操作系统实验三进程的创建

合集下载

操作系统实验报告进程管理

操作系统实验报告进程管理

操作系统实验报告进程管理操作系统实验报告:进程管理引言操作系统是计算机系统中的核心软件,负责管理计算机的硬件资源和提供用户与计算机之间的接口。

进程管理是操作系统的重要功能之一,它负责对计算机中运行的各个进程进行管理和调度,以保证系统的高效运行。

本实验报告将介绍进程管理的基本概念、原理和实验结果。

一、进程管理的基本概念1. 进程与线程进程是计算机中正在运行的程序的实例,它拥有独立的内存空间和执行环境。

线程是进程中的一个执行单元,多个线程可以共享同一个进程的资源。

进程和线程是操作系统中最基本的执行单位。

2. 进程状态进程在运行过程中会经历不同的状态,常见的进程状态包括就绪、运行和阻塞。

就绪状态表示进程已经准备好执行,但还没有得到处理器的分配;运行状态表示进程正在执行;阻塞状态表示进程由于某些原因无法继续执行,需要等待某些事件的发生。

3. 进程调度进程调度是操作系统中的一个重要任务,它决定了哪个进程应该获得处理器的使用权。

常见的调度算法包括先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转等。

二、进程管理的原理1. 进程控制块(PCB)PCB是操作系统中用于管理进程的数据结构,它包含了进程的各种属性和状态信息,如进程标识符、程序计数器、寄存器值等。

通过PCB,操作系统可以对进程进行管理和控制。

2. 进程创建与撤销进程的创建是指操作系统根据用户的请求创建一个新的进程。

进程的撤销是指操作系统根据某种条件或用户的请求终止一个正在运行的进程。

进程的创建和撤销是操作系统中的基本操作之一。

3. 进程同步与通信多个进程之间可能需要进行同步和通信,以实现数据共享和协作。

常见的进程同步与通信机制包括互斥锁、信号量和管道等。

三、实验结果与分析在本次实验中,我们使用了一个简单的进程管理模拟程序,模拟了进程的创建、撤销和调度过程。

通过该程序,我们可以观察到不同调度算法对系统性能的影响。

实验结果显示,先来先服务(FCFS)调度算法在一些情况下可能导致长作业等待时间过长,影响系统的响应速度。

进程的创建实验报告

进程的创建实验报告

进程的创建实验报告进程的创建实验报告引言:在计算机科学领域中,进程是一个非常重要的概念。

进程是计算机程序的执行实例,它具有独立的内存空间和执行环境。

进程的创建是操作系统中一个关键的操作,本实验旨在通过编写一个简单的程序来演示进程的创建过程。

实验目的:通过实验,我们的目标是深入理解进程的创建过程,并了解操作系统是如何管理进程的。

实验步骤:1. 引入必要的头文件:在开始编写代码之前,我们需要引入一些必要的头文件。

这些头文件包括<sys/types.h>、<sys/wait.h>和<unistd.h>。

这些头文件提供了创建进程所需的函数和数据类型。

2. 创建一个子进程:在主程序中,我们使用fork()函数来创建一个子进程。

fork()函数会在当前进程的基础上创建一个新的进程,这个新进程称为子进程。

子进程和父进程几乎完全相同,只有在返回值上有所区别。

如果fork()函数返回0,表示当前进程是子进程;如果返回一个正整数,表示当前进程是父进程。

3. 子进程的执行:在子进程中,我们可以编写任意的代码来执行特定的任务。

子进程可以使用exec()函数来执行其他程序,或者执行一系列的操作。

在本实验中,我们简单地输出一条信息,以展示子进程的执行过程。

4. 父进程的执行:在父进程中,我们可以编写代码来执行其他任务,或者等待子进程的结束。

在本实验中,我们使用wait()函数来等待子进程的结束。

wait()函数会暂停父进程的执行,直到子进程结束为止。

5. 编译和运行程序:在完成代码编写后,我们需要将程序编译成可执行文件,并运行它。

我们可以使用gcc编译器来编译程序,然后运行生成的可执行文件。

实验结果:在运行程序后,我们可以观察到以下结果:子进程开始执行。

父进程等待子进程结束。

子进程结束。

父进程继续执行。

结论:通过本实验,我们成功地演示了进程的创建过程。

我们了解了操作系统是如何管理进程,并且掌握了使用fork()函数来创建子进程的方法。

操作系统实验3-进程控制

操作系统实验3-进程控制
DWORD dwVerReq=::GetProcessVersion(dwIdThis);
WORD wMajorReq=(WORD)(dwVerReq>16);
WORD wMinorReq=(WORD)(dwVerReq&0xffff);
::cout<<"Process ID:"<<dwIdThis<<",requires OS:"<<wMajorReq<<wMinorReq<<::endl;
{
//改变优先级
::SetPriorityClass(
::GetCurrentProcess(), //利用这一进程
HIGH_PRIORITY_CLASS); //改变为high
//报告给用户
::cout<<"Task Manager should indicate this "
"process is high priority."<<::endl;
//设置版本信息的数据结构,以便保存操作系统的版本信息
OSVERSIONINFOEX osvix;
::ZeroMemory(&osvix,sizeof(osvix));
osvix.dwOSVersionInfoSize=sizeof(osvix);
//提取版本信息和报告
::GetVersionEx(reinterpret_cast<LPOSVERSIONINFO>(&osvix));
Parent();
}
return 0;
}
分析:程序4-3.cpp说明了一个进程从“生”到“死”的整个一生,第一次执行时,它创建一个子进程,其行为如同“父亲”。在创建子进程之前,先创建一个互斥的内核对象,其行为对于子进程来说,如同一个“自杀弹”。当创建子进程时,就打开了互斥体并在其他线程中进行别的处理工作,同时等待着父进程使用ReleaseMutex()API发出“死亡”信号。然后用Sleep()API调用来模拟父进程处理其他工作,等完成时,指令子进程终止。

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。

三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。

2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。

3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。

以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。

(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。

操作系统实验3进程的创建控制实验

操作系统实验3进程的创建控制实验

操作系统实验3进程的创建控制实验实验三的目标是通过实现一个进程控制程序,来加深我们对进程创建和控制机制的理解,并通过实践来熟悉和掌握相关的编程技巧。

在进行实验之前,我们需要先了解进程的一些基本概念和相关知识。

首先,进程的创建是通过操作系统中的系统调用来完成的。

在Linux系统中,常用的创建进程的系统调用有fork(和exec(。

fork(系统调用可以创建一个新的进程,该进程与调用fork(的进程几乎完全相同;而exec(系统调用则在新创建的进程中执行一个新的程序。

另外,进程的控制机制主要是通过进程的状态来实现的。

进程可以处于就绪状态、运行状态和阻塞状态。

就绪状态的进程可以被调度器选择后立即运行,而阻塞状态的进程则需要等待一些条件满足后才能被唤醒并变为就绪状态。

实验三的具体内容包括:1. 编写一个程序,通过调用fork(创建多个子进程。

子进程和父进程可以并行执行,共享程序的代码和数据段。

2. 子进程通过调用exec(系统调用执行不同的程序。

可以通过调用不同的exec(函数或者传入不同的参数来执行不同的程序。

3. 子进程执行的程序可能会产生不同的结果,比如输出不同的字符串或者产生不同的返回值。

我们可以通过wait(系统调用等待子进程退出,并获取子进程的返回值。

4. 父进程可以通过调用waitpid(系统调用来选择等待一些特定的子进程,以及获取特定子进程的返回值。

通过实验三的实践,我将更加深入地了解进程的创建和控制机制。

实验三的实验结果将让我熟悉和掌握相关的编程技巧,为我今后更加熟练地编写和控制进程打下坚实的基础。

总之,实验三是一个非常有意义的实验,将帮助我更加深入地理解进程的创建和控制机制,并通过实践获得相关的编程技巧。

这将对我今后的学习和实践有很大的帮助。

操作系统实验报告(进程的创建)

操作系统实验报告(进程的创建)

wait(0);printf("parent process doesn't change the glob and loc:\n");printf("glob=%d,loc=%d\n",glob,loc);exit(0);}运行结果:2、理解vofork()调用:程序代码:#include<stdio.h>#include<sys/types.h>#include<unistd.h>int glob=3;int main(void){pid_t pid;int loc=3;if((pid=vfork())<0){printf("vfork() error\n");exit(0);}else if(pid==0){glob++;loc--;printf("child process changes the glob and loc\n");exit(0);}elseprintf ("parent process doesn't change the glob and loc\n");printf("glob=%d,val=%d\n",glob,loc);}运行结果:3、给进程指定一个新的运行程序的函数exec().程序代码:printe1.c代码:#include<stdio.h>int main(int argc,char * argv[]){int n;char * * ptr;extern char * * environ;for(n=0;n<argc;n++)printf("argv[%d]:%s\n",n,argv[n]);for(ptr=environ; * ptr!=0;ptr++)printf("%s\n",* ptr);exit(0);}file4.c代码如下:#include<stdio.h>#include<sys/types.h>#include<unistd.h>#include<sys/wait.h>char * env_list[]={"USER=root","PATH=/root/",NULL};int main(){pid_t pid;if((pid=fork())<0){printf("fork error!\n");exit(0);}else if(pid==0){if(execle("/root/print1","print1","arg1","arg2",(char *)0,env_list)<0) printf("execle error!\n");exit(0);}if((waitpid(pid,NULL,0))<0)printf("WAIT ERROR!\n");exit(0);if((pid=fork())<0){printf("fork error!\n");exit(0);}else if(pid==0){if(execlp("print1","print1","arg1",(char *)0)<0)printf("execle error!\n");exit(0);}exit(0);}运行结果:4、进程终止函数exit()。

进程创建实验报告

实验名称:进程创建实验实验目的:1. 理解进程的概念和进程创建的过程。

2. 掌握使用系统调用创建进程的方法。

3. 分析进程创建的参数和返回值。

4. 了解进程的层次结构。

实验环境:操作系统:Linux编译器:gcc开发环境:Eclipse/Visual Studio Code实验内容:1. 理论学习- 进程的概念:进程是计算机系统中正在运行的可执行程序实例,具有独立的内存空间、执行状态和系统资源。

- 进程创建:操作系统通过创建一个新的进程来启动一个程序,新的进程会继承父进程的某些属性。

2. 实验步骤(1)编写C语言程序,使用系统调用创建进程。

(2)观察进程的创建过程,分析进程的层次结构。

(3)测试进程创建的参数和返回值。

实验代码:```c#include <stdio.h>#include <stdlib.h>#include <sys/types.h>#include <unistd.h>int main() {pid_t pid;pid = fork(); // 创建子进程if (pid == 0) { // 子进程printf("子进程 %d\n", getpid());exit(0);} else if (pid > 0) { // 父进程printf("父进程 %d, 子进程 %d\n", getpid(), pid);exit(0);} else { // 创建进程失败perror("fork error");exit(1);}return 0;}```实验结果与分析:1. 进程创建过程- 通过`fork()`系统调用创建子进程,返回值分别为子进程ID和0。

父进程的返回值为子进程ID,子进程的返回值为0。

- 在父进程中,打印出父进程和子进程的进程ID,观察到父进程和子进程的进程ID不同。

操作系统进程管理实验报告

操作系统进程管理实验报告一、引言在现代计算机科学中,操作系统的进程管理是确保系统高效运行的关键环节。

本实验旨在通过观察和分析操作系统的进程管理行为,深入理解进程的创建、运行和终止过程,以及操作系统如何对进程进行调度和资源分配。

二、实验目标1、理解进程的基本概念、进程状态及转换。

2、掌握进程的创建、终止和调度方法。

3、观察和分析进程在运行过程中的资源消耗和调度行为。

4、分析操作系统对进程的资源分配和调度策略对系统性能的影响。

三、实验环境与工具本实验在Linux操作系统上进行,使用GNU/Linux环境下的工具进行进程的创建、监控和调度。

四、实验步骤与记录1、创建进程:使用shell命令“fork”创建一个新的进程。

记录下父进程和子进程的PID,以及它们在内存中的状态。

2、进程状态观察:使用“ps”命令查看当前运行进程的状态,包括进程的PID、运行时间、CPU使用率等。

同时,使用“top”命令实时监控系统的CPU、内存等资源的使用情况。

3、进程调度:在“crontab”中设置定时任务,观察系统如何根据预设的调度策略分配CPU资源给各个进程。

4、资源分配:通过修改进程的优先级(使用“nice”命令),观察系统如何调整资源分配策略。

5、终止进程:使用“kill”命令终止一个进程,并观察系统如何处理该进程占用的资源。

五、实验结果与分析1、创建进程:通过“fork”系统调用,成功创建了一个新的进程,并获取了父进程和子进程的PID。

在内存中,父进程和子进程的状态分别为“running”和“ready”。

2、进程状态观察:使用“ps”命令可以看到父进程和子进程的状态均为“running”,同时显示了它们的CPU使用率和运行时间等信息。

通过“top”命令,可以实时监控系统的CPU、内存等资源的使用情况,为进一步分析提供了数据支持。

3、进程调度:在“crontab”中设置定时任务后,系统会根据预设的调度策略以及各个进程的运行状态,动态地分配CPU资源给各个进程。

《操作系统》课程实验报告

《操作系统》课程实验报告一、实验目的本次《操作系统》课程实验的主要目的是通过实际操作和观察,深入理解操作系统的工作原理、进程管理、内存管理、文件系统等核心概念,并掌握相关的操作技能和分析方法。

二、实验环境1、操作系统:Windows 10 专业版2、开发工具:Visual Studio Code3、编程语言:C/C++三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新进程,并观察进程的创建过程和资源分配情况。

同时,实现进程的正常终止和异常终止,并分析其对系统的影响。

2、进程同步与互斥使用信号量、互斥锁等机制实现进程之间的同步与互斥。

通过模拟多个进程对共享资源的访问,观察并解决可能出现的竞争条件和死锁问题。

(二)内存管理实验1、内存分配与回收实现不同的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法。

观察在不同的内存请求序列下,内存的分配和回收情况,并分析算法的性能和优缺点。

2、虚拟内存管理研究虚拟内存的工作原理,通过设置页面大小、页表结构等参数,观察页面的换入换出过程,以及对系统性能的影响。

(三)文件系统实验1、文件操作实现文件的创建、打开、读取、写入、关闭等基本操作。

观察文件在磁盘上的存储方式和文件系统的目录结构。

2、文件系统性能优化研究文件系统的缓存机制、磁盘调度算法等,通过对大量文件的读写操作,评估不同优化策略对文件系统性能的提升效果。

四、实验步骤(一)进程管理实验步骤1、进程创建与终止(1)使用 C/C++语言编写程序,调用系统函数创建新进程。

(2)在子进程中执行特定的任务,父进程等待子进程结束,并获取子进程的返回值。

(3)通过设置异常情况,模拟子进程的异常终止,观察父进程的处理方式。

2、进程同步与互斥(1)定义共享资源和相关的信号量或互斥锁。

(2)创建多个进程,模拟对共享资源的并发访问。

(3)在访问共享资源的关键代码段使用同步机制,确保进程之间的正确协作。

(4)观察并分析在不同的并发情况下,系统的运行结果和资源竞争情况。

进程管理实验报告

进程管理实验报告进程管理实验报告引言:进程管理是操作系统中的重要概念,它负责调度和控制计算机系统中的各个进程,确保它们能够有序地执行。

本实验旨在通过实际操作和观察,深入了解进程管理的原理和方法,并通过实验结果分析其影响因素和优化策略。

实验一:进程创建与终止在本实验中,我们首先进行了进程的创建和终止实验。

通过编写简单的程序,我们能够观察到进程的创建和终止过程,并了解到进程控制块(PCB)在其中的作用。

实验结果显示,当一个进程被创建时,操作系统会为其分配一个唯一的进程ID,并为其分配必要的资源,如内存空间、文件描述符等。

同时,操作系统还会为该进程创建一个PCB,用于存储该进程的相关信息,如进程状态、程序计数器等。

当我们手动终止一个进程时,操作系统会释放该进程所占用的资源,并将其PCB从系统中删除。

这样,其他进程便可以继续使用这些资源,提高系统的效率和资源利用率。

实验二:进程调度算法进程调度算法是决定进程执行顺序的重要因素。

在本实验中,我们通过模拟不同的进程调度算法,比较它们在不同场景下的表现和效果。

我们选择了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR)。

通过设置不同的进程执行时间和优先级,我们观察到不同调度算法对系统吞吐量和响应时间的影响。

实验结果显示,FCFS算法适用于执行时间较短的进程,能够保证公平性,但在执行时间较长的进程出现时,会导致等待时间过长,影响系统的响应速度。

SJF 算法在执行时间较长的进程时表现出色,但对于执行时间较短的进程,可能会导致饥饿现象。

RR算法能够在一定程度上平衡各个进程的执行时间,但对于执行时间过长的进程,仍然会影响系统的响应速度。

实验三:进程同步与互斥在多进程环境中,进程之间的同步和互斥是必不可少的。

在本实验中,我们通过模拟进程间的竞争和互斥关系,观察进程同步与互斥的实现方式和效果。

我们选择了信号量机制和互斥锁机制作为实现进程同步和互斥的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.操作系统实验报告哈尔滨工程大学软件学院.第一讲实验环境的使用一、实验概述1. 实验名称进程的创建2. 实验目的练习使用EOS API函数 CreateProcess创建一个进程,掌握创建进程的方法,理解进程和程序的区别。

调试跟踪 CreateProcess函数的执行过程,了解进程的创建过程,理解进程是资源分配的单位。

3. 实验类型(验证、设计)验证4. 实验内容准备实验练习使用控制台命令创建EOS应用程序的进程练习通过编程的方式让应用程序创建另一个应用程序的进程调试CreateProcess函数调试PsCreateProcess函数练习通过编程的方式创建应用程序的多个进程1二、实验环境操作系统:windows xp编译环境:OS Lab语言:汇编语言、C语言三、实验过程(每次实验不一定下面6条都写,根据实际情况定)1.设计思路和流程图2调用CloseHandle函数关闭子进程句柄和子进程的主线程句柄main函数返回main函数流程图2. 需要解决的问题及解答提供的源代码基础上进行修改,要求使用在源代码文件NewTwoProc.c(1)类型定PROCESS_INFORMATIONhello.exe同时创建10个进程。

提示:可以使用个1010个元素的数组,每一个元素对应一个进程。

使用一个循环创建义一个有个子进程结束,得到退出码后关闭句柄。

子进程,然后再使用一个循环等待10 答:后文中,有此题解决方案。

函PsCreateProcess函数和PspCreateProcessEnvironment尝试根据之前对数执行过程的跟踪调试,绘制一幅进程创建过程的流程图。

创建进程控制块为进程创建了地址空间为进程分配了句柄表PsploadprocessImage是将进程的可执行映像加载到了进程的地址空间中3PspCreateThread创建了进程的主线程结束(3)在PsCreateProcess函数中调用了PspCreateProcessEnvironment函数后又先后调用了PspLoadProcessImage和PspCreateThread函数,学习这些函数的主要功能。

能够交换这些函数被调用的顺序吗?思考其中的原因。

答:PspCreateProcessEnvironment进程创建了地址空间和分配了句柄表。

PspLoadProcessImage是将进程的可执行映像加载到了进程的地址空间中。

PspCreateThread创建了进程的主线程。

这三能够知道自己要从哪里开始执行,执行哪些指令。

因此不能交换他们的顺序。

3.主要数据结构、实现代码及其说明主要定义一个有10个元素的数组,每一个元素对应一个进程。

使用一个循环创建10个子进程,然后再使用一个循环等待10个子进程结束,得到退出码后关闭句柄4.源程序并附上注释#include EOSApp.h//// main 函数参数的意义:// argc - argv 数组的长度,大小至少为 1,argc - 1 为命令行参数的数量。

// argv - 字符串指针数组,数组长度为命令行参数个数 + 1。

其中 argv[0] 固定指向当前// 进程所执行的可执行文件的路径字符串,argv[1] 及其后面的指针指向各个命令行// 参数。

4// 例如通过命令行内容 a:\hello.exe -a -b 启动进程后,hello.exe 的 main 函// 数的参数 argc 的值为 3,argv[0] 指向字符串尠?屜敨汬?硥履,argv[1] 指向// 参数字符串尠愭,argv[2] 指向参数字符串尠戭。

//int main(int argc, char* argv[]){int i;//// 启动调试 EOS 应用程序前要特别注意下面的问题://// 1、如果要在调试应用程序时能够调试进入内核并显示对应的源码,// 必须使用 EOS 核心项目编译生成完全版本的 SDK 文件夹,然// 后使用此文件夹覆盖应用程序项目中的 SDK 文件夹,并且 EOS// 核心项目在磁盘上的位置不能改变。

//// 2 、在启动调试应用程序之前必须首先删除/禁用所有的断点,在断// 点中断 (int 3) 被命中后才能重新添加/ 启用断点,否则启动// 调试会失败。

//STARTUPINFO StartupInfo;PROCESS_INFORMATION P[10];ULONG ulExitCode; // 子进程退出码INT nResult = 0; // main 函数返回值。

0 表示成功,非 0 表示失败。

BOOL num[10];#ifdef _DEBUG__asm(int $3\n nop);#endif5printf(Create ten processes and wait for the processes exit...\n\n);//// 使子进程和父进程使用相同的标准句柄。

//StartupInfo.StdInput = GetStdHandle(STD_INPUT_HANDLE); StartupInfo.StdOutput = GetStdHandle(STD_OUTPUT_HANDLE); StartupInfo.StdError = GetStdHandle(STD_ERROR_HANDLE);//// 为一个应用程序同时创建十个子进程。

//for( i=0;i<10;i++){num[i]=CreateProcess(A:\\Hello.exe, NULL, 0, &StartupInfo, &P[i]);}for(i=0;i<10;i++){if(num[i]){//// 创建子进程成功,等待子进程运行结束。

//WaitForSingleObject(P[i].ProcessHandle, INFINITE);}}for(i=0;i<10;i++){if(num[i]){//6// 得到并输出子进程的退出码。

//GetExitCodeProcess(P[i].ProcessHandle, &ulExitCode);printf(\The process %d exit with %d.\n, ulExitCode); }}for(i=0;i<10;i++){if(num[i]){//// 关闭不再使用的句柄。

//CloseHandle(P[i].ProcessHandle);CloseHandle(P[i].ThreadHandle);}}for(i=0;i<10;i++){if(!num[i]){0x%X.\n, code: Failed, printf(CreateProcess Error GetLastError());nResult = 1;}}return nResult;}5.程序运行时的初值和运行结果使用控制台命令创建a.应用程序进程EOS 7:b.查看应用程序创建另一个应用程序的进程的执行结果8c.调试进程控制块的创建过程将鼠标移动到“监视”窗口中此表达式的“值”属性上,会弹出一个临时窗口,在临时窗口中会按照进程控制块的结构显示各个成员变量的值(可以参考PROCESS结构体的定义)。

由于只是新建了进程控制块,还没有初始化其中成员变量,所以值都为0。

d.接下来调试初始化进程控制块中各个成员变量的过程:1.创建进程的地址空间,即4G虚拟地址空间。

在代码行(create.c文件的第437行) NewProcess->Pas = MmCreateProcessAddressSpace(); 添加一个断点。

2.按F5继续调试,到此断点处中断。

3.按F10执行此行代码后中断。

4.在“监视”窗口中查看进程控制块的成员变量Pas的值已经不再是0。

说明已经初始化了进程的4G虚拟地址空间。

9在函数中后面的代码,PspCreateProcessEnvironment使用F10一步步调试表达式的值*NewProcess调试的过程中根据执行的源代码,查看“监视”窗口中结果如下:1011内核会为刚刚初始化完毕的进程控制块新建一个进程。

继续执行,EOS F5按激活虚拟机窗口查看新建进程执行的结果。

12练习通过编程的方式创建应用程序的多个进程e.,仔细阅NewTwoProc.cLab打开本实验文件夹中的参考源代码文件 OS 使用应用程序项 EOS 文件中的源代码替换读此文件中的源代码。

使用NewTwoProc.c查看多个进程并发执行的结文件内的源代码,生成后启动调试, EOSApp.c 目中果。

13四、实验体会知道了在学会了进程控制块中的各个进程控制的运行情况,在本次实验中,也学会了通过监视的方法来观察地址程序运行控制过程中各个模块的变化情况。

个进程,因为编10hello.exe的变化。

本次实验中最大的问题便是用同时创建并对细节做了部分修正才运行程基础不太好,花费了很长一段时间才通过编译,成功,以后要加强编程方面的训练。

14。

相关文档
最新文档