2015中考数学备考专题1 整体思想

合集下载

“整体”思想在解题中的应用

“整体”思想在解题中的应用

“整体”思想在解题中的应用“整体”思想是数学的重要解题思想,也是中考考查的重要内容之一。

运用“整体”思想解题在初中数学的很多方面都有体现。

下面结合初三中考复习的一些教学内容谈谈我对“整体”思想解题的一点体会。

“整体”思想解题主要体现在以下五个方面:一、求代数式的值此类题型一般是已知一个代数式的值,求另一个代数式的值。

解这类题时若先把已知代数式中的未知数求出来往往行不通,一般的方法就是运用 “整体”思想来解决。

例1:已知x 2+3x+1=0,求x 3+2x 2-2x+9的值。

分析:把已知条件中的“x 2+3x+1”看成一个整体,设法把所求的代数式化为由“x 2+3x+1”组成的式子即可。

解:x 3+2x 2-2x+9= x 3+3x 2+x - x 2-3x -1+10=x(x 2+3x+1) –(x 2+3x+1)+10=10 例2:若a 2-a+1=2,则a-a 2+1=________.解:由a 2-a+1=2得a 2-a=1,移项得a-a 2+1=0例3:已知:a+2b+3c=10,4a+5b+6c=19,则a+b+c=________。

分析:此题的关键是把a+b+c 看作一个整体,而不能当成三个未知数。

解:由已知得(4a+5b+6c )-(a+2b+3c )=19-10,所以3a+3b+3c=9,故a+b+c=3 跟例3类似的题还有“若3a+4b-c=5,2a+b+6c=15,则a+b+c=________.” 例4:当a+b=3,x-y=1时代数式a 2+2ab+ b 2-x+y 的值等于_______.(2003年广东省中考题)解:a 2+2ab+ b 2-x+y=(a+b)2-(x-y)= 32-1=8(注:分别把a+b 和x-y 当成一个整体)。

这类题型在中考中很常见,除上面的例子外还有很多,如:1、(04年山西)已知x+y=1,那么221x +xy+221y 的值为________, 2、(02年哈尔滨)已知a+a 1=3,那么a 2+21a= ,3、(04年天津)已知x 2+y 2=25,x+y=7,且x>y ,则x-y 的值等于 ,4、(03年河南)如果(2a+2b+1)(2a+2b-1)=63,那么a+b 的值是 ,5、(00年广东)已知x+2y+3z=10,4x+3y+2z=15,则x+y+z= 。

15年中考数学专题复习一数学思想方法(共79张)

15年中考数学专题复习一数学思想方法(共79张)

为-3,1,若BC=2,则AC等于 ( )
A.3
B.2
C.3或5
D.2或6
【解析】选D.此题画图时会出现两种情况,即点C在线段AB内,点C在线段
AB外,所以要分两种情况计算.
点A,B表示的数分别为-3,1,AB=4.
第8页,共79页。
第一种情况(qíngkuàng):在AB外,
AC=4+2=6;
第二种情况,在AB内,
专题一 数学(shùxué)思想方法
第1页,共79页。
考点一 分类讨论思想 分类讨论思想常见的六种类型
1.方程:若含有字母系数的方程有实数根时,要考虑二次项系数是否等于 0,进条边或给出一角 求另外两角时,要考虑所给的边是腰还是底边(dǐ biān),所给出的角是顶角 还是底角分类解决.
x2-12x+k=0有两个相等的实数根,∴(-12)2-4k=0,解得k=36;
第11页,共79页。
若3是等腰三角形的腰,则3是关于x的一元二次方程x2-12x+k=0的
一个解,
∴32-12×3+k=0,解得k=27. 当k=27时,方程x2-12x+27=0的解是3或9,3,3,9构不成三角形 ,∴k=27不合(bùhé)题意.
∴直角三角形的第三边为5或 7.
42 32 7.
第10页,共79页。
3.(2014·潍坊中考)等腰三角形一条边的边长为3,它的另两条边的边长
是关于x的一元二次方程x2-12x+k=0的两个根,则k的值是 ( )
A.27
B.36
C.27或36
D.18
【解析】选B.若3是等腰三角形的底边(dǐ biān),则关于x的一元二次方程

中考数学复习《整体思想解析》

中考数学复习《整体思想解析》

方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。

它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。

运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。

它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。

整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。

数学中的整体思想

数学中的整体思想

数学中的整体思想整体思想是数学解题中一种重要的思想方法,在解决某些问题时,从问题的整体特性出发,统筹考虑,全面把握,构建整体结构,利用问题的各方面条件寻求简洁的解法。

有些数学问题中的某些元素虽然是非本质的,但若根据题目需要,设法将其视为对象,从整体上把握,则可化难为易,化繁为简。

一、整体代入有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。

例1:一船在静水中的速度是15千米/小时,要经过150千米的河,并且逆流而上(水流速度为5千米/小时),问船往返共用多少时间?分析:此题若从局部考虑,要分顺水、逆水两种情况分别计算,而从整体考虑,因为船速与水速均已知,所以两地之间距离(150千米)也是一个已知量,所以可以省去对其中繁琐细节的研究,直接利用公式解决问题。

设船往返共用x小时。

则根据题意列方程:15x-5x=150解得:x=15二、整体换元有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,视“黑箱”为新元,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。

例2:设a、b是方程2x2-7x+3=0的两根,且a>b>0,求a+b与ab的值。

分析:此题若从局部考虑,要解方程求出a、b的值再代入求值,而从整体考虑,因为a、b是方程2x2-7x+3=0的两根,所以a+b与ab满足一定的等量关系(韦达定理),因此可以省去对其中繁琐细节的研究,直接利用公式解决问题。

因为a、b是方程2x2-7x+3=0的两根,所以有:a+b=-(-7)/2=7/2;ab=3/2三、整体构造有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,根据题目的需要而恰到好处地构造这个“黑箱”,则可以省去对其中繁琐细节的研究,直接利用这些等量关系解题。

例3:已知二次函数y=-x2+mx-m2-0.5m+4的最大值为-18/5,求此函数的解析式。

初中数学思想方法篇——整体思想

初中数学思想方法篇——整体思想

新梦想教育中高考名校冲刺教育中心【老师寄语:每天进步一点点,做最好的自己】解题思想之整体思想一、注解:郑板桥有这样一句大家耳熟能详的话:“难得糊涂”,如果事事较真,钻牛角尖,往往对解决问题没有帮助。

这句话提醒我们,在有些时候不能方方面面都照顾,该忽略的问题你就应该忽略。

而在我们的数学学习过程中,也经常运用这种思想解决问题。

整体思想就是要求大家在学习的过程中,有时候只能从大的,宏观的方面考虑问题,避免钻牛角尖,将一些问题“打包”处理,以达到事半功倍的效果。

整体思想就是考虑数学问题的时候不仅仅局限于它的局部特征,而且着眼于问题的整体结构上,通过对其全面深刻的观察,从宏观上认识问题的实质,把一些彼此独立,但实质又相互紧密联系的量作为整体进行处理的思想方法。

整体思想在处理数学问题时有着广泛的运用。

二、实例运用:1. 在数与式中的运用【例1】计算:11111111111111 1123423452345234⎛⎫⎛⎫⎛⎫⎛⎫++++++-++++++⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【例2】当x=1时,代数式px2+qx+1的值是2001,则当x= -1时,代数式px2+qx+1的值是:A -1999B -2000C -2001D 1999【例3】若13xx+=则221xx+=。

2. 在方程(组)中的运用【例1】已知二元一次方程组为2728x yx y+=⎧⎨+=⎩则x-y= ,x+y= .【例2】已知方程组45ax bybx ay+=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则a+b= .【例3】有甲乙丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元。

现购甲乙丙各1件,需要多少元?3. 在几何计算中的运用【例1】如图,在高2米,坡角为30°的楼梯表面铺地毯,则地毯的长度至少需要米。

【例4】有星型图,如图,求∠A,∠B,∠C,∠D,∠E的和。

三、随堂练习1、若分式x yx y+-中的x,y的值都变为原来的3倍,则此分式的值()A 不变B 是原来的3倍C 是原来的三分之一D 是原来的六分之一2、如图所示的直角坐标系中,已知半圆A和半圆B均与y轴相切于点O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分的面积是。

中考数学专题一 整体思想复习题及答案

中考数学专题一 整体思想复习题及答案

中考数学专题一整体思想复习题及答案1. 已知a-b=1,求2a-2b-3的值。

2. 分解因式(x-1)^2-2(x-1)+1。

3. 化简5(2x-3)+4(3-2x)。

4. 当x=-7时,计算(2x+5)(x+1)-(x-3)(x+1)的值。

5. 若a=2,a+b=3,求a+ab的值。

6. 解方程组{x+2y=4k+1, 2x+y=k+2, 0<x+y<3},求k的取值范围。

7. 若买铅笔4支,日记本3本,圆珠笔2需10元;买铅笔9支,日记本7本,圆珠笔5需25元。

求购买铅笔、日记本、圆珠笔各一样的总价。

解:设铅笔单价为x,日记本单价为y,圆珠笔单价为z,列出方程组:4x+3y+2z=109x+7y+5z=25解:由于半圆A和半圆B与y轴相切于点O,所以O是坐标轴的中心点。

设半圆A的半径为r,半圆B的半径为s,则有r+s=2,r^2+s^2=(2r)^2。

解得r=2/3,s=4/3。

设抛物线的方程为y=ax^2+bx+c,代入三个点的坐标,得到三个方程:a+b+c=14a+2b+c=09a+3b+c=410. 已知A=2x+y,B=2x-y,求A^2-B^2的值。

11. 已知y+2x=1,求(y+1)^2-(y^2-4x)的值。

12. 已知xy=-3,求(-2xy-y)/(x-2y-y^2)的值。

13. 已知一元二次方程x^2+2x+k+1=0有两个实数解x1和x2。

(1)求k的取值范围;(2)如果x1+x2-x1x2<-1,且k为整数,求k的值。

解:(1)由于x1和x2都是实数,所以判别式Δ=4-4(k+1)>=0,即k<=-1。

又由于x1和x2都是实数,所以方程的两个根的和x1+x2=-2,所以k的取值范围为k<=-3。

(2)由于x1和x2都是实数,所以判别式Δ=4-4(k+1)>=0,即k-3。

所以k的取值为-2。

1. 在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了代数的数学思想。

2015中考数学复习策略与思考


B
旋转
D
C
平移 A
C
A
A
B
45o
60o
D
C
翻 转
B
30o
45o
D
C
A A A A
B
B
o 45o 4 60 45 4 44 4 o o C B 5 C C BB 5 5 5C 5 CC
D
o o
C oo
B BB B A
E
45o
45
o
60o
旋转
C
D
60 o 60 o o 60 60 o 60 o o 60 o 60
2015年中考数学 复习策略
2015年中考数学总复习策略
(一)做好复习前的准备工作
1、
研究课标 通读教材
2、以人为本 研究学生 4、科学安排 研究计划
3、把握动向 研究中考
(二)阶段复习的具体措施
1、单元复习阶段——全面复习 夯实基础 沟通联系 2、专题复习阶段——把握重点抓住考点 训练思维 3、模拟讲评阶段——综合模拟查漏补缺 调适心态
x 1 2.如果代数式 的值不小于5-x , 3 ①求x的取值范围;
②将x的取值范围用数轴表示出来。 ③找一个满足条件的非负整数(或求 非负整数解)。
【设置意图】题目形式上显简单,数据也不大,不 复杂,所有学生易于接受。但考查的内容多:(1) 具体问题中列不等关系式(不小于);(2)一元 一次不等式的解法,特别是学生易错点(去分母); (3)解集能用数轴表示。
的解集是-1<x≤2,则a的值为 .
【设计意图】将原题中的具体数字“1”变换 成字母“a”,并给出解集,让学生探求字母 “a”的取值,形成“不等式组存有未知,而 解集为已知,探索取值问题”。题目的这种 变化会激起学生的学习兴趣,也很容易让学 生猜出结果是“1”,但必须加以验证。

2015中考数学专题辅导《数学思想》

加速度育才苑2015中考数学专题辅导《数学思想1》【分类讨论思想】分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解。

要注意,在分类时,必须按同一标准分类,做到不重不漏。

【例1】若函数y =⎩⎪⎨⎪⎧x 2+2(x ≤2),2x (x >2),则当函数值y =8时,自变量x 的值是( )A .±6B .4C .±6或4D .4或- 6解析:当x ≤2时,x 2+2=8,x =±6(舍去6);当x >2时,2x =8,x =4. 综上,x =-6或x =4.【例2】如图,在平面直角坐标系xOy 中,分别平行x 、y 轴的两 直线a 、b 相交于点A (3,4),连接OA ,若在直线a 上存在点P , 使△AOP 是等腰三角形,那么所有满足条件的点P 的坐标是( ) A 、(8,4) B 、(8,4)或(-3,4) C 、(8,4)或(-3,4)或(-2,4)D 、(8,4)或(-3,4)或(-2,4)或⎝⎛⎭⎫-76,4 解析 ∵点A 的坐标为(3,4),∴OA =32+42=5.当AP =AO 时,可知P 1(-2,4),P 2(8,4),当OP =OA 时,可知P 3(-3,4),当PO =PA 时,设PO =P A =m .有(m -3)2+42=m 2,m =256,∴m -3=76,P 4⎝⎛⎭⎫-76,4,故选D. 【练习1】点A 的坐标是(2,2),若点P 在坐标轴上,且△APO 是等腰三角形, 则点P 的坐标是【练习2】已知直角三角形两边x 、y 的长满足240x -=, 则第三边长为【练习3】如图所示,在梯形ABCD 中,AD ∥BC ,∠ABC =90°, AD =AB =6,BC =14,点M 是线段BC 上一定点,且MC =8.动 点P 从C 点出发沿C →D →A →B 的路线运动,运动到点B 停止. 在点P 的运动过程中,使△PMC 为等腰三角形的点P 有________个.解析当MC 为底边时,MC 的中垂线交CD 于一点P ,该点能满足PM =PC ;当MC 为腰时,分别以C 、M 为圆心,MC 长为半径画圆,⊙C 与CD 交于一点P ,⊙M 与AB 、AD 各有一个交点,因此,满足条件的点P 有4个.【练习4】如图,正方形ABCD 的边长是2,BE =CE ,MN =1, 线段MN 的两端在CD 、AD 上滑动。

2015年备战中考数学培优专题一数学思想方法

班级 姓名数学思想方法是学习数学知识的精髓,是培养数学分析问题、解决问题能力提升的有效途径.在数学学习过程中,如果经常反思总结一些数学思想方法,能达到触类旁通的解题目的,而且能节省审题时间.因此,在中考冲刺阶段一定要多进行题后反思的环节,力争通过反思数学思想方法达到“做一题,会一类”的目的.初中数学思想方法主要有:①转化思想;②数形结合思想;③整体思想;④分类讨论思想;⑤函数与方程思想;⑥统计思想;⑦特殊到一般的思想等.转化思想是一种最基本的数学思想,基本思路是化未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把非常规问题化为常规问题,把实际问题数学化,实现不同的数学问题间的相互转化,体现了把不容易解决的问题化为容易解决的问题的思想.数形结合思想是利用几何图形的性质研究数量关系或利用数量关系研究几何图形的性质,使数量关系与几何图形巧妙地结合起来,使问题得以解决的一种数学思想.数形结合思想方法的应用,可帮助我们理解题意,分清已知量、未知量,理顺题中的逻辑关系.分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论,分类讨论思想有利于学会完整地考虑问题,化整为零地解决问题.整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.⊙热点一:数形结合思想1.如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1 cm /s ,设P ,Q 出发t 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5 cm ;②当0<t ≤5时,y =25t 2 ;③直线NH 的解析式为y =-25t +27;④若△ABE 与△QBP 相似,则t =294秒.其中正确的结论个数为( )A .4B .3C .2D .12.如图1,A ,B ,C ,D 为矩形的四个顶点,AD =4 cm ,AB =d cm ,动点E ,F 分别从点D ,B 出发,点E 以1 cm /s 的速度沿边DA 向点A 移动,点F 以1 cm /s 的速度沿边BC 向点C 移动,点F 移动到点C 时,两点同时停止移动,以EF 为边作正方形EFGH ,点F 出发x s 时,正方形EFGH 的面积为y cm 2.已知y 与x 的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x 的取值范围______________;(2)d =____,m =____,n =____;(3)F 出发多少秒时,正方形EFGH 的面积为16 cm 2?3.如图,抛物线y =ax 2+bx +c(a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A ,B ,若三角形AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准碟形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线y =12x 2对应的碟宽为____,抛物线y =4x 2对应的碟宽为____,抛物线y =ax 2(a>0)对应的碟宽为____,抛物线y =a(x -2)2+3(a >0)对应的碟宽____;(2)若抛物线y =ax 2-4ax -53(a >0)对应的碟宽为6,且在x 轴上,求a 的值; (3)将抛物线y n =a n x 2+b n x +c n (a n >0)的对应准碟形记为F n (n =1,2,3,…),定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准碟形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,……,F n 的碟高为h n ,则h n =____,F n 的碟宽右端点横坐标为_________.⊙热点二:分类讨论思想1.如图,M是Rt△ABC的斜边BC上异于B,C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条2.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A,B,C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2个B.3个C.4个D.6个3.某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图1,A(10,5),B(130,5),C(135,0).(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;(2)计算该同学从家到学校的路程;(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间)(3)如图2,直线x=t(0≤t≤135)与图1的图象相交于P,Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;(4)由(2)(3),直接猜出在t时刻,该同学离开家所走过的路程与此时S的数量关系.⊙热点三:转化与化归思想1.如图,3个小正方形的边长都为1,则图中阴影部分面积之和是__________(结果保留π).2.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是__________.3.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是__________.⊙热点四:整体思想★数与式中的整体思想1.已知(m-n)2=8,(m+n)2=2,则m2+n2=()2.已知114a b -=,则2227a ab b a b ab---+的值等于 ( ) A.6 B.6- C.125 D.27- ★方程(组)与不等式(组)中的整体思想已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是★函数与图象中的整体思想1.已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式.2.若关于x 的一元二次方程22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.★几何与图形中的整体思想如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .。

数学解题思想——整体思想

数学解题思想—-整体思想杨相云整体思想就是从问题的整体性质出发,突出对问题整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子、图形或概念看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.一.整体代入在求代数式的值时,可先将条件或待求式变形,再整体代入求值,使问题化难为易。

例1 已知a 是方程210x x +-=的一个根,求代数式22211a a a a--+的值。

分析:由a 是方程210x x +-=的一个根,得210a a +-=,则21-a a -=,2=1a a +,再整体带入即可。

二.整体设元在解决某些比较复杂的式子时,也可以考虑将复杂的式子整体用字母代换,使问题化繁为简,巧妙获解。

例2 阅读材料:求2320141+2+2+2...2++的值。

解:设S=2320141+2+2+2...2++,则2S=234201420152+2+22...22++++,两式相减得 2S-S=201521-,即S=201521-;故2320141+2+2+2...2++=201521-。

请你仿照此方法计算:(1)23101+3+3+3...3++;(2)231+5+5+5...5n ++(其中n 为正整数).分析:(1)仿照阅读材料,设S=23101+3+3+3...3++,两边乘以3后得到关系式3S=2310113+3+3...33+++,再与已知等式相减,得2S=1131-,即可求出所求式子的值;(2)设S=231+5+5+5...5n ++,两边乘以3后得到关系式5S=2315+5+5...5+5n n +++,再与已知等式相减,得4S=151n +-,即可求出所求式子的值;三.整体构造就是对已知条件和所求联合研究,把问题作为一个整体来构造,从而解决问题.例3 甲、乙、丙三种商品,若买甲4件,乙5件、丙2件,共用69元;若买甲5件,乙6件、丙1件,共用84元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 整体思想
1.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )
A .-1
B .1
C .-5
D .5
2.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( )
A .(x -1)(x -2)
B .x 2
C .(x +1)2
D .(x -2)2
3.(2012年山东济南)化简5(2x -3)+4(3-2x )结果为( )
A .2x -3
B .2x +9
C .8x -3
D .18x -3
4.(2011年浙江杭州)当x =-7时,代数式(2x +5)(x +1)-(x -3)(x +1)的值为________.
5.(2012年江苏苏州)若a =2,a +b =3,则 a 2+ab =______.
6.已知⎩
⎪⎨⎪⎧
x +2y =4k +1,2x +y =k +2,且0<x +y <3,则k 的取值范围是 ______________. 7.若买铅笔4支,日记本3本,圆珠笔2支,共需10元;若买铅笔9支,日记本7本,圆珠笔5支,共需25元,则购买铅笔、日记本、圆珠笔各一样共需______元.
8.如图Z1-2,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD ,EF 均和x 轴垂直,以点O 为顶点的两条抛物线分别经过点C ,E 和点D ,F ,则图中阴影部分的面积是________.
图Z1-2
9.如图Z1-3, ∠1+∠2+∠3+∠4+∠5+∠6=________________.
图Z1-3
10.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2的值.
11.(2010年福建南安)已知y +2x =1,求代数式(y +1)2-(y 2-4x )的值.
12.已知1x -1y =3,求代数式2x -14xy -2y x -2xy -y
的值.
13.(2011年四川南充)关于x 的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2.
(1)求k 的取值范围;
(2)如果x 1+x 2-x 1x 2<-1,且k 为整数,求k 的值.
14.阅读下列材料,解答问题.
为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则原方程可化为y 2-5y +4=0①.解得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,x =±2;当y =4时,x 2-1=4,x 2=5,x =±5.故x 1=2,x 2=-2,x 3=5,x 4=- 5.
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用________法达到了降次的目的,体现了________的数学思想;
(2)用上述方法解方程:x 4-x 2-6=0.
专题一 整体思想 【专题演练】
1.A 2.D 3.A 4.-6 5.6
6.-35<k <65 解析:将方程组的两式相加,得3(x +y )=5k +3,所以x +y =53
k +1.从而0<53k +1<3,解得-35<k <65
. 7.5 解析:设铅笔每支x 元, 日记本每本y 元,圆珠笔每支z 元,有:

⎪⎨⎪⎧
4x +3y +2z =10, ①9x +7y +5z =25. ② ②-①,得5x +4y +3z =15, ③
③-①,得x +y +z =5.
8.π2
9.360° 解析:因为∠1+∠2=∠DAB ,∠3+∠4=∠IBA ,∠5+∠6=∠GCB ,根据三角形外角和定理,得∠DAB +∠IBA +∠GCB =360°,所以∠1+∠2+∠3+∠4+∠5+∠6=360°.
10.解:原式=(2x +y )2-(2x -y )2=[](2x +y )-(2x -y )·
[](2x +y )+(2x -y )=8xy . 11.解:原式=y 2+2y +1-y 2+4x
=2y +4x +1
=2(y +2x )+1
=2×1+1=3.
12.解:原式=2y -14-2x 1y -2-1x =-2⎝⎛⎭⎫1x -1y -14-⎝⎛⎭⎫1x -1y -2
=-6-14-3-2
=4. 13.解:(1)∵方程有实数根,
∴Δ=22-4(k +1)≥0,解得k ≤0.
∴k 的取值范围是k ≤0.
(2)根据一元二次方程根与系数的关系,得 x 1+x 2=-2,x 1x 2=k +1,
x 1+x 2-x 1x 2=-2-(k +1),
由已知,得-2-(k +1)<-1,解得k >-2, 又由(1),可知:k ≤0,
∴-2<k ≤0.
又∵k 为整数,∴k 的值为-1或0.
14.解:(1)换元 整体思想
(2)设x 2=y ,
则原方程化为y 2-y -6=0.
解得y 1=3,y 2=-2.
当y =3时,x 2=3,解得x =±3; 当y =-2时,x 2=-2,无解.
∴x 1=3,x 2=- 3.。

相关文档
最新文档