高中数学教师资格证面试真题版

合集下载

高中数学教资面试题库

高中数学教资面试题库

1、在立体几何中,一个正方体的对角线与其一条棱的夹角为:A. 30°B. 45°C. 60°D. 90°(答案)B2、已知集合A = {x | x是小于8的正整数},B = {x | x是3的倍数},则A ∩ B =:A. {3, 6}B. {1, 2, 3}C. {3, 6, 9}D. {2, 4, 6}(答案)A3、设等差数列的前n项和为Sn,若a1 = 2,a4 = 8,则S6 =:A. 15B. 30C. 45D. 60(答案)C4、下列哪个选项是充分不必要条件?A. x > 2 是 x > 1 的充分不必要条件B. x = 2 是 x2 = 4 的充分不必要条件C. x < -1 是 x2 > 1 的充分必要条件D. x = 0 是 x2 = 0 的充要条件(答案)A5、在复数域中,若z = 1 + i(i为虚数单位),则z2 =:A. 0B. 2C. 2iD. 2 + 2i(答案)B(注意:实际计算中z2 = (1 + i)2 = 1 + 2i + i2 = 1 + 2i - 1 = 2i的虚部不为0,但选项中只有B接近,考虑到可能是题目简化或选项设置问题,故选B作为最接近的答案。

严格来说,此题选项设置有误。

)6、若直线l经过点A(1,2)且斜率为-1,则直线l的方程为:A. x + y - 3 = 0B. x - y + 1 = 0C. x - y - 3 = 0D. 2x + y - 4 = 0(答案)A7、设随机变量X服从正态分布N(μ, σ2),若P(X < μ - σ) = 0.15,则P(μ - σ < X < μ + σ) =:A. 0.3B. 0.5C. 0.7D. 0.85(答案)C(正态分布性质:P(μ - σ < X < μ + σ) = 1 - 2P(X < μ - σ))8、在三角形ABC中,若sinA : sinB : sinC = 3 : 4 : 5,则cosC =:A. -1/2B. 0C. 1/2D. √3/2(答案)B(由正弦定理知a:b=3:4:5,为直角三角形,C为直角)。

教师资格证(高中数学)面试真题

教师资格证(高中数学)面试真题

高中数学教师资格证面试真题——《奇函数》教师资格证最后一环节就是面试,面试采取抽签的方式,抽取题目后进行准备然后试讲。

以下是某同学抽取的题目《奇函数》,包括抽取题目,教案准备,以及试讲环节,答辩环节题目。

无论大家抽取的题目是什么,只要全套思路按照下面的描述来,面试基本上就没问题啦,祝大家好运!考试目标:高中面试科目:高中数学题目名称:《奇函数》详情:1、题目:《奇函数》2、内容观察函数()f x x=和1()f xx=的图像(图1.3-9),并完成下面的两个函数值对应表,你能发现这两个函数有什么共同特征吗?我们看到,两个函数的图像都关于原点对称,函数图像的这个特征,反映在函数解析式上就是:当自变量x取一对相反数时,相应的函数值()f x也是一对相反数。

例如,对于函数()f x x=有:(3)3(3);(2)2(2);(1)1(1).f f f f f f -=-=--=-=--=-=-实际上,对于函数()f x x =定义域R 内任意一个x ,都有()().f x x f x -=-=- 这时我们称函数()f x x =为奇函数。

一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 就叫做奇函数。

3、基本要求:(1)能利用函数图像探究出奇函数的特点;(2)教学中注意师生间的交流互动,有适当的提问环节;(3)请在10分钟内完成试讲内容。

简案:一、课题:《奇函数》二、教学目标1、知识与能力①理解奇函数概念。

②知道奇函数的定义域关于原点对称,并熟练利用定义法判断一个函数为奇函数。

2、过程与方法①通过复习回顾偶函数引入奇函数的定义,培养学生温故而知新、举一反三的能力。

②通过观察图像、交流判断,学习奇函数图像的特征,培养学生类比、观察、归纳、思考与创新能力,体会数学由特殊到一般、具体到抽象的数学思维方法,并从中感受数形结合的巨大魅力。

3、情感态度价值观通过本节课的学习,激发学生学习的信心与参与热情,培养良好的数学素养与学习习惯。

2024年教师资格考试高级中学面试数学自测试题及答案指导

2024年教师资格考试高级中学面试数学自测试题及答案指导

2024年教师资格考试高级中学数学面试自测试题及答案指导一、结构化面试题(10题)第一题题目:请结合高中数学课程特点,谈谈你对高中数学教学目标的认识。

答案:高中数学教学目标主要包括以下几个方面:1.知识与技能:帮助学生掌握高中数学的基本概念、原理、方法,提高学生运用数学知识分析和解决问题的能力。

具体包括以下几个方面:•基础知识:如函数、几何、代数等基本概念和性质;•数学工具:如坐标系、向量、不等式等;•数学方法:如归纳、演绎、类比等。

2.过程与方法:引导学生通过探究、发现、实践等方式,培养自主学习、合作交流、创新思维等能力。

具体包括:•探究性学习:鼓励学生自主探究问题,培养学生的探究精神和创新意识;•合作学习:通过小组讨论、合作完成任务,提高学生的沟通能力和团队协作能力;•实践操作:通过实际操作,让学生亲身体验数学知识的应用,提高学生的实践能力。

3.情感态度与价值观:培养学生对数学的热爱,提高学生的审美情趣,树立科学的世界观、人生观和价值观。

具体包括:•热爱数学:激发学生对数学的兴趣,培养学生对数学的热爱和追求;•审美情趣:通过数学美的欣赏,提高学生的审美情趣;•科学精神:培养学生严谨、求实的科学态度,树立科学的世界观、人生观和价值观。

解析:1.知识与技能是高中数学教学的基础,也是教学目标的核心。

教师应注重引导学生掌握基本概念、原理、方法,提高学生的数学素养。

2.过程与方法强调的是学生的主体地位,通过探究、发现、实践等方式,培养学生的自主学习、合作交流、创新思维等能力,为学生的终身发展奠定基础。

3.情感态度与价值观是高中数学教学的重要组成部分,通过教学活动,培养学生的数学兴趣、审美情趣和科学精神,提高学生的综合素质。

总之,高中数学教学目标应全面、系统,注重学生的全面发展,为学生的未来学习和生活奠定坚实基础。

第二题题目:请结合实际教学案例,谈谈你对“问题解决”在数学教学中的重要性以及如何在高中数学教学中培养学生的数学问题解决能力。

高中数学教师资格考试面试试题及解答参考

高中数学教师资格考试面试试题及解答参考

教师资格考试高中数学面试自测试题(答案在后面)一、结构化面试题(10题)第一题【题目】假设你是考生A,作为高中数学教师,应该如何设计一节关于函数性质的课时,以便让学生在课堂上充分参与,并能通过这节课掌握函数的性质和图像变换?第二题题目:请你谈谈如何针对高中数学课堂中的难点进行教学设计,以帮助学生克服学习困难。

第三题题目:在高中数学教学中,如何帮助学生克服对数学的畏难情绪,激发他们对数学的兴趣?请具体阐述你的方法。

第四题题目:在高中数学教学中,如何引导学生进行探索性学习,提高学生的创新能力?第五题题目:请你谈谈如何根据学生的认知特点和学科特点,设计一堂高中数学概念课的教学活动。

第六题题目:在当前高中数学的教学中,如何有效激发学生对数学的兴趣和学习动力?第七题请结合高中数学教学实际,谈谈如何设计一节数学复习课,以帮助学生巩固和提升barkeit(数学能力)。

第八题题目:请谈谈你对高中数学课程标准中“数学核心素养”的理解,并结合实际教学,举例说明如何在高中数学教学中培养学生的数学核心素养。

第九题题目请谈谈你对学生在数学学习过程中遇到的困难是如何处理的,以及你在教学中如何培养学生的数学思维能力。

第十题考生请就以下情景进行回答:假如你是某高中数学教师,正在教授一堂关于“圆锥曲线”的课时。

课中,你注意到有一个学生一直保持沉默,似乎对学习内容不感兴趣,而且成绩也有所下滑。

在课后的辅导时间,学生向你表达了困惑和挫败感,原因是由于家庭原因,他最近情绪低落,影响了学习状态。

请结合教育学和心理学原理,分析这位学生的心理状态,并说明你作为教师将如何采取措施帮助这位学生恢复学习兴趣和信心。

二、教案设计题(3题)第一题教案设计题题目:请设计一节高中数学必修课程《函数的导数及其应用》的教案。

第二题题目:请设计一份关于“导数与函数的单调性”知识点的教学方案。

年龄层次:高中,年级:高二,授课时长:1课时。

第三题题目:请设计一节高中数学课程,课题为《函数的导数》,针对高中一年级学生。

高中数学教资面试考试真题

高中数学教资面试考试真题

高中数学教资面试考试真题一、函数的单调性。

真题:请设计一个教学片段,讲解函数单调性的概念。

解析:1. 导入。

- 展示气温变化图(可以是一天内气温随时间的变化图像),提问学生从图像中能观察到什么规律。

比如气温在某些时间段内是上升的,某些时间段内是下降的。

2. 概念讲解。

- 给出函数y = x^2的图像,在图像上取两个点A(x_1,y_1)和B(x_2,y_2),且x_1。

- 当x∈(-∞,0)时,计算y_1-y_2=x_1^2-x_2^2=(x_1 + x_2)(x_1-x_2),因为x_1,所以x_1+x_2<0,x_1-x_2<0,则y_1-y_2>0,即y_1>y_2,说明在(-∞,0)上,随着x的增大y减小。

- 当x∈(0,+∞)时,同样计算y_1-y_2,此时若x_1,y_1-y_2<0,即y_1,说明在(0,+∞)上,随着x的增大y增大。

- 引出函数单调性的概念:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

3. 巩固练习。

- 给出函数y=sin x,x∈[-(π)/(2),(π)/(2)],让学生判断函数的单调性,并说明理由。

4. 课堂小结。

- 回顾函数单调性的概念,强调判断函数单调性的关键是比较函数值的大小关系。

二、等差数列的通项公式。

真题:如何引导学生推导等差数列的通项公式?解析:1. 复习旧知。

- 回顾等差数列的定义,即一个数列从第二项起,每一项与它的前一项的差等于同一个常数d。

- 写出一个简单的等差数列,如1,3,5,7,·s,让学生说出公差d = 2。

2. 推导过程。

- 设等差数列{a_n}的首项为a_1,公差为d。

- 根据等差数列的定义有:a_2=a_1+d,a_3=a_2+d=(a_1+d)+d=a_1+2d,a_4=a_3+d=(a_1+2d)+d=a_1+3d。

下半年教师资格证面试精选真题高中数学

下半年教师资格证面试精选真题高中数学

高中数学《函数的单调性与导数》一、考题回顾1.题目:函数的单调性与导数2 . 内容;观察下面一些函数的图象(图1.3-2),探讨函数的单调性与其导函数正负的关系Y4ymX 工(1) y=r黑O(3) Y y=尼0 1(2) y. y= 工(4)如图1 . 3- 3,导数f(z )表示函数r )在点(%,(x))处的切线的斜奉,在工=1 处,(r)>0,切线是“左下右上”式的。

这时,函数fCr)在r,附近单调递增;在 r=1处,/(x)<0,切线是“左上右下”式的,这时,函数(r)在ri 附近单调通减.@加果在某个区 间内怪有了(x)=6, 那么函数F(z)有什么 特性?图1-3-3一般地,函数的单调性与其导函数的正负有如下关系; 在某个区间(a ,b )内,如果了(r )>0,那么函数 y=f(r)在这个区间内单调递增;如果f(x)<0,那么函数 y=/(r)在这个区间内单调递减0. 3.基本要求:(1)有适当的板书设计; (2)有讨论、提问环节;(3)讲清楚函数的单调性与导数的关系答推题目1怎样利用导数求函数的单调区间,举例说明。

【专业知识类】2.在本节课的教学过程中,你是如何设计探究函数单调性与导数的关系?【教学实施类】offcn二、考题解析高中数学《函数的单调性与导数》主要教学过程及板书设计教学过程Yy=F(0(后 1)C.fu山7O/ 1Y(一)复习导入问题提出:判断y=x²的单调性,如何进行?(分别用图像法,定义法完成)那么如何判断f(x)= sin x-x,x∈(0,π);的单调性呢?引导学生图像法,定义法尝试发觉有困难,引出课题。

)(二)新知探究探究任务一:函数单调性与其导数的关系:观察课件上图(1)~图(4)问题:通过观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?学生讨论汇报;形成初步结论,函数的单调性与导数的关系:在某个区间(a,b)内,如果f(x)>0, 那么函数v=f(x)在这个区间内单调递增;如果f(x)<0,那么函数y=f(x)在这个区间内单调递减.(三)应用新知判断下列函数的单调性,并求出单调区间:(1)f(x)=sinx-x,x ∈(0,n):(2)f(x)=2x³+3x2-24x+1问:你对利用导数去研究函数的单调性有什么看法?你能总结出利用导数求单调区间的步骤吗?(简单易行)“求解函数y=f(x)单调区间的步骤;(1)确定函数y=f(x)的定义域;(2)求导数y=f(x);(3)解不等式f(x)>0,解集在定义域内的部分为增区间;(4)解不等式f(x)<0,解集在定义域内的部分为减区间.(四)小结作业小结:通过本节课的学习你学到了什么?函数的单调性与导数之间存在什么关系?作业:课件上的练习题1,2. ofFcn板书设计函数的单调性与导数函数的单调性与导数的关系:在某个区间(a,b)内,如果f(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f(x)<0,那么函数y=f(x)在这个区间内单调递减.offcn答辩题目解析1.怎样利用导数求函数的单调区间,举例说明。

高中数学教师资格证面试题目

高中数学教师资格证面试题目

高中数学教师资格证面试题目
1. 请简要介绍一下您对高中数学教学的理解和定位。

2. 如何帮助学生树立正确的数学学习态度和养成良好的数学学习习惯?
3. 在高中数学教学中,如何提高学生的数学思维能力?
4. 如何培养学生的解决问题的能力和创新思维?
5. 如何针对不同学生的学习特点和水平进行个性化教学?
6. 如何设计一个既能培养学生的基本数学知识和技能,又能开发学生的数学思维和创新能力的教学活动?
7. 对于辅助教学工具的利用,您有何见解和经验?
8. 如何评估和监测学生的数学学习情况,并及时给予帮助和指导?
9. 如何处理学生的学习困难和情绪问题?
10. 您在教学生活中有过哪些特别有意义和成功的案例或经验分享?
请注意,这些问题仅供参考,具体的面试题目可能会因不同地区、学校或职位而有所不同。

同时,提供的答案也需要根据自身的教学理念和经验进行回答。

高中数学教师资格证面试真题

高中数学教师资格证面试真题

高中数学教师资格证面试真题高中数学《圆的一般方程》一、考题回顾1.题目:阅的一股方程2. 内容方程r+y⁷=2r+4y+1=0表示什么图形?方程r+y-2r-4y+6=0表示什么图形?对方程r+y-2r+4y+1=0配方,可得(x-1)÷+(y+2)=4,此方程表示以(1,-2)为圆心,2为半径长的圆.同样,对方程r+y-2r-4y+6=0配方,得(z-1)²+(y-2)1=- 1,由于不存在点的坐标(x,y)满足这个方程,所以这个方程不表示任何图形,方程r+y+Dx+Ey+F=0在什么条件下表示面?我们来研究方程z²+y+Dr+Ey+F=9,(2)将方程(2)的左边配方。

并把常数项移到右边,得①(I)当D+E-4F>0时,比较方程①和圆的标准方程。

可以看出方程(2)表示以为圆心,为半径长的圆:(Ⅱ)当D+E'-4F=0时,方程(2)只有实数解,—-,它表示一个(Ⅲ)当D+E-4F<0时,方程(2)没有实数解,它不表示任何图形.因此,当D+E-4F>-0时,方程(2)表示一个腮,方程《2)叫做圆的一毅方程(zeneral couation of cirele).3.基本要求:(1)体现出重难点;(2)试讲十分钟;(3)合理设计板书;(4)学生能探究出方程在什么条件下表示厕。

答辩题目二、考题解析为),半径答辩题目解析1.方程x²+y¹+Dx+Ey+F=0在什么条件表示一个圆?【数学专业知识】【参考答案】当D²+E²4F>0时,x²+y²+Dx+Ey+F=0,表示以圆心为〔- ),半径为2.本节课的教学目标是什么?【教学设计】【参考答案】知识与技能:掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程,从而求出园心的坐标和半径;过程与方法:通过分析、归纳等数学活动,发现圆的一般方程的特点,同时渗透数形结合的思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学教师资格证面试真题版
本节课主要介绍了终边相同的角的概念和相关知识,通过引导学生观察和讨论,让学生理解终边相同的角之间的数量关系,并掌握用集合的方式来表示这些角。

这一知识点在高中数学中属于三角函数的基础内容,对于学生后续研究三角函数和解三角形等知识有很重要的作用和地位。

2.如何用集合的方式表示所有与α角终边相同的角?
参考答案】所有与α角终边相同的角可以构成一个集合
S={β|β=k·360°+α,k∈Z}。

即任一与角α终边相同的角,都可
以表示成α与整数个周角的和。

需要注意的是,k∈Z表示k
为整数,终边相同的角不一定相等,它们相差360°的整数倍。

本课是数学必修XXX的第一节三角函数,它是基本初等
函数,用于描述周期现象的重要数学模型。

角的概念的推广是初中相关知识的自然延续之一,为进一步研究角的和、差、倍、半关系提供了条件,也为今后研究解析几何、复数等相关知识提供有利的工具。

因此,学生正确理解和掌握角的概念的推广尤为重要。

在本节课的教学过程中,学生的活动过程决定着课堂教学的成败。

教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地归纳出终边相同的角的一般形式。

也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义。

如能借助信息技术,则
可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会旋转量和方向对角形成的影响,更好地了解任意角的深刻涵义。

在高中数学《函数零点判定定理》中,我们研究了二分法求零点的理论依据和前提。

通过不断地把连续函数f(x)的零点
所在的区间一分为二,使区间的端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

因此,函数零点判定定理是二分法求零点的理论依据和前提。

在高中数学《奇函数的性质》中,我们研究了奇函数的含义和性质,并能够利用奇函数的性质解决问题。

教学中应注意师生间的交流互动,有适当的提问环节,突出学生的研究主体地。

同时,要求配合教学容有适当的板书设计。

在导入新课时,我们可以回顾偶函数的定义及性质,引导学生理解奇函数的含义,并能够通过奇函数的性质解决问题。

除了轴对称,我们还可以研究中心对称的对称性质。

在本节课的教学过程中,我设计了以下几个环节:
首先,通过回顾直线与直线、直线与平面的位置关系,引出平面与平面的位置关系的课题。

这样可以让学生对于之前学过的知识有所联系,也为后续的研究做好铺垫。

接着,我通过生活实例的引入,让学生更好地理解平面与平面的位置关系,例如让学生想象一下两张桌子的位置关系等等。

在教学过程中,我注重师生间的交流互动,有适当的提问环节,突出学生的研究主体地位。

这样可以让学生更加积极地参与到课堂中来,提高研究兴趣和信心。

最后,我设计了课堂练和小结作业,让学生巩固所学知识,并引导学生回顾平面与平面的位置关系,加深对于知识的理解和记忆。

总之,我通过多种教学方法和环节的设计,让学生更好地探究平面与平面的位置关系,提高了他们的分析问题和解决问题的能力。

首先,本课设置了两个活动,旨在让学生通过移动和翻转两本书,观察它们的位置关系,以及通过观察长方体,思考围成长方体的六个面两两之间的位置关系,来探究平面与平面的位置关系。

师生共同总结出平面与平面的位置关系,并说明如何用图形表示平面与平面的位置关系。

接着,让学生自己尝试用图形表示,最后设置小组讨论,根据平面与平面的位置关系探究直线与直线的位置关系。

整个教学过程采用学生观察,师生总结,最后设置问题,将知识形成体系的方式来探究平面与平面的位置关系。

在本课中,我们将研究余弦定理的证明过程。

通过情景导入,引发学生的认知冲入,从而引出课题。

在教学过程中,我们要注意师生间的交流互动,有适当的提问环节,突出学生的研究主体地位。

同时,要求配合教学容有适当的板书设计。

最后,我们将通过小结作业来检验学生对本课的掌握程度。

在备好一节课时,我们需要从以下几个方面进行准备。

首先,要进行教材分析,以科学把握教学容,加深对教育理论的理解。

其次,要充分考虑所面对的学生特点,以促进学生的主
动发展。

最后,要注意课堂环节的设计,确保教学过程顺利进行。

现代教学理论认为,教学过程中学生是研究的主体,教师是研究的组织者和引导者。

因此,在教学活动中,必须以强调学生的主动性和积极性为出发点。

在高中数学的教学中,我们需要注重以下几点:
1.讲解等比数列的概念,帮助学生理解等比数列的基本概念和性质。

2.在教学中,要注意师生间的交流互动,适当设置提问环节,促进学生的思考和参与。

3.在板书设计方面,要根据教学内容合理设计板书,让学生更好地理解和掌握知识点。

4.试讲时间为10分钟,要在规定时间内完成教学内容,让学生有足够的时间消化和理解所学内容。

在高中数学的教学中,我们还需要注重以下两个知识点:
1.几何概型的研究,要体现出重难点,注重让学生理解几何概型的基本概念和性质。

2.线面垂直的判定定理的研究,要让学生能够理解和掌握线面垂直的判定定理,注重师生间的交流互动和适当的提问环节,配合教学容有适当的板书设计。

备教学方法:在备课过程中,要充分了解学生的研究情况和掌握程度,根据学生的实际情况和能力水平,合理设计教学内容和教学方法,注重提高学生的研究兴趣和参与度,让学生在积极的研究氛围中更好地掌握知识点。

同时,要注重教学效果的评估和反馈,及时发现和解决教学中的问题,不断提高教学质量和效果。

相关文档
最新文档