考研线性代数知识点全面总结资料
数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
考研数学一大纲重点内容回顾线性代数部分知识点汇总

考研数学一大纲重点内容回顾线性代数部分知识点汇总线性代数是考研数学一科目中非常重要的一部分。
在考试中,线性代数占据了相当大的比重,因此熟练掌握线性代数的知识点是非常重要的。
本文将回顾考研数学一大纲中线性代数部分的重点知识点,帮助考生在备考中能够有针对性地进行复习,并为考试发挥出最佳水平做准备。
知识点1:向量空间向量空间是线性代数中最基础的概念之一。
考生需要掌握向量空间的定义、性质和基本运算法则。
此外,需要掌握向量空间的子空间、线性相关性和线性无关性等概念。
知识点2:矩阵与行列式矩阵和行列式也是考研数学一线性代数部分的重要内容。
考生需要掌握矩阵的运算法则,包括矩阵的加法、乘法和转置等运算。
同时,需要了解矩阵的秩以及矩阵可逆的条件。
在行列式方面,需要熟悉行列式的性质,以及行列式的计算方法和展开式。
知识点3:线性方程组线性方程组是线性代数中的一个重要应用,也是考研数学一中的常见考点。
考生需要掌握线性方程组的解法,包括消元法、矩阵法和特征值法等。
同时,还需要了解线性方程组解的存在唯一性条件,以及齐次线性方程组和非齐次线性方程组的关系。
知识点4:特征值和特征向量特征值和特征向量是线性代数中的重要概念,也是考研数学一中的热点内容。
考生需要了解特征值和特征向量的定义、性质和计算方法。
同时,需要掌握矩阵的对角化和相似对角化的相关知识。
知识点5:线性变换线性变换是线性代数的核心内容之一。
考生需要了解线性变换的定义和性质,以及线性变换的矩阵表达式和几何意义。
此外,还需要了解线性变换的基矩阵和过渡矩阵的计算方法。
知识点6:内积空间内积空间是线性代数中的高级内容,也是考研数学一中的难点。
考生需要了解内积空间的定义和性质,以及内积空间的标准正交基和正交投影的相关知识。
同时,还需要了解内积空间的正交补和正交矩阵的概念和计算方法。
综上所述,考研数学一大纲重点内容回顾线性代数部分的知识点汇总包括了向量空间、矩阵与行列式、线性方程组、特征值和特征向量、线性变换以及内积空间等内容。
考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。
下面我们就来详细梳理一下线性代数中的重点知识。
一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。
计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。
其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。
行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。
行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。
二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。
矩阵的运算有加、减、乘、数乘。
矩阵乘法需要注意其规则,不满足交换律。
逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。
求逆矩阵的方法有伴随矩阵法和初等变换法。
矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。
三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。
判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。
极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。
向量组的秩等于其极大线性无关组所含向量的个数。
四、线性方程组线性方程组是线性代数的重点应用之一。
齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。
非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。
求解线性方程组可以使用高斯消元法。
五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。
求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。
考研数学之线性代数讲义(考点知识点+概念定理总结)

考研数学之线性代数讲义(考点知识点+概念定理总结)线性代数讲义目录第一讲基本概念矩阵的初等变换与线性矩阵方程的消去完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第4讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的判别基本解系统和通解第6讲特征向量和特征值的相似性和对角化特征向量与特征值―概念,计算与应用相似对角化―判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量取代了实对称矩阵惯性指数正定二次型与正定矩阵的合同标准化与规范化附录二向量空间及其子空间附录III两个线性方程组的解集之间的关系附录四06,07年考题一第一讲基本概念1.线性方程组的基本概念。
线性方程组的一般形式是:a11x1+a12x2++a1nxn=b1,a21x1+a22x2+?+a2nxn=b2,????am1x1+am2x2+?+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2,k,kn)(称为解向量),它满足当每个方程中的未知数席被Ki替换时,它变成一个方程。
线性方程组的解的情况有三种:无解,唯一解,无穷多解.在线性方程组的讨论中有两个主要问题:(1)判断解(2)求解,特别是当存在无穷多个连接时求通解b1=b2=?=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解。
因此,齐次线性方程组只有两种解:唯一解(即只要零解)和无限解(即非零解)把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.是M吗?一张表有M行和N列,以N个数字排列,两边用括号或方括号括起来,就变成了M?例如N型矩阵2-101111102254-29333-18是4吗?5矩阵对于上述线性方程组,它被称为矩阵a11a12?a1na11a12?a1nb1a=a21a22?a2n和(a|?)=a21a22?a2nb2??????? am1am2?amnam1am2?amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.矩阵中的数字称为其元素,第I行和第J列中的数字称为(I,J)位元素所有元素为0的矩阵称为零矩阵,通常记录为0两个矩阵a和b相等(记作a=b),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.N个数的有序数组称为N维向量,这些数称为其分量书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,?,an的向量可表示成二a1(a1,a2,?,an)或a2,┆an请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?n矩阵,右边是n?1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个M?n的矩阵的每一行是一个n维向量,称为其行向量;每一列都是一个m维向量,称为它的列向量。
考研线代知识点总结

考研线代知识点总结摘要:一、考研线性代数知识点概述二、矩阵与线性方程组三、向量空间与线性变换四、特征值与特征向量五、二次型与矩阵的对称性六、复习与拓展建议正文:一、考研线性代数知识点概述考研线性代数作为数学一门重要学科,主要包括矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型与矩阵的对称性等内容。
这些知识点在考研数学中占有很大比重,因此,对于线性代数的掌握程度直接影响到考研成绩。
本文将对这些知识点进行总结,以帮助考生更好地复习和掌握线性代数。
二、矩阵与线性方程组1.矩阵的运算:加法、减法、数乘、矩阵乘法、逆矩阵、行列式等。
2.线性方程组的解法:高斯消元法、克莱姆法则、齐次线性方程组、非齐次线性方程组等。
3.矩阵的秩、行阶梯形式、简化阶梯形式等。
三、向量空间与线性变换1.向量空间的概念、基、维数、向量模等。
2.线性变换的概念、性质、矩阵表示、不变量等。
四、特征值与特征向量1.特征值、特征向量的概念及求解方法。
2.矩阵的对角化、相似矩阵等。
五、二次型与矩阵的对称性1.二次型的概念、标准型、正定二次型、负定二次型、半正定二次型、半负定二次型等。
2.矩阵的对称性:对称矩阵、反对称矩阵、正交矩阵、对称分量等。
六、复习与拓展建议1.熟练掌握考研线性代数大纲要求的知识点,做到深入理解、熟练应用。
2.针对自己的薄弱环节进行有针对性的练习,提高解题能力。
3.学习线性代数相关的拓展知识,如奇异值分解、广义逆矩阵、线性空间论等。
4.注重理论联系实际,熟练运用线性代数知识解决实际问题。
总之,考研线性代数知识点繁多,要想在考试中取得好成绩,就需要扎实掌握这些知识点,并不断提高自己的解题能力。
考研线性代数终极总结

考研线性代数终极总结线性代数是研究向量空间及其线性变换的数学分支。
它是数学基础科学和高级工程科学的重要学科,在理论和应用上都有着广泛的应用。
准备考研的同学们需要牢固掌握线性代数的基本概念和重要定理,下面是线性代数的终极总结。
一、向量空间1.向量空间的基本定义和性质2.子空间及其判定3.维数、基、坐标和表示定理4.线性方程组的解空间二、线性变换1.线性变换的定义和性质2.矩阵的线性变换3.线性变换的矩阵表示和基变换4.线性变换的像空间与核空间5.线性变换的特征值和特征向量6.对角化和相似变换三、线性方程组1.线性方程组的表示和解的存在唯一性2.线性方程组解的结构和基础解系3.矩阵的秩与线性方程组解的个数4.线性方程组的常见解法四、矩阵1.矩阵的运算和性质2.矩阵的特征值和特征向量3.矩阵的标准形式4.矩阵的相似性质和相抵性质五、二次型1.二次型的定义和性质2.二次型的标准形式3.正定、负定和不定二次型4.合同变换与矩阵的合同性质六、特征值问题1.特征值问题的引入和相关概念2.特征值问题的求解方法3.特征值问题的应用七、奇异值分解1.奇异值分解的定义和性质2.奇异值分解的计算和应用八、线性变换的标准形式1.线性变换的标准形式的引入和相关性质2.线性变换的标准形式的计算和应用九、行列式1.行列式的定义和性质2.行列式的性质及计算方法3.克莱姆法则及其推广以上是线性代数的终极总结,考研学习线性代数需要掌握这些重要概念和定理,通过大量的练习和习题,加深对知识点的理解和记忆。
在考试中,要善于分析题目,熟练运用线性代数的知识,灵活解决问题。
希望同学们能够在考研线性代数的复习中取得好的成绩!。
考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析一、矩阵的运算矩阵的加法、乘法、转置以及数量乘法等是矩阵运算的基本操作。
矩阵的加法和乘法具有结合律、交换律和分配律等基本性质。
1.1 矩阵的加法对于两个相同大小的矩阵A和B,它们的和记作A + B,定义为它们对应元素相加所得到的矩阵。
即,如果A = [a_ij],B = [b_ij],则A + B = [a_ij + b_ij]。
1.2 矩阵的乘法对于两个矩阵A和B,如果A的列数等于B的行数,它们可以进行乘法运算,记作C = AB。
矩阵C的元素c_ij可以表示为c_ij =∑(a_ik * b_kj)。
其中∑表示求和符号,k表示对应元素的相同下标。
1.3 矩阵的转置对于一个矩阵A,它的转置记作A^T。
即,如果A = [a_ij],则A^T = [a_ji]。
也就是说,矩阵A的行变为转置后矩阵的列,矩阵A的列变为转置后矩阵的行。
1.4 数量乘法一个数与一个矩阵的乘积称为数量乘法。
对于一个数k和一个矩阵A,它们的乘积记作kA。
即,kA = [ka_ij]。
其中ka_ij表示矩阵A中每个元素乘以k所得到的矩阵。
二、线性方程组线性方程组是线性代数的重要内容之一。
解一个线性方程组就是找到一组使得方程组中所有方程都成立的未知数的值。
通常通过矩阵的方法来解线性方程组,有三种常用的解法:高斯消元法、克拉默法则和逆矩阵法。
2.1 高斯消元法高斯消元法是通过矩阵的初等变换将线性方程组化为最简形式,从而求解方程组。
具体步骤如下:1) 将线性方程组的系数矩阵和常数矩阵合并成增广矩阵;2) 逐行进行初等变换,使得增广矩阵的主对角线元素为1,其他元素为0;3) 对增广矩阵进行回代,求出方程组的解。
2.2 克拉默法则克拉默法则是通过行列式的性质来解线性方程组。
对于一个n元线性方程组,如果系数矩阵的行列式不为0,则方程组有唯一解,且每个未知数的值可以通过求解n个行列式得到。
2.3 逆矩阵法逆矩阵法是通过求解方程AX = B来解线性方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
:若线性方程组无解或有两个不同的解,则系数行列式D=0. :若齐次线性方程组的系数行列式0D ≠,则其没有非零解。
:若齐次线性方程组有非零解,则其系数行列式D=0。
6.112nr r r nr r r r ==∏O,()11(1)221nr n n r r nr r r r -==-∏N()n a ba b ad bc c dcd=-ON N O, 1232222123111111231111()n n i j n i j n n n n nx x x x x x x x x x x x x x ≥>≥----=-∏L L L M M M M L,(两式要会计算)题型:Page21(例13)第二章、矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A 、B 为同阶方阵,则|AB|=|A|*|B|; ④|kA|=n k *|A|。
只有方阵才有幂运算。
(3)转置:(kA )T =kA T , ()TTA B AB T =(4)方阵的行列式:A A T =,A k kA n =,B A AB =(5)伴随矩阵:E A A A AA **==,-1)A(E A A *=,*A 的行元素是A 的列元素的代数余子式 (6)共轭矩阵:)=(Aij a ,A+B=A+B ,A k kA =,B A AB =(7)矩阵分块法:⎪⎪⎪⎭⎫⎝⎛++++=+sr sr s s r r B A BA B A B A ΛM MΛ11111111B A ,⎪⎪⎪⎭⎫ ⎝⎛=T sr r11s T11T A A A A A ΛM MΛT T 3.对称阵:方阵A A T =。
对称阵特点:元素以对角线为对称轴对应相等。
3.矩阵的秩(1)定义:非零子式的最大阶数称为矩阵的秩; (2)秩的求法:一般不用定义求,而用下面结论:范德蒙德行列矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
求秩:利用初等变换将矩阵化为阶梯阵得秩。
(3)0≤R(n m A ⨯)≤min{m,n} ; ()()A R A R T = ;若B ~A ,则R(A)=R(B) ;若P 、Q 可逆,则R(PAQ)=R(A) ; max{R(A),R(B)} ≤R(A,B) ≤R(A)+R(B) ; 若AB=C ,R(C)≤min{R(A),R(B)} 4.逆矩阵(1)定义:A 、B 为n 阶方阵,若AB =BA =I ,称A 可逆,B 是A 的逆矩阵(满足半边也成立); (2)性质:()111---=A B AB , ()()' A A'1-1-=;(A B 的逆矩阵,你懂的)(注意顺序) (3)可逆的条件:① |A|≠0; ②r(A)=n; ③A->I;(4)逆的求解:○1伴随矩阵法A*1-A A =;②初等变换法(A:I )->(施行初等变换)(I:1-A ) (5)方阵A 可逆的充要条件有:○1存在有限个初等矩阵1P ,…,l P ,使l P P P A Λ21= ○2E A ~ 第三章、初等变换与线性方程组1、 初等变换:○1()()B Aji−−→−↔,○2()()BAki−→−⨯,○3()()BAji+k−−→−⨯ 性质:初等变换可逆。
等价:若A 经初等变换成B ,则A与B等价,记作B ~A ,等价关系具有反身性、对称性、传递性。
初等矩阵:由单位阵E 经过一次初等变换得到的矩阵。
定理:对n m A ⨯施行一次初等行变换,相当于在A 的左边乘相应的m 阶初等矩阵;对n m A ⨯施行一次初等列变换,相当于在A 的右边乘相应的n 阶初等矩阵。
等价的充要条件:○1 R(A)=R(B)=R(A,B) ○2n m ⨯的矩阵A、B等价⇔存在m 阶可逆矩阵P 、n 阶可逆矩阵Q ,使得PAQ=B 。
线性方程组解的判定定理:(1) r(A,b)≠r(A) 无解;(2) r(A,b)=r(A)=n 有唯一解;(3)r(A,b)=r(A)<n 有无穷多组解;特别地:对齐次线性方程组AX=0,(1) r(A)=n 只有零解;(2) r(A)<n 有非零解; 再特别,若为方阵,(1)|A |≠0 只有零解;(2)|A|=0 有非零解 2.齐次线性方程组(1)解的情况:r(A)=n ⇔只有零解 ; r(A)<n ⇔有无穷多组非零解。
(2)解的结构:r n r n a c a c a c X --++=Λ2211。
(3)求解的方法和步骤:①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组; ③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。
(4)性质:○1若1ξ=x 和2ξ=x 是向量方程A*x=0的解,则21ξξ+=x 、1ξk x =也是该方程的解。
○2齐次线性方程组的解集的最大无关组是该齐次线性方程组的基础解系。
○3若r A n m =⨯)(R ,则n 元齐次线性方程组A*x=0的解集S 的秩r -=n R S 。
3.非齐次线性方程组(1)解的情况:○1有解⇔ R(A)=R(A,b)。
○2唯一解⇔ R(A)=R(A,b)=n 。
○3无限解⇔ R(A)=R(A,b)<n 。
(2)解的结构: X=u+r n r n a c a c a c --++Λ2211。
(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。
(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。
(5)○1若1η=x 、2η=x 都是方程b Ax =的解,则21ηη-=x 是对应齐次方程0=Ax 的解○2η=x 是方程b Ax =的解,ξ=x 是0=Ax 的解,则ηξ+=x 也是b Ax =的解。
第四章、向量组的线性相关性1.N 维向量的定义(注:向量实际上就是特殊的矩阵——行矩阵和列矩阵;默认向量a 为列向量)。
2.向量的运算:(1)加减、数乘运算(与矩阵运算相同);(2)向量内积 α'β=a1b1+a2b2+…+anbn ; (3)向量长 22221a n a a a a a +++='=Λ(4)向量单位化 (1/|α|)α;3.线性组合(1)定义:若m m a a a λλλ+++=Λ2211b ,则称b 是向量组1a ,2a ,…,n a 的一个线性组合,或称b 可以用向量组1a ,2a ,…,n a 的线性表示。
(2)判别方法:将向量组合成矩阵,记 A =(1a ,2a ,…,n a )○1 B=(1a ,2a ,…,n a ,β),则:r (A)=r (B) ⇔b 可以用向量组1a ,2a ,…,n a 线性表示。
○2B=(1b ,2b ,…,m b ),则: B 能由A 线性表示⇔R(A)=R(A,B) ⇔AX=B 有解⇒R(B)≤R(A). (3)求线性表示表达式的方法:矩阵B 施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。
注:求线性表示的系数既是求解Ax=b 4.向量组的线性相关性 (1)线性相关与线性无关的定义设 02211=+++n n a k a k a k Λ,若k1,k2,…,kn 不全为0,称线性相关;若全为0,称线性无关。
(2)判别方法:① r(α1,α 2,…,αn)<n ,线性相关; r(α1,α 2,…,αn)=n ,线性无关。
②若有n 个n 维向量,可用行列式判别: n 阶行列式|{ij a }|=0,线性相关(≠0无关)○3A:1a ,2a ,…,n a , B:1a ,2a ,…,n a ,1+n a ,若A 相关则B 一定相关,若B 相关A 不一定相关; 若A 无关,B 相关,则向量1+n a 必能由A 线性表示,且表示式唯一。
注:含零向量的向量组必定相关。
5.极大无关组与向量组的秩(1)定义:最大无关组所含向量个数称为向量组的秩(2)求法:设A =(1a ,2a ,…,n a ),将A 化为阶梯阵,则A 的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。
(3)矩阵的秩等于它的行向量组的秩也等于它的列向量组的秩。
注:如何证明()()A R A A R T =,101P .第五章、相似矩阵及二次型1、向量内积:[]y x y x T =,。