂量
质最多,谷氨酸在大鼠脑内的含量约14mol/g,在人的大脑皮质大约 9~11mol/g
2 乙酰胆碱 乙酰胆碱与单胺类递质的含量只有氨基酸类递质的千分之
一,为nmol级
3 单胺类(多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、组胺)递 质。
4 NO、CO、组胺和腺苷等。
神经调质的主要特征:
1可为神经细胞,胶质细胞或其他分泌细胞所 释放。对主递质起调制作用。本身不直接负 责突触信号传递或不直接引起效应细胞的功 能改变。 2间接调制主递质在突触前的神经末梢及其基 础活动水平。 3影响突触后效应细胞对递质的反应性,对递 质的效应起调制作用。
间隙消除
(一)底物和酶是合成的限速因素
▪ 递质的代谢分为合成、储存、释放和失活几个步骤。 小分子递质在突触前末梢由底物经酶催化合成。酶 在胞体内合成,经慢速轴浆运输(0.5~5mm/d)方式 运输到末梢,底物通过胞膜上的转运蛋白(或称转 运系统)摄入。所以合成速度受限速酶和底物摄入 速度的调节。而神经肽的合成方式完全不同,在胞 体内合成大分子前体,然后在运输过程中经裂解酶 裂解、修饰而成。
▪ ② 另一种效应是使突触前膜去极化,Ca2+通道开放,
Ca2+内流增加,导致递质释放增加,
(五)递质通过重摄取、酶解和弥散在突 触间隙消除
▪ 递质释放到突触间隙,与突触后受体结合,未与受 体结合的一部分递质必须迅速移去,否则突触后神 经元不能对随即而来的信号发生反应,况且受体持 续暴露在递质作用下,几秒后便失敏,使递质传递 效率降低。递质失活的方式有重摄取、酶解和弥散。 递质的重摄取依靠膜转运体,氨基酸类递质释放后 可以被神经元和胶质细胞重摄取,而单胺类递质仅 被神经元重摄取。重摄取的递质进入胞浆后又被囊 泡转运体摄取重新储存在囊泡中。膜转运体位于神 经元和胶质细胞,也可以在周围组织中(如肝、肾、 心脏等)。
(四)递质释放的突触前调制
▪ 递质的释放受自身受体或异源受体的调节。 突触前自身受体无论是促代谢型受体或离子 通道偶联型受体,激活后产生二种效应:
▪ ① 一种效应是Ca2+通道关闭,或者K+通道开放使膜 超极化,减少冲动到达末梢时电压依赖性Ca2+通道 的开放,减少突触前末梢Ca2+内流,以致递质释放 减少,这是一种负反馈的调节机制,以限制递质释 放的数量,避免突触后神经元过度兴奋和突触后受 体的失敏。
命名为“交感素”;1949,这种物质被von Eulur鉴定为去 甲肾上腺素,为此获1970年诺贝尔奖。 5.1960-今,50多种神经肽被发现。 6.1980-1988,Furchgott\Ignarro\Moncade三个研究小组相继 发现NO为神经递质,三人共享1998年诺贝尔奖。
神经递质和神经调质的概念
▪ 神经递质(neurotransmitter):神经系统通过化 学物质作为媒介进行信息传递的过程称为化 学传递,化学传递物质即是神经递质。
▪ 神经调质(neuromodulator):有一些神经调节 物本身并不直接触发所支配细胞的功能效应, 只是调节传统递质的功能和
相关文档
最新文档