《数列的概念与简单表示法(一)》课件17(35张PPT)(人教A版必修5)(精选)
合集下载
高中数学 第二章 数列 2.1 数列的概念与简单表示法 第

2n 2n-12n+1.
(3)数列的项,有的是分数,有的是整数,可将数列的各 项都统一成分数再观察.12,42,92,126,225,….可得通项公式为 an=n22.
(4)联想
n个
99…9
=10n-1,则an=
n个
55…5
=59×
n个
99…9
=59(10n-1),
即an=59(10n-1).
解析: 对于A,因为数列的定义域是正整数集N*或它的 有限子集,故A错;对于B,根据数列的定义可知,如果组成 两个数列的数相同而排列顺序不同,那么它们就是不同的数 列,故B错;根据数列的定义,C正确;对于D,因为它的项数 有限,应该是有穷数列,故D错.
答案: C
2.下列四个数列中,既是无穷数列又是递增数列的是 ()
第二章
数列
2.1 数列的概念与简单表示法
第1课时 数列的概念与简单表示法
自主学习 新知突破
1.了解数列的概念和顺序性,学会用列表法、图象法、 通项公式法来表示数列.
2.理解数列是一种特殊的函数. 3.掌握数列的通项公式,会求数列的通项公式.
[问题1] 按顺序分别写出满足下列条件的数. (1)正整数1,2,3,4,5,6的倒数; (2)-1的1次幂,2次幂,3次幂,4次幂; (3)正整数1,2,3,4,5,6,…的平方.
[提示] (1)11,12,13,14,15,16. (2)(-1)1,(-1)2,(-1)3,(-1)4. (3)12,22,32,42,52,62,….
[问题2] 从1984年到2008年我国共参加了7次奥运会,各 次参赛获得的金牌总数依次为:15,5,16,16,28,32,52.这几个数有 顺序吗?
3.已知数列1, 3, 5, 7,…, 2n-
(3)数列的项,有的是分数,有的是整数,可将数列的各 项都统一成分数再观察.12,42,92,126,225,….可得通项公式为 an=n22.
(4)联想
n个
99…9
=10n-1,则an=
n个
55…5
=59×
n个
99…9
=59(10n-1),
即an=59(10n-1).
解析: 对于A,因为数列的定义域是正整数集N*或它的 有限子集,故A错;对于B,根据数列的定义可知,如果组成 两个数列的数相同而排列顺序不同,那么它们就是不同的数 列,故B错;根据数列的定义,C正确;对于D,因为它的项数 有限,应该是有穷数列,故D错.
答案: C
2.下列四个数列中,既是无穷数列又是递增数列的是 ()
第二章
数列
2.1 数列的概念与简单表示法
第1课时 数列的概念与简单表示法
自主学习 新知突破
1.了解数列的概念和顺序性,学会用列表法、图象法、 通项公式法来表示数列.
2.理解数列是一种特殊的函数. 3.掌握数列的通项公式,会求数列的通项公式.
[问题1] 按顺序分别写出满足下列条件的数. (1)正整数1,2,3,4,5,6的倒数; (2)-1的1次幂,2次幂,3次幂,4次幂; (3)正整数1,2,3,4,5,6,…的平方.
[提示] (1)11,12,13,14,15,16. (2)(-1)1,(-1)2,(-1)3,(-1)4. (3)12,22,32,42,52,62,….
[问题2] 从1984年到2008年我国共参加了7次奥运会,各 次参赛获得的金牌总数依次为:15,5,16,16,28,32,52.这几个数有 顺序吗?
3.已知数列1, 3, 5, 7,…, 2n-
人教A版高中数学必修五数列的概念与简单表示法教学PPT课件

——数列的概念及简单表示法 (第一课时)
12 3
兰花
兰花在中国有一千余年的栽培历史,颜色有白、 黄、红、青、紫等。
12 54 3
苹果花
苹果花的历史很悠久,特别喜欢生长在温暖 的地方。
7 81 62 54 3
格桑花 格桑花又称格桑梅朵,长期以来一直寄托着藏族 人民期盼幸福吉祥的美好情感。
11101129381723645
3,
6,
10, .…..
上图中各三角形表示的数排列有规律吗?
由于这些数可以用三角形点阵表示,故称其 为三角形数.
下图中各正方形分别表示哪些数?这些数与相 应正方形的序号有什么关系?
1,
4,
9,
正方形数
16, ……
绝
句
杜甫
两个黄鹂鸣翠柳,一行白鹭上青天。 向日葵花,别名:春菊,马数列 递增数列
无穷数列 递减数列
有穷数列 无穷数列 无穷数列
递增数列 常数列 摆动数列
CCTV-2 中央电视台开心辞典节目中
曾经出现过这样的一道题:
观察以下几个数的特点,
按照其中的规律写出括号里的数.
项 2,5,10,17,26, (37 ) , 50 , ...an = n2+1
序号 1 2 3 4 5 6 7 ... n
16, .
1,
4,
9,
16, ……
窗含西岭千秋雪,门泊东吴万里船。 绝
句
函数的概念:设A非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那
么就称 f: A→B为从集合A到集合B的一个函数,
1,
4,
9,
12 3
兰花
兰花在中国有一千余年的栽培历史,颜色有白、 黄、红、青、紫等。
12 54 3
苹果花
苹果花的历史很悠久,特别喜欢生长在温暖 的地方。
7 81 62 54 3
格桑花 格桑花又称格桑梅朵,长期以来一直寄托着藏族 人民期盼幸福吉祥的美好情感。
11101129381723645
3,
6,
10, .…..
上图中各三角形表示的数排列有规律吗?
由于这些数可以用三角形点阵表示,故称其 为三角形数.
下图中各正方形分别表示哪些数?这些数与相 应正方形的序号有什么关系?
1,
4,
9,
正方形数
16, ……
绝
句
杜甫
两个黄鹂鸣翠柳,一行白鹭上青天。 向日葵花,别名:春菊,马数列 递增数列
无穷数列 递减数列
有穷数列 无穷数列 无穷数列
递增数列 常数列 摆动数列
CCTV-2 中央电视台开心辞典节目中
曾经出现过这样的一道题:
观察以下几个数的特点,
按照其中的规律写出括号里的数.
项 2,5,10,17,26, (37 ) , 50 , ...an = n2+1
序号 1 2 3 4 5 6 7 ... n
16, .
1,
4,
9,
16, ……
窗含西岭千秋雪,门泊东吴万里船。 绝
句
函数的概念:设A非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那
么就称 f: A→B为从集合A到集合B的一个函数,
1,
4,
9,
人教版高中数学必修5(A版) 2.1数列的概念与简单表示法 PPT课件

2.1数列的概念与简单表示法
如图表示堆放的钢管,共堆放了6层。自上而下各 层的钢管数排列成一列数:
5,6,7,8,9,10
自然数 1,2,3,4,5, …的倒数排列成一列数:
1
1
1
1
1 ,2 , 3 ,4, 5, …
-1的1次幂,2次幂,3次幂,4次幂,…排列成一 列数:
-1 ,1,-1,1,-1,1,…
一、定义
像前面的例子中,按一定次序排列的一列数 叫做数列。数列中的每一个数叫做这个数列的项, 各项依次叫做这个数列的第一项(或首项),第 二项,…,第n项, …。 问:下面二列数是否为同一数列?
1,2,3,4,5 5,4,3,2,1
结论:因其排列次序不同,故不是同一数列。
项数有限的数列叫做有穷数列。 项数无限的数列叫做无穷数列。
(2) 在通项公式中依次 n = 1, 2, 3, 4, 5,得到数 列{an} 的前5项为
-1,
2,
-3,
4,
-5.
例题2 写出数列的一个通项公式,使它的前4项分别 是下列各数: (1 ) 1 , 3 , 5 , 7 ; (2 )
1 1 1 1 1 2 , 2 3, 3 4, 4 5。
解:(1) an=2n-1; (2)
这告诉我们:无穷(有穷)数列可以看作一个定义 域为自然数集N(N的有限子集)的函数当自变量从 小到大依次取值时对应的一列函数值。
二、数列的三种表示方法 ⑴一般表示法 a1 , a2 , a3 , … an , …
其中 an 表示数列的第n项。有时我们把上 面的数列简记为{an}. 例如:把数列
2,4,6,8,10, … ① 4,5,6,7, 8 , … ② 分别简记为 {2n} {n+3}
如图表示堆放的钢管,共堆放了6层。自上而下各 层的钢管数排列成一列数:
5,6,7,8,9,10
自然数 1,2,3,4,5, …的倒数排列成一列数:
1
1
1
1
1 ,2 , 3 ,4, 5, …
-1的1次幂,2次幂,3次幂,4次幂,…排列成一 列数:
-1 ,1,-1,1,-1,1,…
一、定义
像前面的例子中,按一定次序排列的一列数 叫做数列。数列中的每一个数叫做这个数列的项, 各项依次叫做这个数列的第一项(或首项),第 二项,…,第n项, …。 问:下面二列数是否为同一数列?
1,2,3,4,5 5,4,3,2,1
结论:因其排列次序不同,故不是同一数列。
项数有限的数列叫做有穷数列。 项数无限的数列叫做无穷数列。
(2) 在通项公式中依次 n = 1, 2, 3, 4, 5,得到数 列{an} 的前5项为
-1,
2,
-3,
4,
-5.
例题2 写出数列的一个通项公式,使它的前4项分别 是下列各数: (1 ) 1 , 3 , 5 , 7 ; (2 )
1 1 1 1 1 2 , 2 3, 3 4, 4 5。
解:(1) an=2n-1; (2)
这告诉我们:无穷(有穷)数列可以看作一个定义 域为自然数集N(N的有限子集)的函数当自变量从 小到大依次取值时对应的一列函数值。
二、数列的三种表示方法 ⑴一般表示法 a1 , a2 , a3 , … an , …
其中 an 表示数列的第n项。有时我们把上 面的数列简记为{an}. 例如:把数列
2,4,6,8,10, … ① 4,5,6,7, 8 , … ② 分别简记为 {2n} {n+3}
新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法(一)

1 1 1 (1) 1, , , ; 2 3 4 ( 2) 2, 0, 2, 0 .
(1)
( 2)
28
练习:
根据下面数列的前几项的值,写出数列 的一个通项公式:
(1) 3, 5, 7, 9, 11, ; 2 4 6 8 10 ( 2) , , , , , ; 3 15 35 63 99 ( 3) 0, 1, 0, 1, 0, 1,; ( 4) 1, 3, 3, 5, 5, 7, 7, 9, 9; ( 5) 2, 6, 18, 54, 162, .
11
数列及其有关概念:
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同一 个数列吗?与“1, 3, 2, 4, 5”呢? ——数列的有序性 (2) 数列中的数可以重复吗? (3) 数列与集合有什么区别?
12
数列及其有关概念:
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同一 个数列吗?与“1, 3, 2, 4, 5”呢? ——数列的有序性 (2) 数列中的数可以重复吗? (3) 数列与集合有什么区别? 集合讲究:无序性、互异性、确定性, 数列讲究:有序性、可重复性、确定性.
29
讲解范例:
例2.写出数列
2 3 4 5 1, , , , , 4 7 10 13
的一个通项公式,并判断它的增减性.
30
讲解范例:
例2.写出数列
2 3 4 5 1, , , , , 4 7 10 13
的一个通项公式,并判断它的增减性.
思考:
是不是所有的数列都存在通项公式? 根据数列的前几项写出的通项公式是唯 一的吗?
5
复习引入
人教A版数学必修五数列的概念与简单表示法经典全文课件

数列的图象表示4
(1)数列:1,-1,1,-1,1,-1,1,…
●
●
●
●
●
●
●
●
●
●
这样的数列称为摆动数列
从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列
数列的图象表示4(1)数列:1,-1,1,-1,1,-1,1
研究项 与它的位置序号n之间的关系
例如,数列1,2,3,4,5,6,…
27 ,
…,
?
263 .
好啊!
国王要给多少麦粒?
1+2+22+…+263
1,2,22 ,23 , 24 , 25 ,26 ,27 ,
国王想:这能要多少斤呢?最多几百斤吧。小意思!就对管粮食的大臣说:“你去拿几麻袋的麦子赏给他吧。”
管粮食的大臣计算了一下,忽然大惊失色,忙向国王报告道:“照这样的计算,我们全国所有的粮食都给他,还差得远呢!”说完把计算题列给国王看—— 18,446,744,073,709,551,615(颗麦粒) 一立方米麦粒大约有1500万粒,那么照这样计算,得给那位大臣12000亿立方米,这些麦子比全世界2000年生产的麦子的总和还要多。 国王脸色铁青,忙问管粮食的大臣说:“那怎么办呢?要是给他吧,我将永远欠他的债;要是不给他吧,我不就成了说话不算数的小人了吗?请你给想想办法吧。”管熌的大臣想了想说:“请您下令打开粮仓,然后请献棋的大臣自己一粒一粒地数出那些麦粒就行了。”“那么要数多长时间呢?”管粮食的大臣停了一下说:“假设每秒钟能数两粒麦子的话,每天他数上12小时,是43200秒,数上10年才能数出20立方米,要数完那个数目将需要2900亿年呢。他能活多少年呢?再说枯燥的生活能折磨人,他这样下去岂不要短寿?因此我想,他的本意并不是想要得到那些不可能得到的麦粒,只是试试有没有比他更聪明的人罢了。”
(1)数列:1,-1,1,-1,1,-1,1,…
●
●
●
●
●
●
●
●
●
●
这样的数列称为摆动数列
从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列
数列的图象表示4(1)数列:1,-1,1,-1,1,-1,1
研究项 与它的位置序号n之间的关系
例如,数列1,2,3,4,5,6,…
27 ,
…,
?
263 .
好啊!
国王要给多少麦粒?
1+2+22+…+263
1,2,22 ,23 , 24 , 25 ,26 ,27 ,
国王想:这能要多少斤呢?最多几百斤吧。小意思!就对管粮食的大臣说:“你去拿几麻袋的麦子赏给他吧。”
管粮食的大臣计算了一下,忽然大惊失色,忙向国王报告道:“照这样的计算,我们全国所有的粮食都给他,还差得远呢!”说完把计算题列给国王看—— 18,446,744,073,709,551,615(颗麦粒) 一立方米麦粒大约有1500万粒,那么照这样计算,得给那位大臣12000亿立方米,这些麦子比全世界2000年生产的麦子的总和还要多。 国王脸色铁青,忙问管粮食的大臣说:“那怎么办呢?要是给他吧,我将永远欠他的债;要是不给他吧,我不就成了说话不算数的小人了吗?请你给想想办法吧。”管熌的大臣想了想说:“请您下令打开粮仓,然后请献棋的大臣自己一粒一粒地数出那些麦粒就行了。”“那么要数多长时间呢?”管粮食的大臣停了一下说:“假设每秒钟能数两粒麦子的话,每天他数上12小时,是43200秒,数上10年才能数出20立方米,要数完那个数目将需要2900亿年呢。他能活多少年呢?再说枯燥的生活能折磨人,他这样下去岂不要短寿?因此我想,他的本意并不是想要得到那些不可能得到的麦粒,只是试试有没有比他更聪明的人罢了。”
人教A版数学必修五2.1数列的概念与简单表示法好课件(优质课)

球员
梅西
戈麦斯
C罗 本泽马 伊布
戈米
进球数
14
12
10
7
5
5
截止到3月24日欧冠半决赛结束 ,以上球员的进球数能否构成 数列?
问题引领2 数列与集合有什么区分?
辨析数列(1的) “概1, 念2, :3, 4, 5”与“5, 4, 3, 2, 1”是同 一
个数列吗?与“1, 3, 2, 4, 5”呢? ——数列的有序性 (2) 数列中的数可以重复吗?
函数解析式 an f (n) 就是数列的通项公式,
问题引领5 你能由数列的前几项写出数列的通项公式吗? 例1:写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
根据数列的前若干项写 出的通项公式的情势唯 一吗?请举例说明。
注意:①一些数列的通项公式不是唯一的
②不是每一个数列都能写出它的通项公式
1,2,22,23, 263
❖三角形数:1,3,6,10,··· ❖正方形数:1,4,9,16,···
❖斐波那契数: 1,1,2,3, 5, 8,13
❖-1的1次幂,2次幂,3次幂,……排列成一列数:
1,1, 1,1
❖无穷多个1排列成的一列数:
1, 1, 1, 1,
问题引领1 这些数有什么共同特点?
0 1 2 3 4 5 6 7 8 9 10
9
•
8
7
6
5
4
•
3 2 1•
0 1234
-1
an n 2
问题引领8
由此你对数列有什么新的认识?
数列用图象表示时的特点——一群孤立的点 数列是定义域为正整数集或是它的有限子集 {1,2,3,……n }的函数
人教A版高中数学必修五课件2.1第1课时数列的概念与简单表示法.pptx

高中数学课件
(鼎尚图文*****整理制作)
第二章数列
2.1数列的概念与简单表示法
第1课时数列的概念与简单表示法
1.通过实例,了解数列的概念和简单表示法;(重点) 2.了解数列是一种特殊的函数,体会数列是反映自然规 律的数学模型.
1.“一尺之棰,日取其半,万世不竭.”的含义是什么?
2.三角形数
1
3
6
10
3.正方形数
1
4
9
16
数列的概念
这些数有什么共同特点? (2)三角形数:1,3,6,10,… (3)正方形数:1,4,9,16,… (4)1,2,3,4,…1的.都倒是数一排列列数成;的2一.都列有数一定的顺序 (5)无穷多个1排列成的一列数:1,1,1,1,…
1.数列的概念: 按照一定顺序排列的一列数称为数列.
(4)目前通用的人民币面额按从大到小的顺序构成的数 列(单位:元) 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01.
(5)-1的1次幂,2次幂,3次幂,4次幂……构成的数 列-1,1,-1,1,….
解:递增数列有:(1)、(2)、(6)中的不足近似值 构成的数列; 递减数列有:(4)、(6)中的过剩近似值构成的数列; 常数列有:(3); 摆动数列有:(5). 思考:上面数列中哪些是无穷数列,哪些是有穷数列? 有穷数列有:(2)、(4); 无穷数列有:(1)、(3)、(5)、(6).
-
B A
1.数列及其基本概念,数列的分类; 2.数列与函数的关系:
以信接人,天下信之;不以信接人,妻子 疑之。——畅泉
中吗?
an
64
32
16 8 4 2
O1234567
(鼎尚图文*****整理制作)
第二章数列
2.1数列的概念与简单表示法
第1课时数列的概念与简单表示法
1.通过实例,了解数列的概念和简单表示法;(重点) 2.了解数列是一种特殊的函数,体会数列是反映自然规 律的数学模型.
1.“一尺之棰,日取其半,万世不竭.”的含义是什么?
2.三角形数
1
3
6
10
3.正方形数
1
4
9
16
数列的概念
这些数有什么共同特点? (2)三角形数:1,3,6,10,… (3)正方形数:1,4,9,16,… (4)1,2,3,4,…1的.都倒是数一排列列数成;的2一.都列有数一定的顺序 (5)无穷多个1排列成的一列数:1,1,1,1,…
1.数列的概念: 按照一定顺序排列的一列数称为数列.
(4)目前通用的人民币面额按从大到小的顺序构成的数 列(单位:元) 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01.
(5)-1的1次幂,2次幂,3次幂,4次幂……构成的数 列-1,1,-1,1,….
解:递增数列有:(1)、(2)、(6)中的不足近似值 构成的数列; 递减数列有:(4)、(6)中的过剩近似值构成的数列; 常数列有:(3); 摆动数列有:(5). 思考:上面数列中哪些是无穷数列,哪些是有穷数列? 有穷数列有:(2)、(4); 无穷数列有:(1)、(3)、(5)、(6).
-
B A
1.数列及其基本概念,数列的分类; 2.数列与函数的关系:
以信接人,天下信之;不以信接人,妻子 疑之。——畅泉
中吗?
an
64
32
16 8 4 2
O1234567
2.1 数列的概念与简单表示 课件(35张PPT)高中数学必修5(人教版A版)

斐波那契数列
斐波那契数列(又译作“斐波拉契数列”或 “斐波那切数列”)是一个非常美丽、和谐的数列, 它的形状可以用排成螺旋状的一系列正方形来说明 (如上图),起始的正方形(图中用灰色表示)的边 长为1,在它左边的那个正方形的边长也是1 ,在这 两个正方形的上方再放一个正方形,其边长为2,以 后顺次加上边长为3、5、8、13、21……等等的正方 形.这些数字每一个都等于前面两个数之和,它们正 好构成了斐波那契数列.
数列可以看成以正整数集N*(或它的有限子集{1, 2,,n})为定义域的函数an=f(n),当自变量按照从 小到大的顺序依次取值时,所对应的一列函数值.
对于函数y=f(x),如果f(i)(i=1,2,3,,n, ) 有意义,那么我们可以得到一个数列 f(1),f(2),f(3),f(n), .
{an }
或:a1,a2,a3,
问:下面二个列数是否为同一数列? 1,2,3,4,5 2,1,3,4,5 结论:因其排列次序不同,故不是同一数列.
1. 项数有限的数列叫做有穷数列. 2. 项数无限的数列叫做无穷数列.
例如 数列 (1)3,5, 7, 9,… (2)2,8,13,27,40 (3)1,1, 1, 1,… (4)24,19,17,8,5 其中:(2)(4)是有穷数列
§2.1数列的概念与简单表示法
5. 正方形的石子数
1
4
9
16
25
一 尺 之 棰 日 取 其 半 万 世 不 竭
, , , , , ,…
引 用 过 一 句 话
庄 周 著 的 《 庄 子 天 下 篇 》
战 国 时 代 哲 学 家
1
1 2
1 4
1 8
1 16
1 32