运筹学 单纯 形讲义法原理
运筹学单纯形法

运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。
它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。
单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。
在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。
单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。
传统的单纯性法分为有界单纯性和无界单纯性两种情形。
无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。
有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。
单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。
使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。
运筹学第5章 单纯形法

0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法
运筹学单纯形法

单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4
3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1
运筹学单纯形法

16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
运筹学讲义-单纯形方法(ppt 78页)

7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0
运筹学---单纯形法

运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。
在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。
单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。
单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。
在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。
具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。
新的基变量将替换原来的非基变量,并且目标函数的值将被更新。
关键是如何选择入基变量和出基变量。
为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。
单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。
通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。
一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。
但是,在实际应用中,单纯形法往往比其他算法更快和更有效。
此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。
单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。
它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。
在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。
这些方法可以提供更好的性能和结果。
但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。
在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。
运筹学-第1章 3-单纯形法

解就是原问题的最优解
若变化后的问题中含有非零的人工变量则元问题无可行
解
7
2.最优性检验和解的判别
x i bi a im 1 x m 1 , ,a in x n i 1, , m代入目标函数 Z
c1 x1 c2 x 2 c n x n c1 (b1 a1m 1 x m 1 a1n x n ) c2 (b2 a 2 m 1 x m 1 a 2 n x n ) cm (bm a mm 1 x m 1 a mn x n ) c m 1 x m 1 c n x n ci bi
(1)因为所有 Xj ≥0,当所有σ j<0 时,则 Z≤Z0,则该基可行解 对应最优解; (2)因为所有 Xj ≥ 0 ,当 σ j≤ 0 且存在 σ j =0 ( j=m+1,„,n) 时,则该线性规划问题有无穷多最优解; ( 3 )对基可行解 X0, 若存在某个 σ k>0, 且所有 aik≤0(Pj≤0), i=1,2,„,m,则该问题无界(无界解); (4)因为所有Xj≥0,当存在σ j>0时,则该基可行解不是最优 解,需要寻找另一个基可行解;
9
3.基变换
• 变换目的:使目标函数Z值得到改善,接近最优解,一次基变换, 是从该顶点到相邻顶点,即一次基变换仅变换一个基变量。 换入变量的确定(入基变量)
σk>0,aik 至少一个大于0,若σk=Max{σj| σj>0},则xk为换入变量。
换出变量的确定(出基变量)
bi bl bi , i 1,, m, min | aik 0 aik aik alk
13
一.求初始基可行解
1.当约束条件为“≤”时,直接在约束不等式左边加上非负的松弛 变量,使约束方程的系数矩阵很容易找到一个单位矩阵,求出一 个初始基可行解。
运筹学-第一章-单纯形法基本原理

X (0) (x10 , x20 ,, xm0 ,0,0,...,0)T (b1,b2,......,bm ,0,0,...,0)T
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X (0) (x10, x20,...xm0, o,...o)T
0 0
1 0
0
1
当线性规划的约束条件均为≤,其松弛变量的系数矩阵为单位 矩阵;当线性规划的约束条件均为≥或=,为便于找到初始基 可行解,构造人工变量,人为产生一个单位矩阵。
单纯形法基本原理
式中p1,…,pm 为基变量,同其所对应的 x1,x2,…..,xm为基变量;其它变量 xm+1,xm+2,……,xn为非基变量。令所有的非基变量 等于零。
0 1
...
0
a2,m1
..... a2, j
. a2,n
b2
. . . . . . . . . .
0 0
.
1 am,m1
.
am, j
.
am,n
bm
因为p1,…,pm,是一个基,其他向量pj可以这个基
的线性组合表示:
m
p j ai法基本原理
问题 ①如果限制条件中既有“≤”类型的约束, 又有“≥”或“=”类型的约束,怎么办?
构造单位阵
②初始可行基一定要选单位阵?
b列正好就是基变量的取值,因此称b列
为解答列
单纯形法基本原理
(2)写出初始基可行解——
令非基变量取0,基变量对应b(i),一起构 成初始基可行解