路程字母表示的公式

合集下载

行程问题精讲

行程问题精讲

基本慨念:行程问题是研究物体运动的,它研究的是物体运动的速度、时间、行程三者的关系。

一、基本公式:路程用字母s表示;速度用字母v表示;时间用字母t表示。

有如下公式:关键问题,确定行程过程中路程、速度、时间。

(一)相遇问题基本公式相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长(二)相离问题两个运动物体由于背向运动而相离,就是相离问题。

解答相离问题的关键是求出两个运动物体共同结果的距离(速度和时间)基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间(三)追及问题基本公式追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差×追及时间追及问题(环形)快的路程-慢的路程=曲线的周长(四)流水问题基本公式顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2例题应用详解:1. 电子游戏--龟兔对跑:屏幕上有一直线,直线上有A、B、C、D四点。

AD=31厘米,BC=3.2厘米。

兔子和乌龟分别从A、D两点同时出发,相向而行。

兔子每秒跑7.5厘米,乌龟每秒爬1.5厘米。

当兔子跑到C点时,乌龟恰好爬到B点。

AB相距多少厘米?CD相距多少厘米?本题解法有几种,可设未知数,也可不设未知数。

解法一:设AB=X,CD=Y联立方程式:x+y+3.2=31(x+3.2)÷7.5=(y+3.2)÷1.5最后x=25.3 y=2.5解法二:当兔子到达C点时,龟兔共走路程为:AC+BD=AD+BC=31+3.2=34.2龟兔速度和为:7.5+1.5=9则:兔子到达C点是用时t=34.2÷9=3.8秒所以AC距离是:3.8×7.5=28.5厘米AB=AC-BC=28.5-3.2=25.3厘米CD=AD-AC=31-28.5=2.5厘米思考:解法二似乎比解法一复杂,其实对于没学过二元一次方程组的小学阶段学生来说,解法二更适用,而且从不同角度思考数学问题的解法,正是数学的魅力所在。

用字母表示数(公式)

用字母表示数(公式)

用字母表示公式正方形的面积=边长×边长S=a×a=a正方形的周长=边长×4C= 4a长方形的面积=长×宽S=ab长方形的周长=(长+宽)×2 C= (a+b)×2路程=速度×时间S=vt总价=单价×数量C=ax工作总量=工作效率×工作时间C=am用字母表示公式正方形的面积=边长×边长S=a×a=a正方形的周长=边长×4C= 4a长方形的面积=长×宽S=ab长方形的周长=(长+宽)×2 C= (a+b)×2路程=速度×时间S=vt总价=单价×数量C=ax工作总量=工作效率×工作时间C=am用字母表示公式正方形的面积=边长×边长S=a×a=a正方形的周长=边长×4C= 4a长方形的面积=长×宽S=ab长方形的周长=(长+宽)×2 C= (a+b)×2路程=速度×时间S=vt总价=单价×数量C=ax工作总量=工作效率×工作时间C=am用字母表示公式正方形的面积=边长×边长S=a×a=a正方形的周长=边长×4C= 4a长方形的面积=长×宽S=ab长方形的周长=(长+宽)×2 C= (a+b)×2路程=速度×时间S=vt总价=单价×数量C=ax工作总量=工作效率×工作时间C=am。

用字母表示数量关系

用字母表示数量关系
1+30=31 2+30=32 3+30=33 … a+30
地球上能举起的质量/kg
1 2 3 … x
月球上举起的质量/kg
6×1=6 6×2=12 6×3=18 … 6x
(1)已知某一物体运动的路程和时间,怎样
求它的运动速度?用s 和t 分别表示路程 和时间,写出求运动速度v 的公式。
(2)已知某一物体运动的速度和路程,怎样 求它运动的时间?用v 和s 分别表示速度 和路程,写出求运动时间t 的公式。
s=vt
总价=单价×数量
v=s÷ t t=s÷ v
c=ax
a=c÷ x x=c÷ a a=c÷ t t=c÷ a
工作总量=工效×时间
c=at
路程=速度×时间
s=vt
总价=单价×数量
v=s÷ t t=s÷ v
c=ax
a=c÷ x x=c÷ a a=c÷ t t=c÷ a
工作总量=工效×时间
c=at
(4)如果每盒粉笔的价钱是1.32元,请 你从上面写出的公式中选出适当的一个, 来计算买12盒粉笔要用多少钱。
路程=速度×时间 工作总量=工效×时间
s=vt v=s÷ t t=s÷ v
总价=单价×数量 总产量=单产量×数量
4、(1)如果用b表示小麦单位面积产量,
x 表示面积数,s 表示总产量,写出求总
入上面用字母表示的公式计算。 )
路程=速度×时间 工作总量=工效×时间
s=vt
v=s÷ t t=s÷ v
总价=单价×数量 总产量=单产量×数量
2、用a 表示单价,χ表示数量, 表示
c
总价,写出: (1)已知单价和数量,求总价的公式。 (2)已知总价和数量,求单价的公式。

四年级下册用字母表示数量关系和计算公式(青岛版)

四年级下册用字母表示数量关系和计算公式(青岛版)

S=a· a=a2
名称
路程、速度、时间
总价、单价、数量 长方形周长 长方形面积 正方形周长 正方形面积
关系
路程=
总价= 长方形周长= 长方形面积= 正方形周长= 正方形面积=
字母表示
S=
C= C= S= C= S=
如果面积用s表示,边长用 如果周长用c表示,长用
a表示,宽用b表示则三者
之间的关系如何表达?
a表示,宽用b表示则三
者之间的关系如何表达?
a
b
如果用s表示面积,用c表示周长,
a
你能用字母别表示出长方形和正方形的面积和周长吗?
长方形周长:
长方形面积: 正方形周长:
C=2(a+b)
S=ab C=4a
正方形面积:
S=vt
情境数学
正方形的面积如何求? 正方形的周长如何求? 面积=边长×边长 周长=4×边长
如果面积用s表示,边长
用a表示,则三者之间的 关系如何表达?
如果周长用c表示,边长
用a表示,则三者之间的 关系如何表达?
共同探讨
2 a 表示什么意思?
2 a
两个a的乘积
a×2
两个a相加
情境数学
长方形的面积如何求? 长方形的周长如何求? 面积=长×宽 周长=2×(长+宽)
S=a· a=a2
名称
路程、速度、时间 总价、单价、数量 长方形周长
关系
路程=速度×时间 总价=单价×数量 长方形周长=(长+宽) × 2
字母表示
S=vt C=ax C=(a+b) × 2
长方形面积
正方形周长 正方形面积
长方形的面积=长×宽
正方形周长=边长× 4 正方形的面积=边长×边长

小学一年级至六年级数学公式总结大全

小学一年级至六年级数学公式总结大全

小学一年级至六年级数学公式总结大全公式定理是我们学好数学的一大关键,是我们学好数学的一个基础,因此,只有孩子将基础掌握好了,那么,在数学上的一个学习才能好。

下面是小编为大家整理的关于小学一年级至六年级数学公式总结,希望对您有所帮助!1~6年级数学公式1. 单价×数量=总价2. 单产量×数量=总产量3. 速度×时间=路程4. 工效×时间=工作总量5. 加数+加数=和6. 一个加数=和-另一个加数7. 被减数-减数=差8. 减数=被减数-差9. 被减数=减数+差10. 因数×因数=积11. 一个因数=积÷另一个因数12. 被除数÷除数=商13. 除数=被除数÷商14. 被除数=商×除数15. 有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米小学一至六年级数学公式大全一.图形计算公式1.周长公式类型公式字母表示?长方形周长=?(长+宽)×2 (a+b)×2?正方形周长?=边长×4 ?a×4=4a?圆的周长=?直径×π?= 2×π×半径?c=π×d =2×π×r 2,面积公式类型公式字母表示?长方形面积=?长×宽s=a×b?正方形面积=?边长×边长?s=a×a?平行四边形面积=?底×高?s=a×h?梯形面积=(上底+下底)×高÷2 s=(a+b)×h÷2?三角形面积=?底×高÷2 ?s=a×h÷2?长方体表面积?(长×宽+长×高+宽×高)×2S=(a×b+a×h+b×h)×2?正方体表面积?=棱长×棱长×6 s= a×a×6?圆面积=?π×半径的平方? s=πr2?圆柱体侧面积=底面周长×高s=π×直径×高=2×π×半径×高?=c×h=π×d×h=2×π×r×h?圆柱体表面积=侧面积+2×底面积=底面周长×高+2×π×半径的平方=π×直径×高+2×π×半径的平方=2×π×半径×高+2×π×半径的平方=c×h+2πr2=π×d×h+2πr2=2×π×r×h +2πr23.体积公式类型?公式?字母表示?长方形? 长×宽×高?a×b×h?正方体? 棱长×棱长×棱长?a×a×a?圆柱体 ?底面积×高∏r2h圆锥体? 底面积×高÷3π×半径的平方×高÷3? s×h÷3πr2h÷3补充说明:长方体棱长和=(长+宽+高)×4正方体棱长和=棱长×12二.熟记下列正反比例关系:正比例关系:y=kx正方形的周长与边长成正比例关系长方形的周长与(长+宽)成正比例关系圆的周长与直径成正比例关系圆的周长与半径成正比例关系圆的面积与半径的平方成正比例关系2.反比例关系:y=三.常用数量关系:1.路程:路程=速度×时间速度=路程÷时间?时间=路程÷速度2.工作量:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率3.价量:总价=单价×数量 ?单价=总价÷数量数量=总价÷单价4.产量:总产量=单产量×面积? 单产量=总产量÷面积面积=总产量÷单产量5.份数:每份数×份数=总数总数÷份数=每份数总数÷每份数=份数6. ?1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数四.单位换算:1.长度单位:一公里=1千米=1000米?1米=10分米1分米=10厘米?1厘米=10毫米 1米=100厘米 1分米=100毫米2.面积单位:1平方千米=100公顷 1公顷=100公亩 1公亩=100平方米1平方千米=1000000平方米1公顷=10000平方米? 1平方米=100平方分米?1平方分米=100平方厘米? 1平方厘米=100平方毫米3.体积单位:1立方千米=1000000000立方米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升?1升=1000毫升 ?1亩=666.6664.重量单位:1吨=1000千克1千克=1000克 1千克=1公斤 500克=1斤5.时间单位:一世纪=100年一年=四季度? 一年=12月?一年=36天(平年)? ?一年=366天(闰年)平年二月28天闰年二月29天一季度=3个月? ?一个月= 3旬(上、中、下)一个月=30天(小月) ?一个月=31天(大月)一星期=7天一天=24小时? ?一小时=60分?一分=60秒 1小时=3600秒一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月)一年中的小月:四月、六月、九月、十一月(四个月) 6.人民币单位换算1元=10角 1角=10分 1元=100分7.特殊分数值:0.5=50% ? 0.25 = 25%? ? 0.75 = 75%0.2 = 20% 0.4 = 40% 0.6 = 60% 0.8 = 80%0.125=12.5%? 0.375 = 37.5%0.625 = 62.5% 0.875 = 87.5%五.数据运算6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数六.数常用公式1.和差问题的公式(和+差)÷2=大数(和-差)÷2=小数2.和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)3.差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)4.植树问题1?非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2?封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数5.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数6.相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间7.追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间8.流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷29.浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量10.利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)七.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

用含有字母的式子表示数量关系

用含有字母的式子表示数量关系
(1)用式子表示出小亮做几道算术题。 (2)根据这个式子,当a=20时,计算小亮每天做多少道口算题。
(1)小亮的=小明的2倍-3 (2a-3)道
(2)当a=20时, 2a-3
=2×20-3 =37(道) 答:小亮每天做37道口算题。
做专业课件 打造精美课堂
5、根据要求,完成填空
•一本练习本的价钱是0.50元,买x本应付 0.50x 元
做专业课件 打造精美课堂
复习引入 (1)已知长方形的长a,宽是b,求长方形周长C的公式
C = 2(a+b) (2)已知总价c和单价a,求数量x的关系式
x = c÷a
做专业课件 打造精美课堂
探究新知
x 例4、有一大杯果汁一共1200克,倒了3小杯,每小杯果汁是 克,
x 这杯果汁还剩多少克? 当 等于200时,果汁还剩多少克? x x 分析:一小杯果汁 克,那么。3小杯果汁是3 克。还剩就用
4.2a+14 3x-20
做专业课件 打造精美课堂
x 总数减倒出来的,即(1200- 3 )克 x当 =200时,果汁还剩: - x 1200 3 =1200-3×200=600(克)
想一想,式子中的字母可以表示哪些数?
做专业课件 打造精美课正方形要4根小棒, 摆了 个三形和 个正方形,一共要多少根小棒?
x x x 分析:摆了 个三角形,要3 根小棒,摆 个正方形,要4
x
x x + 根小棒,一共就要3
4 根小棒
x x x x 3 + 4 =(3+4) =7
x当 等于8时,一共用了多少根小棒?
x x 3 + 4 =7×8=56
做专业课件 打造精美课堂
练习:用含有字母的式子表示下面的数量关系。

初一数学用字母表示数

初一数学用字母表示数
想一想:如果用x来表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴交流你的做法。
归纳:字母可以表示任何数.用字母表示数可以简明地表达问题中的数量关系,也可以表达数字规律和公式.这样给我们研究问题带来很大方便.
实践练习:
(1)明明步行上学,速度为vm/s;亮亮骑自行车上学,速度是明明的 3倍,则亮亮的速度可以表示为( )m/s.
自主总结
字母可以表示任何数.用字母表示数是初中数学的一个重要特点.用字母表示数时需注意:(1)在同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示;(2)用字母表示实际问题中某一数量时,字母的取值必须使这个问题有意义,并且符合实际;(3)只要是学过的公式、法则,都可以用字母表示;(4)字母“π”一般来说只表示一种量:圆周率;(5)对于用字母表示的数,如果没有特别说明,就应理解为它可以是任何一个数.
5.一个5人的小分队绿化一片土地,m天可以完成,如果用一个8人的小分队绿化这片土地,需要天可以完成。
6.选择连线
a与5的差的3倍 3a-5
a的3倍与5的差 1÷(a+b)
a与b的和的倒数 3(a-5)
a,b的倒数的和 1÷a+1÷b
7.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20…这些等式反映出正整数间的某种规律,设n表示正整数,用关于n的等式表示出来.
A、15%a B、85%a C、115%a D、15%+a
2.有一个两位数,它的十位数字是a,个位数字是b,则这个两位数的大小是( ).
A、a+b B、a×b C、10a+b D、10(a+b)
3.设n为自然数,则奇数为,偶数为,三个连续的自然数分别为。

初一数学用字母表示数

初一数学用字母表示数

用字母表示数知识点总结知识点一 用字母表示数 1. 用字母表示问题中的数量关系方法: (1)找出问题提供条件间的数量关系或规律;(2)用字母列出式子表示上述关系.2. 用字母表示运算律(1)加法交换律:a b b a +=+; (2)加法结合律:)()(c b a c b a ++=++ (3)乘法交换律:ba ab = (4)乘法结合律:)()(c b a c b a ⋅=⋅ (5)乘法分配律:bc ac c b a +=+)( 3. 用字母表示公式(1)生活中的数量关系,例:路程(s )=速度(v )×时间(t ),t v s ⋅= (2)几何图形的面积体积公式. 注意:用字母表示数的要求 (1)省略上的要求:①字母和数,字母和字母相乘时,可不写“× ”号,用“• ”表示,也可以什么符号都不写,直接把数或字母写在一起。

例如, c b a ⨯⨯可写成或. ②字母和1相乘时,可不写1。

例如, a ⨯1就写成.(2)顺序上的要求:①字母和数相乘时,省略乘号,必须把数写在字母的前面。

例如,5a ⨯要写成5a ⋅或,不能写成5a 。

②字母和字母相乘时,习惯上按英文字母顺序写(不是必须这样写)。

例如:x a ⨯ 一般写成 ,3b a ⨯⨯一般写成 . (3)写法上的要求:①相同的字母相乘,要写成乘方的形式。

例如,a a ⨯ 写成 ,x x x ⨯⨯写成,()()a b a b -⨯-写成②带分数与字母相乘,省略乘号后,要将带分数化为假分数。

例如,112a ⨯写成,而不能写成112a 。

(4)单位名称上的要求:用含有字母的代数式表示一个数量时,要在最后写上单位名称,如果代数式是数与字母相乘的形式,不必用括号把代数式括起来;如果代数式有加减关系,要把代数式用括号括起来,再在括号外边写上单位名称。

题型一 用字母表示数的书写规范【例1】下列是数与字母相乘,符合书写规范的是( ) A.a ⨯1B.a ⨯-1C.)1(-⨯aD.a -【例2】某中学七年级(1)班学生李小明从家步行到距离600米的学校上学需15分钟. (1)请你计算出他步行的速度; (2)写出计算速度时所用的公式;(3)这个公式能用来计算汽车、轮船、飞机在某一段行程中的速度吗?你还能用字母表示我们前面学过的哪些公式?【例3】已知一列数:2,5,10,17,…,其中2=1+1,5=4+1,10=9+1,17=16+1,…,用字母表示这列数的规律,并写出这列数的第10个数是多少?【过关练习】1. 下列是分数与与字母相乘,符合书写规范的是( )A.a ⋅23B.a 23C.a 211D.a 23-2. 下列含有字母的式子符合书写规范的是()A.a 1B.a 215C.xy 5.0D.z y x ÷+)(3. 下列含有字母的式子符合书写规范的是( )A.三角形的面积为2abB.高铁的速度为h km /300C.商品的售价为1-m 元D.圆环的面积为222)(cm r R ππ-4. 用字母表示下列量(1)乒乓球比赛分为m 组,每组2人,则共有______________人参加比赛; (2)a 千克大豆m 元,则10千克大豆的价格为______________元; (3)速度由v 千米/时减速2千米/时后是______________千米/时; (4)长方形的长是a m ,宽是bm ,则周长为______________m ; (5)产量由m 千克增长15%,则达到______________千克;(6)正方体的棱长是a cm ,则正方体的体积是______________cm ,表面积是______________cm.5. 下列表述中,不能表示“a 4”的意义的是( ) A.4的a 倍B.4个a 相加C.a 的4倍D.4个a 相乘8. 求阴影部分的面积.(单位:厘米)9. 下面是一个有规律排列的数表第1行,第2行,第3行,第4行……第n行……第1行,,,,,…,,…第2行,,,,,…,,…第3行,,,,,…,,………上面数表中第9行,第7列的数是__________.10. 在偶数x后面的两个奇数分别是()A.x+1,x+2B.x+1,x+3C.x+2,x+4D.x-2,x-411. 如下图中的各个图形是由若干个圆圈组成的形如三角形的图案,每条边(包括两个端点)有n(n>1)个圆圈,每个图案圆圈的总数是s,按此规律推断s与n的关系式是__________.知识点二 代数式的概念 像l+180l,10a +2b ,a+b+c+d4,2a 2等,这些除了含有数字或表示数的字母之外,通常还含有__________(__________),像这样的式子都是__________.一个代数式由__________、__________和__________组成.单独的一个数或一个字母__________代数式. 注意:(1)代数式中除含有数、字母和运算符号外,还可以有__________,因为有时需要用__________指明运算顺序,代数式中也可以含有__________符号.(2)代数式中不含“__________”、“__________”、“__________”、“__________”等符号,含“__________”的是等式,一般我们现在见到的等式或不等式的两边的式子都是代数式,例如s =vt __________代数式,但s 和vt __________代数式.(3)代数式中的字母所表示的数必须使这个代数式有意义,是实际问题的要符合实际意义.题型一 判断代数式【例1】下列各式哪些是代数式?哪些不是代数式?(1)0;(2)a ;(3)π;(4)y =1;(5)a >13;(6)4a +b ;(7)7a 2−b 2;(8)S =πr 2;(9)5(a +b ).【过关练习】1. 下列说法正确的是( ) A.1+a 不是代数式B.0是代数式C.S =πr 2是一个代数式D.单独一个字母a 不是代数式2. 下列各式中是代数式的是( )A.2x 2−y =zB.x >yC.0D.x 2+y 2≥03. 下列各式中,代数式的个数是()①−12x ;②3a 2−5a +1;③0;④S =ab ;⑤5x−2;⑥−2>−3;⑦b . A.2 B.3 C.4 D.54. 下列各式:−x+1,π+3,9>2,x−yx+y ,S=12ab,其中代数式有()A.5个B.4个C.3个D.2个题型二代数式的书写格式(1)代数式中出现的乘号,通常简写作“__________”或者__________,如v×t应写作__________或__________.(2)数字与字母相乘时,数字应写在字母__________,如a×4应写作__________或__________.(3)带分数与字母相乘时,应先____________________再与字母相乘,如a×213应写作__________或__________.(4)数字与数字相乘,一般仍用“__________”.(5)在含有字母的除法里,通常要按照__________的形式书写,__________作__________,__________作__________,“__________”转化为__________,如4÷(a−4)应写成__________.注意:分数线具有“__________”和“__________”的双重作用,所以4a−4中a−4的括号就不要写了. (6)在一些实际问题中,表示某一数量的代数式往往是有单位名称的,如果代数式是积或商的形式,将单位名称写在式子的后面即可.题型一代数式的书写格式【例1】下列各代数式符合代数式书写要求的有几个?是哪几个?(1)123x2y;(2)ab2÷c2;(3)mn;(4)a2−b23;(5)ba53;(6)53a×b.【过关练习】1. 下列代数式中,符合代数式书写要求的是()○1112x2y;○2a∙2;○312(a+b);○4mn;○52(a+b)x.A.1个B.2个C.3个D.4个2. 下列代数式中,符合代数式书写要求的是()A.a−cb B.−112ab2 C.ac2÷d D.x×4知识点二列代数式在解决一些实际问题时,往往需要先把问题中与数量有关的词语用代数式表示出来,这就是列代数式. 总结:列代数式时,可按下列步骤进行:(1)认真审题,将问题中表示数量关系的词语,正确地转化为对应的运算,如多、少、和、差、积、商、扩大、缩小、倍、比、除、增加、减少、除以等,都是常用的表示数量关系的词语,需掌握好它们和运算之间的对应关系.(2)注意题目的语言叙述所直接表述的运算顺序.(3)在比较复杂的问题中,需弄清题目中数量关系的运算顺序,正确使用表明运算顺序的括号,分出层次,逐步列出代数式.(4)列代数式时,应注意书写格式.(5)在同一问题中,不同的数量,必须用不同的字母来表示.题型一代数式的书写【例1】用代数式表示:(1)a与b的平方差;(2)m的2倍与n的1的和;3(3)a,b两数立方的和除以5的商;(4)与2b的和是100的数【例2】a是一个两位数,b是一个一位数,若把b放在a的右边,组成一个三位数是()A.100a+bB.10a+bC.a+bD.ab【例3】苹果的单价为a元/千克,香蕉的单价为b元/千克,买2kg苹果和3kg香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元【过关练习】1. (1) a的平方与b的2倍的差;(2)m与n的和的平方加上它们的积;(3) x的2倍的三分之一与y的一半的差;(4)比a除以b的商的2倍小4的数.2. “x的12与y的和”用代数式表示是()A.12(x+y) B.x+12+y C.x+12y D.12x+y3. 下列说法错误的是()A.x的平方与y的平方的差是x2−y2B.x与y的和除以x所得的商是x+yxC.x减去y的2倍所得的差是x-2yD.x与y的和的平方的2倍是2(x+y)24. 若用2n-1表示一个奇数,则它的下一个奇数可以用代数式表示为()A.2nB.2n+1C.2n+2D.2n+35. 一个两位数,个位上的数字为a,十位上的数字为b,则这个两位数是 .6. 若a表示三位数,现把2放在它的右边,得到一个四位数,则这个四位数是 .7. 一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A.12+10b+aB.1200+10b+aC.112+10b+aD.100(12−a−b)+10b+a8. a是一个三位数,b是一个一位数,把a放在b的右边组成一个四位数,这个四位数是()A.baB.100b+aC.1000b+aD.10b+a9. 有一捆粗细均匀的电线,现要确定它的长度,从中先取出1m长的电线,称出它的质量为a,再称出其余电线的质量为b,则这捆电线的总长度是()A.(ab+1)mB.(ba −1)m C.(ba+1)m D.(b+aa+1)m10. 船在静水中的速度为x千米/时(x>2),水流速度为2千米/时,A,B两地相距y千米,船在A,B间往返一次共需小时.11. 某绿色环保制品厂去年产值为x万元,今年比去年增产20%,今年产值是()A.20%x万元B.x20%万元 C.(1+20%)x万元 D.(1−20%)x万元12. 某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A. (a−10%)(a+15%)万元B. a(1−90%)(1+85%)万元C. a(1−10%)(1+15%)万元D. a(1−10%+15%)万元13. 随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为()A.(a+54b)元 B.(a+45b)元 C.(b+54a)元 D.(b+45a)元14. 火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a,b,c的长方体箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为()A.a+3b+2cB.2a+4b+6cC.4a+10b+4cD.6a+6b+8c15. 下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)−2xB.x(x+3)+6C.3(x+2)+x2D.x2+5x知识点三代数式的意义按运算顺序来读,例如:a+b读作“”,2x−3读作“”,st读作“”,或“”,或读作“”.按运算的结果来读,例如:a+b读作“”,2x−3读作“”,st读作“”.注意:对于以分数形式出现的代数式,无论以分数形式读,还是按除法形式读,都应分别把分子与分母看做一个整体来读,例如xx−y应读作“x与y的差分之x”,不能读作“x除以x与y的差”,因为后一种读法容易误解为xx−y.按实际背景和几何意义来读,如代数式5a,如果a表示正五边形的边长,那么5a可表示正五边形的周长;如果a表示一本练习本的价格,那么5a可表示5本练习本的总价格.题型一代数式的意义【例1】说出下列代数式的意义:(1)3x−2;(2)2(a−b);(3)x2+y2;(4)mn;(5)(a+b)2;(6)x+y2.【过关练习】1. 代数式x−y2的意义是()A.x与y的一半的差B.x的一半与y的差C.x与y的差的一半D.以上答案都不对2. 一个运算程序输入x后,得到的结果是4x3−2,则这个运算程序是()A.先乘4,然后立方,再减去2B.先立方,然后减去2,再乘4C.先立方,然后乘4,再减去2D.先减去2,然后立方,再乘43. 下列文字语言叙述代数式的意义错误的是()A.12(x−3)表示 x与3的差的一半 B.a2−b2表示 a与b的平方差C.1a +1b表示 a的倒数与b的倒数的和 D.a3−b3表示 a与b的差的立方x−10)元出售,则下列说法中,能正确表4. 某商店举办促销活动,促销的方法是将原价x元的衣服以(45达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元5. 下列关于“代数式3x+2y”的意义叙述不正确的有()个①x的3倍加上y的2倍的和;②小明跑步速度为x千米/时,步行的速度为y千米/时,则小明跑步3小时后步行2小时,走了(3x+2y)千米;③某小商品以每个3元卖了x个,又以每个2元卖了y个,则共卖了(3x+2y)元.A.3B.2C.1D.06. 代数式3v表示什么?下列解释:①火车每小时走v km,3h共走3v km;②西红柿每千克3元,买v kg西红柿用钱3v元;③一个瓶子的容积为v L,3个同种瓶子的容积之和是3v L;④一把椅子的价格为v元,桌子的价格是椅子的3倍,则桌子的价格为3v元.其中正确的是()A.4个B.3个C.2个D.1个【课后练习】1. 购买一个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为( )A .(a+b )元B.3(a+b )元 C.(3a+b )元 D.(a+3b )元2. 一个三位数,个位数字是a ,十位数字是0,百位数字是b ,如果将个位数字与百位数字对调,那么新的三位数是( )A .AbB.Ba C.100a+b D.100b+a3. 下列结论中,正确的是( )A.-a 一定是负数B.一定是正数C.-|a|一定是正数D.|a|一定是非负数4. 在式子4⨯4,a ÷b ,0,18x+4,35(s-m ),n6,731xy 中,符合代数式书写格式的有( ) A .1个B .2个C .3个D .4个5. 有一个两位数,十位数字是x ,个位数字是y ,如果把他们的位置颠倒一下,得到的数为( )A .x+yB .YxC .10y+xD .10x+y6. 当x=1时,代数式4-3x 的值是( )A .1B .2C .3D .47. 下列式子32a+b ,S=21ab ,5,m ,8+y ,m+3=2,32≥75中,代数式有( ) A .6个B .5个C .4个D .3个8. a 是一个三位数,b 是一个一位数,把a 放在b 的右边组成一个四位数,这个四位数是( )A .BaB .100b+aC .1000b+aD .10b+a9. 当x+y=2时,代数式2x+2y-1的值为( )A .-1B .1C .-2D .310. 下列各式符合代数式书写规范的是( )A 、a b B 、a ×3 C 、3x -1个 D 、221n11. 对代数式a 2+b 2的意义表达不确切的是( )A 、a 、b 的平方和B 、a 与b 的平方的和C 、a 2与b 2的和D 、a 的平方与b 的平方的和12. 一辆汽车在a 秒内行驶6m 米,则它在2分钟内行驶( ) A 、3m 米 B 、a m 20米 C 、a m 10米 D 、am 120米13. 一批电脑进价为a 元,加上20%的利润后优惠8%出售,则售出价为( )A 、a(1+20%)B 、a(1+20%)8%C 、a(1+20%)(1-8%)D 、8%a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档