数学---江苏省徐州市2016-2017学年高一下学期期末考试试题
中学2016-2017学年高二下期末考试数学试卷含解析

2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
江苏省徐州市高一数学下学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市高一(下)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4=.3.函数f(x)=(sinx﹣cosx)2的最小正周期为.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n=.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为.6.根据如图所示的伪代码,可知输出的结果S为.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于.9.已知变量x,y满足,则目标函数z=2x+y的最大值是.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是.11.在△ABC中,若acosB=bcosA,则△ABC的形状为.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是.13.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是.14.已知正实数x,y满足,则xy的取值X围为.二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.2015-2016学年某某省某某市高一(下)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为\frac{1}{2} .【考点】直线的斜率.【分析】直接利用直线的斜率公式可得.【解答】解:∵过M(﹣1,2),N(3,4)两点,∴直线的斜率为: =,故答案为:.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4= 16 .【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式即可得出.【解答】解:由已知可得:S4===16.故答案为:16.3.函数f(x)=(sinx﹣cosx)2的最小正周期为π.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】化简函数的表达式为一个角的一个三角函数的形式,然后利用周期公式求出函数的周期.【解答】解:函数f(x)=(sinx﹣cosx)2=1﹣2sinxcosx=1﹣six2x;所以函数的最小正周期为:T=,故答案为:π.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n= 60 .【考点】分层抽样方法.【分析】根据分层抽样原理,利用样本容量与频率、频数的关系,即可求出样本容量n.【解答】解:根据分层抽样原理,得;样本中A种型号产品有12件,对应的频率为:=,所以样本容量为:n==60.故答案为:60.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为\frac{1}{12} .【考点】列举法计算基本事件数及事件发生的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为: =.故答案为:.6.根据如图所示的伪代码,可知输出的结果S为56 .【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用,一直求出不满足循环条件时S的值.【解答】解:模拟执行程序,可得S=0,I=0,满足条件I<6,执行循环,I=2,S=4满足条件I<6,执行循环,I=4,S=20满足条件I<6,执行循环,I=6,S=56不满足条件I<6,退出循环,输出S的值为56.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是\frac{8}{5} .【考点】茎叶图.【分析】由已知中的茎叶图,我们可以得到七位评委为某班的小品打出的分数,及去掉一个最高分和一个最低分后的数据,代入平均数公式及方差公式,即可得到所剩数据的平均数和方差.【解答】解:由已知的茎叶图七位评委为某班的小品打出的分数为:79,84,84,84,86,87,93去掉一个最高分93和一个最低分79后,所剩数据的平均数==85方差S2= [(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=,故选:.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于126 .【考点】等比数列的前n项和.【分析】由题意可知,数列{a n}是以2为首项,以2为公比的等比数列,然后直接利用等比数列的前n项和公式得答案.【解答】解:由a n+1﹣2a n=0(n∈N*),得,又a1=2,∴数列{a n}是以2为首项,以2为公比的等比数列,则.9.已知变量x,y满足,则目标函数z=2x+y的最大值是13 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(5,3),代入目标函数z=2x+y得z=2×5+3=13.即目标函数z=2x+y的最大值为13.故答案为:13.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是\frac{4}{9π}.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.【解答】解:如图所示:∵S正=1,S圆=π()2=,∴P==.则油(油滴的大小忽略不计)正好落人孔中的概率是故答案为:.11.在△ABC中,若acosB=bcosA,则△ABC的形状为等腰三角形.【考点】三角形的形状判断.【分析】利用正弦定理,将等式两端的“边”转化为“边所对角的正弦”,再利用两角和与差的正弦即可.【解答】解:在△ABC中,∵acosB=bcosA,∴由正弦定理得:sinAcosB=sinBcosA,∴sin(A﹣B)=0,∴A﹣B=0,∴A=B.∴△ABC的形状为等腰三角形.故答案为:等腰三角形.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是﹣1 .【考点】直线的一般式方程与直线的平行关系.【分析】两直线的斜率都存在,由平行条件列出方程,求出a即可.【解答】解:由题意知,两直线的斜率都存在,由l1与l2平行得﹣=∴a=﹣1 a=2,当a=2时,两直线重合.∴a=﹣1故答案为:﹣113.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是(﹣∞,﹣\sqrt{3}]∪[\sqrt{3},+∞).【考点】等差数列的通项公式.【分析】由已知条件利用等差数列前n项和公式得+10a1d+15=0,从而d=﹣﹣a1,由此利用均值定理能求出实数d的取值X围.【解答】解:∵等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,∴+15=0,∴+10a1d+15=0,∴d=﹣﹣a1,当a1>0时,d=﹣﹣a1≤﹣2=﹣,当a1<0时,d=﹣﹣a1≥2=,∴实数d的取值X围是(﹣∞,﹣]∪[,+∞).故答案为:(﹣∞,﹣]∪[,+∞).14.已知正实数x,y满足,则xy的取值X围为[1,\frac{8}{3}].【考点】基本不等式在最值问题中的应用.【分析】设xy=m可得x=,代入已知可得关于易得一元二次方程(2+3m)y2﹣10my+m2+4m=0,由△≥0可得m的不等式,解不等式可得.【解答】解:设xy=m,则x=,∵,∴++3y+=10,整理得(2+3m)y2﹣10my+m2+4m=0,∵x,y是正实数,∴△≥0,即100m2﹣4(2+3m)(m2+4m)≥0,整理得m(3m﹣8)(m﹣1)≤0,解得1≤m≤,或m≤0(舍去)∴xy的取值X围是[1,]故答案为:[1,]二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.【考点】直线的倾斜角;两角和与差的余弦函数.【分析】(1)求出tanA,根据二倍角公式,求出tan2A的值即可;(2)根据同角的三角函数的关系分别求出sinA和cosA,代入两角差的余弦公式计算即可.【解答】解:(1)由4x﹣3y+12=0,得:k=,则tanA=,∴tan2A==﹣;(2)由,以及0<A<π,得:sinA=,cosA=,cos(﹣A)=cos cosA+sin sinA=×+×=.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.【考点】数列的求和;数列递推式.【分析】(1)设等差数列{a n}的公差为d,由a2=4,S5=30,可得,联立解出即可得出.(2)==,利用“裂项求和”方法、数列的单调性即可得出.【解答】(1)解:设等差数列{a n}的公差为d,∵a2=4,S5=30,∴,解得a1=d=2.∴a n=2+2(n﹣1)=2n.(2)证明: ==,∴数列{}的前n项和为T n=+…+=,∴T1≤T n,∴≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.【考点】二次函数的性质;函数零点的判定定理.【分析】(1)由k的值,得到f(x)解析式,由此得到大于0的解集.(2)由f(x)>0恒成立,得到判别式小于0恒成立.(3)由两个不同的零点,得到判别式△>0,由两点均大于,得到对称轴大于,和f()>0.【解答】解:(1)若k=时,f(x)=x2﹣x.由f(x)>0,得x2﹣x>0,即x(x﹣)>0∴不等式f(x)>0的解集为{x|x<0或x>}(2)∵f(x)>0对任意x∈R恒成立,则△=(﹣k)2﹣4(2k﹣3)<0,即k2﹣8k+12<0,解得k的取值X围是2<k<6.(3)若函数f(x)两个不同的零点均大于,则有,解得,∴实数k的取值X围是(6,).19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【分析】(1)求出AN,AM,即可建立函数关系;(i)设AN=x米,先求出AM的长,即可表示出矩形AMPN的面积;(ii)由∠BMC=θ(rad),可以依次表示出AM与AN的长度,即可表示出S关于θ的函数表达式;(2)选择(ii)中的函数关系式,化简,由基本不等式即可求出最值.【解答】解:(1)(i)∵Rt△CDN~Rt△MBC,∴=,∴,∴BM=,由于,则AM=∴S=AN•AM=,(x>2)(ii)在Rt△MBC中,tanθ=,∴MB=,∴AM=3+,在Rt△CDN中,tanθ=,∴DN=3tanθ,∴AN=2+3tanθ,∴S=AM•AN=(3+)•(2+3tanθ),其中0<θ<;(2)选择(ii)中关系式∵S=AM•AN=(3+)•(2+3tanθ),(0<θ<);∴S=12+9tanθ+≥12+2=24,当且仅当9tanθ=,即tanθ=时,取等号,此时AN=4答:当AN的长度为4米时,矩形AMPN的面积最小,最小值为24m2.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.【考点】数列的求和;等差关系的确定.【分析】(1)由a n+1+a n=4n﹣3,n∈N*,可得a2+a1=1,a3+a2=5,相减可得a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,可得2d=4,解得d.(2)由a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,可得a n+2﹣a n=4,a2=4.可得数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.对n分类讨论利用等差数列的求和公式即可得出.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10,求出其最大值即可得出.当n为偶数时,同理可得.【解答】解:(1)∵a n+1+a n=4n﹣3,n∈N*,∴a2+a1=1,a3+a2=5,∴a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,则2d=4,解得d=2.∴2a1+2=1,解得a1=﹣.(2)∵a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,∴a n+2﹣a n=4,a2=4.∴数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.∴a2k﹣1=﹣3+4(k﹣1)=4k﹣7;a2k=4+4(k﹣1)=4k.∴a n=,∴当n为偶数时,S n=(a1+a2)+…+(a n﹣1+a n)=﹣3+9+…+(4n﹣3)==.当n为奇数时,S n=S n+1﹣a n+1=﹣2(n+1)=.∴S n=.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6,当n=1或3时,[f(n)]max=2,∴﹣a1≥2,解得a1≥2或a1≤﹣1.当n为偶数时,a n=2n﹣3﹣a1,a n+1=2n+a1,由≥5成立,a n+1+a n=4n﹣3,可得: +3a1≥﹣4n2+16n﹣12,令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4,当n=2时,[f(n)]max=4,∴+3a1≥4,解得a1≥1或a1≤﹣4.综上所述可得:a1的取值X围是(﹣∞,﹣4]∪[2,+∞).。
2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)

¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)
及
z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,
求
f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x
⩽
y
⩽
√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
江苏省徐州市高一地理下学期期中试题(含解析)-人教版高一全册地理试题

2016—2017学年度第二学期高一年级期中考试地理科试卷第I卷(70分)一、单项选择题(本大题共30小题。
每小题2分,共60分。
在每小题给出的四个选项中.只有一项是符合题目要求的,请把正确答案填涂在答题卡上。
)下图为同一水平面上的近地面风形成示意图。
读图完成下面小题。
1. 决定风力大小的主要因素是()A. ①B. ②C. ③D. ④2. 图中③的影响是()A. 改变风力大小B. 改变风向C. 作用于任何大气运动D. 纬度越低,影响越明显【答案】1. A 2. B【解析】试题分析:1. 通过所学知识;水平气压梯度力是形成风的直接原因。
水平气压梯度力垂直于等压线,并指向低压。
水平气压梯度力越大,风速越大。
图中所示 是水平气压梯度力,‚是实际风向,ƒ是地转偏向力,④是摩擦力。
故A正确。
2. 水平气压梯度力和④摩擦力能改变风力大小;ƒ地转偏向力的作用导致北半球风向向右偏,南半球向左偏。
地转偏向力维度越高,越明显。
故B正确。
【考点定位】考查近地表风形成的影响因素。
【名师点睛】风的三种作用力概念、影响与画法:作用力概念对风速、风向的影响风向的画法水平气促使大气由高气压区大气产生水平运动的原动力,是形成风垂直于等压线压梯度力流向低气压区的力的直接原因;既影响风向(风向垂直于等压线并指向低压),又影响风速(水平气压梯度力越大,风速越大)地转偏向力促使水平运动物体的方向发生偏离的力只影响风向(使风向逐渐偏离气压梯度力的方向,北半球向右偏,南半球向左偏);不影响风速(风力)高空风向与等压线平行...摩擦力地面与空气之间,以及运动状况不同的空气层之间相互作用而产生的阻力既影响风速(降低风速),又影响风向。
摩擦力越大,风速越小;反之,风速越大。
近地面风向与等压线斜交读四个地区气压带和风带位置示意图,回答下面小题。
3. 位于北半球的是()A. ①和②B. ②和③C. ③和④D. ②和④4. 气压带M的名称是()A. 赤道低气压带B. 副热带高气压带C. 副极地低气压带D. 极地高气压带【答案】3. A 4. B【解析】试题考查气压带和风带的分布规律4. 图中M地位于30°附近,是副热带高气压带,B正确。
2016-2017学年高一数学2练习:第四章 圆与方程 含解析

第四章测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆C 关于y 轴对称,经过点A (1,0)且被x 轴分成两段弧,且两段弧长比为1∶2,则圆C 的方程为( )A 。
(x ±√33)2+y 2=43B 。
(x ±√33)2+y 2=13C.x 2+(y ±√33)2=43D.x 2+(y ±√33)2=13解析:设圆心C (0,a ),则半径为CA ,根据圆被x 轴分成的两段弧的长之比为1∶2,可得圆被x 轴截得的弦对的圆心角为2π3,故有tan π=|1|,解得a=±√3,半径r=√43,故圆的方程为x 2+(y ±√33)2=43.答案:C2.直线l :x-y=1与圆C :x 2+y 2—4x=0的位置关系是 ( )A.相离 B 。
相切C 。
相交 D.无法确定解析:圆C 的圆心为C (2,0),半径为2,圆心C 到直线l 的距离d=|2-1|√2=√22<2,所以圆C 与直线l 相交。
答案:C3。
圆x 2+y 2—4x=0在点P (1,√3)处的切线方程为( ) A 。
x+√3y-2=0 B .x+√3y —4=0 C 。
x-√3y+4=0 D .x —√3y+2=0解析:∵点P (1,√3)在圆x 2+y 2-4x=0上,∴点P 为切点。
从而圆心与点P 的连线应与切线垂直.又圆心为(2,0),设切线斜率为k , ∴0-√32-1·k=—1,解得k=√33。
∴切线方程为x-√3y+2=0。
答案:D4.两圆相交于点A (1,3),B (m ,—1),两圆的圆心均在直线x-y+c=0上,则m+c 的值为( ) A 。
-1 B .2 C .3 D 。
0解析:由条件可知,AB 的中点在直线x —y+c=0上,且AB 与该直线垂直,∴{m+12-1+c =0,3+11-m=-1,解得{m =5,c =-2,∴m+c=5-2=3.答案:C5.圆C 1:x 2+y 2+2x+2y-2=0与C 2:x 2+y 2—4x-2y+1=0的公切线有且仅有( ) A.1条 B .2条 C .3条 D .4条解析:两圆的标准方程分别为(x+1)2+(y+1)2=4,(x-2)2+(y-1)2=4.∴|C 1C 2|=√(2+1)2+(1+1)2=√13.∴|r 1—r 2|<|C 1C 2|〈r 1+r 2,即两圆相交, ∴两圆共有两条公切线.答案:B6.(2016河南洛阳八中段考试题)已知圆C 经过A (5,1),B (1,3)两点,圆心C 在x 轴上,则圆C 的方程为( ) A .(x —2)2+y 2=50 B 。
江苏省徐州市2020学年高一化学下学期期末考试试题(无答案)苏教版

2020学年度第二学期期末抽测高一化学试题可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Ca 40一、单项选择题:在每题的4个选项中,只有1个选项是符合要求的(本部分23题,每题3分,共69分)。
A.塑料 B.合成纤维 C.蔗糖D.合成橡胶2.在Na原子和Na+离子这两种粒子中,相等的是A.质子数 B.核外电子层数 C.电子数 D.最外层电子数3.元素周期表对化学的发展起到了积极的推进作用。
下列有关元素周期表说法正确的是A.共有7个长周期 B.共有7个主族C.短周期元素都是主族元素 D.主族元素都是金属元素4.下列物质中,属于共价化合物的是A.NaOH B.CaCl2 C.KI D.H2SO45.下列物质互为同分异构体的一组是A.O2和O3 B.35Cl和37Cl C.CH3CH2OH和CH3OCH3 D.SO2和SO36.下列化学用语正确的是A.N2分子的电子式:B.溴苯的结构简式:C6H6BrC.镁的原子结构示意图:D.聚乙烯的结构式:7.下列实验装置或操作能达到实验目的的是注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页,包含单项选择题(第1题~第23题,共23题69分)、非选择题(第24题~第26题,共3题31分)共两部分。
本次考试时间为75分钟。
考试结束后,请将答题卡或答题纸交回。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在答题卡或答题纸的规定位置。
3.使用答题卡作答选择题的,必须用2B铅笔把答题卡上对应选项的方框涂满涂黑;如需改动,请用橡皮擦干净后,再选涂其它答案(不使用答题卡作答选择题的,请将选择题答案写在答题纸最后的选择题答题栏内)。
作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡或答题纸上的指定位置作答,在其它位置作答一律无效。
4.如有作图需要,可用2B铅笔作答,并请加黑加粗,描写清楚。
8.下列有关元素或物质性质的比较,正确的是A.金属性:Mg>Na B.非金属性:Br>ClC.酸性:H3PO4>HNO3 D.热稳定性:H2O>NH39.下列过程需要吸收热量的是A.烧碱和稀硝酸混合 B.高温煅烧石灰石C.氢气在氯气中燃烧 D.锌粒溶于稀硫酸10.下列有关化学反应速率的比较中,正确的是A.不同温度时,鲜牛奶变酸的速率:28℃<5℃B.大小相同的铁片、镁条分别与同浓度的稀盐酸反应产生氢气的速率:铁片>镁条C.不同浓度的盐酸分别与大小相同的铁片反应产生氢气的速率:0.1 mol/L<1 mol/L D.相同温度下,在12%过氧化氢溶液中有、无少量FeCl3存在时产生氧气的速率:有FeCl3=无FeCl311.一定条件下,工业上制取氨的反应为N 2+3H22NH3。
江苏省徐州市高一下学期期末考试语文试题
江苏省徐州市高一下学期期末考试语文试题高一下学期期末考试语文试题一、语言文字运用(18分)1.下列加点字的读音全都正确的一项是—— .(3分)A.镣铐(lio) 孱头(cn) 并行不悖(bi)B.解剖(pāo) 脑髓(suǐ) 浅尝辄止(zh)C.蜕变(tu) 挫折(cuō) 残羹冷炙(zh)D.铿锵(qiāng) 祈求(q) 白雪皑皑(ǎi)1.(3分)A(B解剖pōu C挫cu折 D白雪皑皑i)2.下列词语书写全都正确的一项是—— .(3分)A.锻造玄虚礼上往来B.滥用慰籍别出心裁C.沉缅祈祷豁然开朗D.嫉恨届膝虚无絮缈2.(3分)D(A礼尚往来 B慰藉 C沉湎)3.依次填入下列横线处的词语,最恰当的一组是—— .(3分)①群众看见了伽西莫多赤裸的驼背,突起的胸脯,长着许多硬皮和汗毛的肩膀,便——出一阵哄笑。
②我们共和国的缔造者在起草《宪法》和《独立宣言》气壮山河的词语时,曾向每一个美国人许下了诺言,他们承诺给予所有的人以生存、自由和追求幸福的不可剥夺的——。
③对那些有着高收入并希望多接触外边世界的年轻中国人来说,光顾麦当劳成为他们新生活方式的一部分,同时也是他们——跨国文化体系的一个途径。
A.爆发权利参与B.暴发权利参加C.爆发权力参与D.暴发权力参加3.(3分)A 【爆发:火山内部的岩浆突然冲破地壳,向四外迸出;突然发作;(事变)突然发生。
暴发:突然发财或得势(多含贬义);突然发作。
权利:公民或法人依法行使的权力和享受的义务(跟“义务”相对)。
权力:政治上的强制力量;职责范围内的支配力量。
参与:参加(事物的计划、谈论、处理)。
参加:加入某种组织或某种活动;参与提出(意见)。
】4.下列一组语句中修辞手法不同的一项是—— .(3分)例句:3月14日下午两点三刻,当代最伟大的思想家停止思想了。
A.他还不是为你们。
他已经半截入土了,还不是为你们打算?B.风姐儿低了半日头,说道:“这个就没有法儿了。
江苏省徐州市2016-2017学年七年级(下)期中数学试卷(解析版)
2016-2017学年江苏省徐州市七年级(下)期中数学试卷一、选择题(本题共8题,每题3分,共24分)(下列各题的四个选项中有且只有一个选项是正确的.)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A.B. C. D.2.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣53.下列运算正确的是()A.a3•a2=a6 B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a24.分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A.①②B.①③C.②③D.以上都错6.如图所示,小华从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.200米B.180米C.160米D.140米7.如图,△ABC的角平分线相交于点P,∠BPC=125°,则∠A的度数为()A.60°B.65°C.70°D.75°8.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°二、填空题9.七边形的内角和是.10.一个等腰三角形一边长为2,另一边长为5,那么这个等腰三角形的周长是.11.(x﹣2y)2=.12.分解因式:4a2﹣25b2=.13.多项式x2+mx+25能用完全平方公式分解因式,则m=.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.15.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=°.16.已知3x=6,3y=9,则32x﹣y=.三、解答题(共72分)17.计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)0.5200×(﹣2)202(3)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(4)(3x﹣1)(x+1)18.因式分解(1)3x(a﹣b)﹣6y(b﹣a)(2)﹣a3+2a2﹣a.19.化简求值:(3a+b)2﹣(3a﹣b)(3a+b)﹣5b(a﹣b),其中a=1,b=﹣2.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(利用网格点和三角板画图)(1)画出平移后的△A′B′C′.(2)画出AB边上的高线CD;(3)画出BC边上的中线AE;(4)若连接BB′、CC′,则这两条线段之间的关系是.21.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=90°,∠EGC=90°∴∠ADC=∠EGC(等量代换)∴AD∥EG∴∠1=∠3∠2=∠E又∵∠E=∠3(已知)∴∠1=∠2∴AD平分∠BAC.22.四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:(1)∠1+∠2=90°;(2)BE∥DF.23.探索题:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1根据前面的规律,回答下列问题:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x3+x2+x+1)=(2)当x=3时,(3﹣1)(32016+32015+32014+…+33+32+3+1)=(3)求:(22015+22014+22013+…+23+22+2+1)的值.(请写出解题过程)24.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图②中的阴影部分的面积为;(2)观察图②请你写出(a+b)2,(a﹣b)2,ab之间的等量关系是;(3)根据(2)中的结论,若x+y=4,xy=,则(x﹣y)2=;(4)实际上通过计算图形的面积可以探求相应的等式.如图③,你发现的等式是.25.如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)2016-2017学年江苏省徐州市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共8题,每题3分,共24分)(下列各题的四个选项中有且只有一个选项是正确的.)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A.B. C. D.【考点】Q5:利用平移设计图案.【分析】根据图形平移与翻折变换的性质解答即可.【解答】解:由图可知,ABC利用图形的翻折变换得到,D利用图形的平移得到.故选D.【点评】本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.2.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104B.0.16×10﹣3C.1.6×10﹣4D.16×10﹣5【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00016=1.6×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A.a3•a2=a6 B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、幂的乘方及同底数幂的除法法则,分别进行各选项的判断即可.【解答】解:A、a3•a2=a5,故本选项错误;B、(a2b)3=a6b3,故本选项正确;C、a8÷a2=a6,故本选项错误;D、a+a=2a,故本选项错误.故选B.【点评】本题考查了幂的乘方、同底数幂的乘除法及合并同类项的法则,属于基础题,掌握各部分的运算法则是关键.4.分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式y,进而利用平方差公式进行分解即可.【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A.①②B.①③C.②③D.以上都错【考点】J9:平行线的判定.【分析】利用内错角相等两直线平行,以及等量代换及同旁内角互补两直线平行即可得到结果.【解答】解:①∠1=∠2,可判定AD∥BC,不能判定AB∥CD;②∠3=∠4,可判定AB∥CD;③AD∥BE可得∠1=∠2,再由∠D=∠B,可得∠3=∠4,可判定AB∥CD;④∠BAD+∠BCD=180°,不能判定AB∥CD;故选:C.【点评】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.6.如图所示,小华从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.200米B.180米C.160米D.140米【考点】L3:多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为20°,∴多边形的边数为360°÷20°=18,∴小华一共走了:18×10=180米.故选B.【点评】本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形是解题关键.7.如图,△ABC的角平分线相交于点P,∠BPC=125°,则∠A的度数为()A.60°B.65°C.70°D.75°【考点】K7:三角形内角和定理.【分析】先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的性质求出∠ABC+∠ACB的度数,由三角形内角和定理即可求出答案.【解答】解:∠1+∠2+∠BPC=180°(三角形内角和等于180°),∵∠BPC=125°,∴∠1+∠2=55°,∵BP、CP是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∴∠ABC+∠ACB=110°,∵∠ABC+∠ACB+∠A=180°,∴∠A=70°.故选C.【点评】本题考查的是三角形内角和定理及角平分线的性质,属较简单题目.8.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°【考点】JA:平行线的性质;K8:三角形的外角性质.【分析】先延长AE交CD于F,根据AB∥CD,∠A=115°,即可得到∠AFD=65°,再根据∠AED是△DEF的外角,∠E=80°,即可得到∠CDE=80°﹣65°=15°.【解答】解:延长AE交CD于F,∵AB∥CD,∠A=115°,∴∠AFD=65°,又∵∠AED是△DEF的外角,∠E=80°,∴∠CDE=80°﹣65°=15°.故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.二、填空题9.七边形的内角和是900°.【考点】L3:多边形内角与外角.【分析】由n边形的内角和是:180°(n﹣2),将n=7代入即可求得答案.【解答】解:七边形的内角和是:180°×(7﹣2)=900°.故答案为:900°.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n﹣2)实际此题的关键.10.一个等腰三角形一边长为2,另一边长为5,那么这个等腰三角形的周长是12.【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为3时,2+2<5,所以不能构成三角形;当腰为5时,2+5>5,所以能构成三角形,周长是:2+5+5=12.故答案为:12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.(x﹣2y)2=x2﹣4xy+4y2.【考点】4C:完全平方公式.【专题】11 :计算题.【分析】原式利用完全平方公式展开,即可得到结果.【解答】解:原式=x2﹣4xy+4y2.故答案为:x2﹣4xy+4y2.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.12.分解因式:4a2﹣25b2=(2a+5b)(2a﹣5b).【考点】54:因式分解﹣运用公式法.【专题】11 :计算题;512:整式.【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+5b)(2a﹣5b),故答案为:(2a+5b)(2a﹣5b)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.13.多项式x2+mx+25能用完全平方公式分解因式,则m=±10.【考点】54:因式分解﹣运用公式法.【专题】11 :计算题;44 :因式分解.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵多项式x2+mx+25能用完全平方公式分解因式,∴m=±10,故答案为:±10【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【考点】JA:平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.【点评】本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.15.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=110°.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【解答】解:由折叠可得∠3=180°﹣2∠2=180°﹣110°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=110°,故答案为:110.【点评】此题主要考查了翻折变换和平行线的性质,关键是掌握两直线平行,同旁内角互补.16.已知3x=6,3y=9,则32x﹣y=4.【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,幂的乘方,可得答案.【解答】解:32x﹣y=32x÷3y=(3x)2÷3y=36÷9=4,故答案为:4.【点评】本题考察了同底数幂的除法,熟记法则并根据法则计算是解题关键.三、解答题(共72分)17.(16分)(2017春•徐州期中)计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)0.5200×(﹣2)202(3)(﹣2x3)2•(﹣x2)÷[(﹣x)2]3(4)(3x﹣1)(x+1)【考点】4I:整式的混合运算;6E:零指数幂;6F:负整数指数幂.【专题】11 :计算题;512:整式.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式逆用积的乘方及同底数幂的乘法法则计算即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;(4)原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=1+9﹣8=2;(2)原式=[0.5×(﹣2)]200×(﹣2)2=1×4=4;(3)原式=4x6•(﹣x2)÷x6=﹣4x2;(4)原式=3x2+3x﹣x﹣1=3x2+2x﹣1.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.因式分解(1)3x(a﹣b)﹣6y(b﹣a)(2)﹣a3+2a2﹣a.【考点】55:提公因式法与公式法的综合运用.【分析】(1)利用提公因式法分解因式即可求解;(2)利用提公因式法提取﹣a,再根据完全平方公式分解因式求解.【解答】解:(1)3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(2)﹣a3+2a2﹣a=﹣a(a2﹣2a+1)=﹣a(a﹣1)2.【点评】此题主要考查了提公因式法与公式法,关键是注意观察式子特点,找准分解因式的方法,要分解彻底.19.化简求值:(3a+b)2﹣(3a﹣b)(3a+b)﹣5b(a﹣b),其中a=1,b=﹣2.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题;512:整式.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=9a2+6ab+b2﹣9a2+b2﹣5ab+5b2=ab+7b2,当a=1,b=﹣2,原式=﹣2+28=26.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(利用网格点和三角板画图)(1)画出平移后的△A′B′C′.(2)画出AB边上的高线CD;(3)画出BC边上的中线AE;(4)若连接BB′、CC′,则这两条线段之间的关系是平行且相等.【考点】Q4:作图﹣平移变换.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据三角形的高线的定义结合图形作出即可;(3)根据三角形的中线的定义结合图形作出即可;(4)根据平移的性质解答.【解答】解:(1)△A′B′C′如图所示;(2)AB边上的高线CD如图所示;(3)BC边上的中线AE如图所示;(4)这两条线段之间的关系是平行且相等.故答案为:平行且相等.【点评】本题考查了利用平移变换作图,平移的性质,三角形的高线的定义,三角形的中线的定义,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=90°,∠EGC=90°(垂直的定义)∴∠ADC=∠EGC(等量代换)∴AD∥EG(同位角相等,两直线平行)∴∠1=∠3(两直线平行,内错角相等)∠2=∠E(两直线平行,同位角相等)又∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线定义).【考点】JB:平行线的判定与性质.【分析】根据垂直得出∠ADC=∠EGC,根据平行线的判定得出AD∥EG,根据平行线的性质得出∠1=∠3,∠2=∠E,求出∠1=∠2,即可得出答案.【解答】证明:∵AD⊥BC于D,EG⊥BC于G(已知),∴∠ADC=90°,∠EGC=90°(垂直的定义),∴∠ADC=∠EGC(等量代换),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∠2=∠E(两直线平行,同位角相等),又∵∠E=∠3(已知),∴∠1=∠2 (等量代换),∴AD平分∠BAC,故答案为:(垂直的定义);(同位角相等,两直线平行);(两直线平行,内错角相等);(两直线平行,同位角相等);(等量代换);(角平分线的定义).【点评】本题考查了平行线的性质和判定,角平分线定义等知识点,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:(1)∠1+∠2=90°;(2)BE∥DF.【考点】J9:平行线的判定.【专题】14 :证明题.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】证明:(1)∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【点评】本题主要考查了平行线的判定与性质,关键是掌握四边形内角和为360度,同位角相等,两直线平行.23.探索题:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1根据前面的规律,回答下列问题:(1)(x﹣1)(x n+x n﹣1+x n﹣2+…+x3+x2+x+1)=x n+1﹣1(2)当x=3时,(3﹣1)(32016+32015+32014+…+33+32+3+1)=32017﹣1(3)求:(22015+22014+22013+…+23+22+2+1)的值.(请写出解题过程)【考点】4F:平方差公式;37:规律型:数字的变化类.【分析】(1)根据平方差公式和多项式的乘法运算法则进行计算即可得解.(2)把x=3,n=2016代入(1)中的等式进行求值;(3)根据(1)中得到的规律,在所求的代数式前添加(2﹣1),利用平方差公式进行计算即可.【解答】解:(1)∵(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,∴(x﹣1)(x n+x n﹣1+…x+1)=x n+1﹣1.故答案是:x n+1﹣1;(2)当x=3时,(3﹣1)(32016+32014+32013+…+33+32+3+1)=32017﹣1,故答案是:32017﹣1;(3)(2﹣1)(22015+22014+…+22+2+1)=22016﹣1.【点评】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.24.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图②中的阴影部分的面积为(b﹣a)2;(2)观察图②请你写出(a+b)2,(a﹣b)2,ab之间的等量关系是(a+b)2﹣(a ﹣b)2=4ab;(3)根据(2)中的结论,若x+y=4,xy=,则(x﹣y)2=7;(4)实际上通过计算图形的面积可以探求相应的等式.如图③,你发现的等式是(a+b)•(3a+b)=3a2+4ab+b2.【考点】4D:完全平方公式的几何背景.【分析】(1)阴影部分为边长为(b﹣a)的正方形,然后根据正方形的面积公式求解;(2)在图2中,大正方形有小正方形和4个矩形组成,则(a+b)2﹣(a﹣b)2=4ab;(3)由(2)的结论得到(x+y)2﹣(x﹣y)2=4xy,再把x+y=4,x•y=得到(x﹣y)2=7;(4)观察图形得到边长为(a+b)与(3a+b)的矩形由3个边长为a的正方形、4个边长为a、b的矩形和一个边长为b的正方形组成,则有(a+b)•(3a+b)=3a2+4ab+b2.【解答】解:(1)阴影部分为边长为(b﹣a)的正方形,所以阴影部分的面积(b﹣a)2,故答案为:(b﹣a)2;(2)图2中,用边长为a+b的正方形的面积减去边长为b﹣a的正方形等于4个长宽分别a、b的矩形面积,所以(a+b)2﹣(a﹣b)2=4ab,故答案为:(a+b)2﹣(a﹣b)2=4ab;(3)∵(x+y)2﹣(x﹣y)2=4xy,而x+y=4,x•y=,∴42﹣(x﹣y)2=4×,∴(x﹣y)2=7,故答案为:7;(4)边长为(a+b)与(3a+b)的矩形面积为(a+b)(3a+b),它由3个边长为a的正方形、4个边长为a、b的矩形和一个边长为b的正方形组成,∴(a+b)•(3a+b)=3a2+4ab+b2.故答案为:(a+b)•(3a+b)=3a2+4ab+b2.【点评】本题考查了完全平方公式的几何背景:利用面积法证明完全平方公式(a﹣b)2=a2﹣2ab+b2.25.如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=45°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=30°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【考点】K7:三角形内角和定理;K8:三角形的外角性质.【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC﹣∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC﹣∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC﹣∠BAD得出答案.【解答】解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。
江苏省盐城市2016-2017学年高一下学期期末考试数学-含答案-精编
2016/2017学年度第二学期高一年级期终考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:锥体体积公式:13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上.1.函数()2sin(2)3f x x π=-的最小正周期为 ▲ .2.已知直线l 过定点(1,0),且倾斜角为3π,则直线l 的一般式方程为 ▲ . 3.若2sin()23πα+=,则cos2α= ▲ . 4.在Rt ABC ∆中,2A π=,4AB =,3AC =,则CA CB ⋅= ▲ .5.设等差数列{}n a 的前n 项和为n S ,若首项13a =-,公差2d =,5k S =,则正整数k = ▲ .6.设a 、b 表示两条直线,α、β表示两个平面,则下列命题正确的是 ▲ .(填写所有正确命题的序号)①若a //b ,a //α,则b //α; ②若a //b ,a α⊂,b β⊥,则αβ⊥; ③若α//β,a α⊥,则a β⊥;④若αβ⊥,a b ⊥,a α⊥,则b β⊥. 7.已知正项等比数列{}n a ,且153537225a a a a a a ++=,则35a a += ▲ . 8.若圆锥的侧面展开图是半径为5、圆心角为65π的扇形,则该圆锥的体积为 ▲ . 9.已知向量a 是与向量b =(-3,4)同向的单位向量,则向量a 的坐标是 ▲ . 10.已知函数3cos(2)y x ϕ=+是奇函数,则||ϕ的最小值为 ▲ .11.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线2410mx y m --+=()m R ∈相切的所有圆中,半径最大的圆的标准方程为 ▲ .12.已知数列{}n a 满足1122,211,2n n n a n k a a n k ---=+⎧=⎨+=⎩(*k N ∈),若11a =,则20S = ▲ .13.如图,点P 是正六边形ABCDEF 的边上的一个动点,设AP xAB y AE =+,则x y +的最大值为 ▲ .14.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若22a b bc =+,则ab的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,已知平行四边形ABCD 中,BC =6,正方形ADEF 所在平面与平面ABCD 垂直,G 、H 分别是DF 、BE 的中点.(1)求证:GH ∥平面CDE ;(2)若CD =2,DB =F -ABCD 的体积.16.(本小题满分14分)已知向量2x ka b =+和y a b =-,其中(1,2)a =-,(4,2)b =,k R ∈. (1)当k 为何值时,有x ∥y ;(2)若向量x 与y 的夹角为钝角,求实数k 的取值范围.FABCEDH GABCDE F(第13题图)如图,在平面直角坐标系xOy 中,点P 是圆O :221x y +=与x 轴正半轴的交点,半径OA 在x 轴的上方,现将半径OA 绕原点O 逆时针旋转3π得到半径OB .设POA x ∠=(0x π<<),()()f x OA OB OP =+⋅.(1)若2x π=,求点B 的坐标; (2)求函数()f x 的最小值,并求此时x 的值.18.(本小题满分16分)如图,OA 、OB 是两条公路(近似看成两条直线),3AOB π∠=,在A O B ∠内有一纪念塔P(大小忽略不计),已知P 到直线OA 、OB 的距离分别为PD 、PE ,PD =6千米,PE =12千米.现经过纪念塔P 修建一条直线型小路,与两条公路OA 、OB 分别交于点M 、N . (1)求纪念塔P 到两条公路交点O 处的距离; (2)若纪念塔P 为小路MN 的中点,求小路MN 的长.x设无穷等差数列{}n a 的前n 项和为n S ,已知11a =,312S =. (1)求24a 与7S 的值;(2)已知m 、n 均为正整数,满足m n a S =.试求所有n 的值构成的集合.20.(本小题满分16分)如图,已知动直线l 过点1(0,)2P ,且与圆22:1O x y +=交于A 、B 两点. (1)若直线l,求OAB ∆的面积;(2)若直线l 的斜率为0,点C 是圆O 上任意一点,求22CA CB +的取值范围; (3)是否存在一个定点Q (不同于点P ),对于任意不与y 轴重合的直线l ,都有PQ 平分AQB ∠,若存在,求出定点Q 的坐标;若不存在,请说明理由.2016/2017学年度第二学期高一年级期终考试高一数学参考答案一、填空题:每小题5分,共计70分. 1、π20y -3、19-4、95、56、②③7、58、12π9、34(,)55- 10、2π11、22(1)2x y -+=12、205613、214、二、解答题:本大题共6小题,共计90分.15. 解: (1)证明:连接FC ,∵EF ∥AD ,AD ∥BC ,∴EF ∥BC . 又EF =AD =BC ,∴四边形EFBC 是平行四边形, ……………2分 又H 为BE 的中点 ∴H 为FC 的中点.又∵G 是FD 的中点,∴HG ∥CD . ……………4分 ∵HG ⊄平面CDE ,CD ⊂平面CDE ,∴GH ∥平面CDE . ……………6分(2)∵平面ADEF ⊥平面ABCD ,交线为AD , 且FA ⊥AD ,又FA ⊂平面ADEF∴FA ⊥平面ABCD . ……………8分 ∵AD =BC =6,∴FA =AD =6.又∵CD =2,DB =42,CD 2+DB 2=BC 2,∴BD ⊥CD . ……………10分 ∵SABCD=CD·BD=82,∴V F -ABCD =13SABCD·FA=13×82×6=162. ……………14分16.解:(1)由//x y ,设x t y =,所以2()ka b t a b +=-,即()(2)t k a t b -=+, ……………2分 又(1,2)a =-,(4,2)b =,得a 与b 不共线, ……………4分 所以20t k t -=+=,解得2k =-. .……………6分(2)因向量x 与y 的夹角为钝角,所以(2)()0x y ka b a b ⋅=+⋅-<, ……………8分 又(1,2)a =-,(4,2)b =,得0a b ⋅=, ……………10分所以2225400x y ka b k ⋅=-=-<,即8k <, ……………12分 又向量x 与y 不共线,由(1)知2k ≠-,所以8k <且2k ≠-. ……………14分17.解:(1)因点P 是圆O :221x y +=与x 轴正半轴的交点,又2x π=,且半径OA 绕原点O 逆时针旋转3π得到半径OB , 所以56POB π∠=, ……………3分由三角函数的定义,得5cos16B x π=,5sin 16B y π=,解得B x =,12B y =,所以1()2B . ……………6分(2)依题意,(1,0)OP =,(cos ,sin )OA x x =,(cos(),sin())33OB x x ππ=++, (8)分所以3()cos()cos cos 322f x x x x x π=++=-,所以1()sin ))23f x x x x π-=-, ……… 12分因0x π<<,2333x πππ-<-<,所以当32x ππ-=时,即56x π=,函数()f x 取最小值 (14)分18.解法一:(1)以O 为原点,OA 所在直线为x 轴,建立直角坐标系,则直线OB 的方程为y =, (2)分又P 到直线OA 的距离PD =6千米,设(,6)P t , ……… 4分所以12=,解得t =或-(舍负),所以OP . 7分(2)因P 为小路MN 的中点,点M 在x 轴上,即0M y =,所以12N y =, ……… 9分又点N 在OB 上,所以N N y =,所以N x = ……… 10分由(1)知P ,所以M x =24MN =. ……… 14分答:(1)P 到点O 处的距离为(2)小路MN 的长为24千米. (16)分解法二:(1)设POA α∠=,则3POB πα∠=-, (2)分因P 到直线OA 、OB 的距离分别为PD 、PE ,PD =6千米,PE =12千米, 所以612sin sin()3OP παα==-, ……… 4分所以2sin sin()3παα=-,化简得tan α=又22sin cos 1αα+=,所以sin α,6sin OP α==. ………7分 (2)设PMO θ∠=,则23PMN πθ∠=-, ……… 9分因P 为小路MN 的中点,即PM PN =, 所以6122sin sin()3πθθ=-,即2sin()2sin 3πθθ-=, ……… 12分 解得6πθ=,所以12224sin6MN PM π===. (14)分答:(1)P 到点O处的距离为(2)小路MN 的长为24千米. ……… 16分19. 解:(1)因数列{}n a 是等差数列,所以32312S a ==,所以24a =, ……… 2分又11a =,所以公差3d =,所以13(1)32n a n n =+-=-,213(132)22n n nS n n -=+-=, (4)分所以2470a =,27377702S ⋅-==. (6)分(2)由(1)知32m a m =-,由m n a S =,得23322n nm --=, (8)分所以2223433442(1)6623n n n n n n n m n -++-++===--, (10)分因2(1)n n n n +=+为正偶数,22n n+为正整数, (12)分所以只需2(1)3n -为整数即可,即3整除1n -, ……… 14分所以,所有n 的值构成的集合为{}31,A n n k k N ==+∈. ……… 16分20. 解:(1)因为直线ll 213:+=x y ,则点O 到直线l 的距离412|21|==d ,……… 2分所以弦AB 的长度2154112||2=⎪⎭⎫⎝⎛-=AB ,所以16152154121=⋅⋅=∆OAB S . ………4分(2)因为直线l 的斜率为0,所以可知⎪⎪⎭⎫⎝⎛-21,23A 、⎪⎪⎭⎫ ⎝⎛21,23B , ………6分设点),(y x C ,则122=+y x ,又()222222221122222CA CB x y x y x y y ⎛⎛⎛⎫⎛⎫+=++-+-+-=++- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,… 8分 所以2242CA CB y +=-,又[]1,1-∈y , 所以22CA CB +的取值范围是[]2,6.……… 9分(3)法一: 若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q 、又设),(11y x A 、),(22y x B ,因直线l 不与y 轴重合,设直线l 21:+=kx y , ……… 10分代入圆O 得043)1(:22=-++kx x k , 所以221221143,1kx x k kx x +-=+-=+(*) ……… 12分若PQ 平分AQB ∠,则根据角平分线的定义,AQ 与BQ 的斜率互为相反数有12120y t y t x x --+=,又1112y kx =+,2212y kx =+, 化简可得))(21(2:2121x x t x kx +-=,……… 14分代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q ……… 16分 解法二若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q 、又设),(11y x A 、),(22y x B ,因直线l 不与y 轴重合,设直线l 21:+=kx y , ……… 10分代入圆O 得043)1(:22=-++kx x k , 所以221221143,1kx x k kx x +-=+-=+(*) ……… 12分 若PQ 平分AQB ∠,则根据角平分线的几何意义,点A 到y 轴的距离1d ,点B 到y 轴的距离2d 满足21:d QBd QA =,即||)(||)(2222212121x y t x x y t x -+=-+,化简可得))(21(2:2121x x t x kx +-=,……… 14分代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q ……… 16分。
数学2016-2017学年度第一学期期末考试试题
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省徐州市2016-2017学年高一下学期期末考试数学试题
一、填空题:(本大题共14小题,每小题5分,共70分)
1.不等式()10x x -≤的解集是 .
2.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若π1,sin 33
b B A ==
=,则边a 的长为 .
3.过点()1,2且与直线210x y -+=垂直的直线方程为 .
4.如图为60辆汽车通过某一段公路时的时速频率分布直方图,则时速在[)60,70的汽车大约有 辆.
5.已知一组数据:10.1,9.8,10,,10.2x 的平均数为10,则该组数据的方程为 .
6.执行如图所示的流程图,则输出的k 的值为 .
7.在ABC ∆中,若222sin sin sin sin B B C A C =-,则A 的值为 .
8.若变量,x y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩
,则2z x y =+的最大值是 .
9.
已知sin cos 22θ
θ
+=,则cos 2θ的值为 . 10.某数学兴趣小组有男生3人,女生2人,若从中任选两人去参加学校的数学竞赛,则至少选中一名女生的概率为 .
11.设n S 是公差不为0的等差数列{}n a 的前n 项和,若124,,a a a 成等比数列,则42S S 的值为 .
12.已知1,0a b >>,且22a b +=,则21a a b
+-的最小值为 . 13.已知函数()28f x ax x b =++(,a b 为互不相等的正整数),方程()0f x =的两个实根为()1212,x x x x <,且121,1x x <<,若()()11f f +-的最大与最小值分别为M ,m ,则M m -的值为 .
14.已知数列{}n a 中,()113,1,n n n a n a a a n N *+=-=+∈若对于任意的[]1,1,a n ∈-∈*N ,不等式21211
n a t at n +<-++恒成立,则实数t 的取值范围是 . 二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.
15.(本题满分14分)
已知直线1:230l x y -+=和2:290l x y +-=的交点为.A
(1)求过点A ,且与直线2310x y +-=平行的直线方程;
(2)求过点A ,且倾斜角为直线1l 倾斜角2倍的直线方程.
16.(本题满分14分)
已知()4tan .3
αβ-= (1)求()cos αβ-的值;
(2)若50,0,sin 2213ππαββ<<
-<<=-,求sin α的值.
17.(本题满分14分)
已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且)tan cos cos .b B a C c A =+
(1)求角B 的值;
(2)若ABC ∆的面积为
83
a c +=,求边
b .
18.(本题满分16分)
设数列{}n a 的前n 项和为n S ,且22n n a S =-,数列{}n b 为等差数列,且5714,20b b ==.
(1)求数列{}n a 的通项公式;
(2)若,n n n c a b n N *=⋅∈,求数列{}n c 的前n 项和n T .
19.(本题满分16分)
某广场拟建一个扇形的花坛(如图所示),按设计要求扇形的周长为30米,其中大圆弧所在圆的半径为10米.设小圆所在圆的半径为x 米,圆心角为θ(弧度).
(1)求θ关于x 的函数关系式;
(2)现欲对花坛的边缘(实线部分)进行装饰,已知直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,设花坛的面积与装饰费用之比为y ,求y 关于x 的函数关系式,并求出y 的最大值.
20.(本题满分16分)
已知数列{}{},n n a b 分别满足111,2n n a a a +=-=,且111,2n n
b b b +=-=,其中n ∈*N
,设
数列{}{},n n a b 的前n 项和分别为,.n n S T
(1)若数列{}{},n n a b 都是递增数列,求数列{}{},n n a b 的通项公式;
(2)若数列{}n c 满足:存在唯一的正整数()2k k ≥,使得1k k c c -<,则称数列{}n c 为“k 坠点数列”.
①若数列{}n a 为“5坠点数列”,求n S ;
②若数列{}n a 为“p 坠点数列”,数列{}n b 为“q 坠点数列”,是否存在正整数m 使得1m m S T +=?若存在,求出m 的最大值;若不存在,请说明理由.。