一元二次方程综合题(精)

合集下载

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)精心整理,用心做精品2第二章 一元二次方程单元综合测试题 一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0.3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A.a=b=c B.一根为1 C.一根为-1 D.以上都不对12.若分式22632x xx x---+的值为0,则x的值为().A.3或-2 B.3 C.-2 D.-3或213.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为().A.-5或1 B.1 C.5 D.5或-114.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为().A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().精心整理,用心做精品3A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.精心整理,用心做精品4当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.填写统计表:2000~2003年丽水市全社会用电量统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).精心整理,用心做精品5精心整理,用心做精品621.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2b x+c -12a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0. (1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.精心整理,用心做精品723.已知关于x 的方程a2x2+(2a -1)x+1=0有两个不相等的实数根x1,x2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21a a =0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?QPBDAC精心整理,用心做精品825、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点的时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?CA BP QD←↑精心整理,用心做精品92、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)动什么位置时,△OCP 为等腰三角形,求这时点P 么位置时,使得∠CPD=∠OAB ,且58BD BA ,求这时点P 的坐标;C BQ RADlP答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-x2=,x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.精心整理,用心做精品1015.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(36x=0,x2-,由求根公式得,.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20.(1)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x+c-12a=0有两个相等的实数根,∴判别式=)2-4×12(c-12a)=0,整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.(2)a,b是方程x2+mx-3m=0的两个根,所以m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于1 2.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。

人教版九年级上第21章 一元二次方程精题汇编(包含答案)

人教版九年级上第21章 一元二次方程精题汇编(包含答案)

人教版九年级上一元二次方程精题汇编一选择题(每题3分共36分)满分120分1、若一元二次方程x²-2x-3599=0的两根分别为a,b,且a>b,则2a-b的值为( )A.-57B.63C.179D.1812、如果x²-x-1=(x+1)°,那么x的值为( )A2或-1 B.0或1 C.2 D.-13 、定义一种新运算:a*b=a(a-b),例如,4*3=4(4-3)=4x*2=3,则x的值是( )A.3B.-1C.3或1D.3或-14、已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax²+bx+c=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断5、已知三角形两边长分别为2和9,第三边的长为一元二次方程x²-14x+48=0的根,则这个三角形周长为() A.11 B.17 C.17或19 D.196、设是方程x²-4x+m=0的两个根,且 + - =1,则 m的值)() A 2 B 3 C-1 D 47、在△ABC中,BC=2,AB=2,AC=b,且关于x的方程x²-4x+b=0有两个相等的实数根,则AC边上的中线长为 ( )A.1B.2C. 4. D8、用“整体法”求得方程(2x+5)²-4(2x+5)+3=0的解为( )A.=1,=3B.=-2,=3 C=-3 =-1 D.=-2 =-19、要使方程(a-3)x²+(b+1)x+c=0是关于x的一元二次方程,则( )A.a≠0B.a≠3C.a≠1且b≠-1D.a≠3且b≠-1且c≠010、若x=-1是关于x的一元二次方程ax²-bx-2018=0的一个解,则1+a+b的值是( )A.2016B.2017C.2018D.201911、一位同学将方程x²-4x-3=0化成了(x+m)²=n的形式,则m,n的值应为()A.m=-2,n=7B.m=2,n=7C.m=-2,n=1D.m=2,n=-712、已知关于x的一元二次方程a(1+x²)+2bx=c(1-x²),其中a,b,c分别为△ABC三边的长,如果方程有两个相等的实数根,则△ABC的形状为( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形二填空题(每题3分共21分)13、方程3x(x-1)=2(x-1)的根为 ______________14、设等腰三角形一腰与底边的长分别方程x-6x+a=0的两根,当这样的三角形只有一个时,a的取值范围是_______15 、若关于x的一元二次方程x²+2mx-4m+1=0有两个相等的实数根,则(m-2)²-2m(m-1)的值为 __________16、在一元二次方程ax²+bx+c=0(a≠0)中,下列说法正确的是___ (填序号)①若a+b+c=0,则b²-4ac≥0;②若方程两根为-1和3,则3a+2c=0;③若方程ax²+c=0有两个不相等的实数根,则方程ax²+bx+c=0必有两个不相等的实数根;④若a=1,c=-1,且方程的两根的平方和为6,则b只能等于2。

一元二次方程单元综合测试题含答案

一元二次方程单元综合测试题含答案

方圆学校九年级第21章一元二次方程单元综合测试题一、填空题〔每题2分,共20分〕1.方程,x〔x—3〕=5〔x—3〕的根是___________ .22.以下方程中,是关于x的一元二次方程的有.[1] 2y2+y-1=0;〔2〕x〔2x—1〕=2x2;〔3〕∖—2x=l;〔4〕ax2+bx+c=0;〔5〕x- —x2=0 ・23.把方程[l-2x] [l+2x] =2χ2-l化为一元二次方程的一般形式为.1 2 14.如果一7 ——— 8=0,那么一的值是_________ .X" X X5.关于x的方程[m2-1] x2+〔m—1〕x+2m-1=0是一元二次方程的条件是6.关于x的一元二次方程χ2—χ-3m=0有两个不相等的实数根,那么m的取值围是定_______________ .7. X2-5 | x | ÷4=0的所有实数根的和爰_____________ .8.方程χ4-5χ2+6=0,设y=χ2,那么原方程变形原方程的根为.9.以一1为一根的一元二次方程可为〔写一个即可〕.10.代数式1χ2+8x+5的最小值爰 ___________ .2二、选择题〔每题3分,共18分〕11.假设方程〔a—b〕x2+ [b-c] x+ [c-a] =0是关于x的一元二次方程,那么必有〔〕.B. 一根为1 C∙ 一根为一1 D.以上都不对A∙ a=b=cχ2 —χ-()12.假设分式~的值为0,那么x的值为〔〕.x -3x + 2A. 3 或一2B. 3C. -2D. -3 或213. [x2÷y2+l] [x2÷y2÷3] =8,那么区?+/的值为〔〕.A. -5 或1B. 1C. 5D. 5 或一114.方程χ2+px+q=0的两个根分别是2和一3,那么χ2-pχ+q可分解为〔〕.A. [x+2] [x÷3]B.〔x—2]〔x—3〕C.〔x-2]〔x+3〕D.〔x+2〕〔x—3]15α, 0是方程χ2+2006x+l=0 的两个根,那么[1+2008(1+/] [l÷2008β+β2]的值为〔〕.A. 1B. 2C. 3D. 416.三角形两边长分别为2和4,第三边是方程χ2-6x+8=0的解,那么这个三角形的周长是〔〕.A. 8 .B. 8 或10C. 10D. 8 和10三、用适当的方法解方程〔每题4分,共16分〕17.〔1〕2 tx÷2j 2-8=0; 〔2〕x〔x-3〕=x;〔3〕∖∣3 X2=6X—Λ∕3; 〔4〕〔x+3〕2÷3 fx+3] —4=0.四、解答题[18, 19, 20, 21题每题7分,22, 23题各9分,共46分〕X18.如果χ2 — 10x+y2-16y+89=0,求一的值.)'19.阅读下面的材料,答复以下问题:解方程χ4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设χ2=y,那么χ4=y2,于是原方程可变为y2—5y+4=0 ①,解得%=1, y2=4.当y=l 时,x2=l, .,.x=±lj当y=4 时,X2=4,.*.X=±2J万程有四个根:Xi=l, X2~ - 1, X3=2, X4=-2.〔1〕在由原方程得到方程①的过程中,利用法到达的目的,表达了数学的转化思想.⑵ 解方程(x2+x] 2-4 [x2+x] -12=0.20.如图,是市统计局公布的2000〜2003年全社会用电量的折线统计图.(1)填写统计表:2000 -2003年市全社会用电量统计表:年份200020012002200313.33全社会用电量〔单位:亿kW-h〕〔2〕根据市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率〔保存两个有效数字〕.用电量(亿kW ∙ h)2520151052000 2001 2002 2003 年份21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.〔1〕假设商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?〔2〕试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a, b, c是4ABC的三条边,关于x的方程Lx?+括x+c—'a=0有两个2 2相等的实数根,方程3cx+2b=2a的根为x=0.〔1〕试判断4ABC的形状.〔2〕假设a, b为方程χ2+mχ-3m=0的两个根,求m的值.23.关于x的方程fχ2+〔2a-l〕x+l=0有两个不相等的实数根5, x2.⑴求a的取值围;〔2〕是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.解:〔1〕根据题意,得△=[2a-1] 2-4a2>0,解得av'.4・•・当a<0时,方程有两个不相等的实数根.2a— 1 〔2〕存在,如果方程的两个实数根X],X2互为相反数,那么X1÷X2=--=0a ①,解得经检验,&二;是方程①的根.当a=:时,方程的两个实数根羽与X2互为相反数.a上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A、B、C、D为矩形的4个顶点,AB = 16cm, BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm∕s的速度向点B移动,一直到达点B为止;点Q以2cm∕s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?25、如图,在aABC 中,ZB = 90° , BC=12cm, AB = 6cm,点P 从点A 开场段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒,〔1〕当t为何值时,ZiAPQ与4AOB相似?24〔2〕当t为何值时,ZXAPQ的面积为一个平方单位?2、有一边为5cm的正方形ABCD和等腰三角形PQR, PQ=PR=5cm, QR=8cm, 点B、C、Q、R在同一直线1上,当C、Q两点重合时,等腰三角形PQR以lcm/s 的速度沿直线1按箭头方向匀速运动,〔1〕t秒后正方形ABCD与等腰三角形PQR重合局部的面积为5,求时间t;〔2〕当正方形ABCD与等腰三角形PQR重合局部的面积为7,求时间t;B QC R3、如下图,在平面直角坐标中,四边形OABC 是等腰梯形,CB H OA, OA=7, AB=4, ZCOA=60°,点P 为x 轴上的一个动点,点P 不与点0、点A 重合.连结CP,过点P 作PD 交AB 于点D,⑴求点B 的坐标沐⑵当点P 运动什么位置且鲁《求这时点P 的坐标;答案:1. Xι=3, X2=102,〔5〕 点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3. 6χ2-2=04. 4 —2点拨:把一看做一个整体.X5. m≠ ± 16. m>-- 点拨:理解定义是关键.127. 0点拨:绝对值方程的解法要掌握分类讨论的思想. 8. y2 — 5y+6=0 Xi — ^∖∕2 f X2二一Λ∕2 , X3- , X4~ 一 Λ∕3 9. x 2-x=0〔答案不唯一〕 10. -2711. D 点拨:满足一元二次方程的条件是二次项系数不为0. 12. A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13. B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意χ2+F 式子本身的属性.14. C 点拨:灵活掌握因式分解法解方程的思想特点是关键. 15. D 点拨:此题的关键是整体思想的运用.16. C 点拨:此题的关键是对方程解的概念的理解和三角形三边关系定理的运用. 17. ⑴ 整理得〔x+2〕2=4,即 0+2〕=±2,.*.x 1=0, x 2=~4〔2〕x 〔x —3〕— x=0,x 〔x —3—1〕=0, x 〔x —4〕=0, ∙*∙ Xl =0 9 X2=4 9〔3〕整理得 G χ2+ \/3 — 6χ=0,时,4OCP 为等腰三角形,求这时点P 的坐标;(3)当求P 率动什幺住聂时,使<ZCPD=ZOAB,DX2—2λ∕3 x+l=0,由求根公式得X1= V3 + λ∕2 , X2= \/3 — V2 .〔4〕设x+3=y,原式可变为y2+3y-4=0,解得力二-4, y2=l,即x+3=—4, x= —7.由x+3=l,得x=-2.二原方程的解为xi= -7, x2=-2.18.由x2- 10x+y2- 16y+89=0,得〔x—5〕2+〔y—8〕2=0,x 5∕.x=5, y=8,> 819.〔1〕换元降次〔2〕设χ2+x=y,原方程可化为y2-4y-12=0,解得yι=6, y2= -2∙由x2+x=6,得xi= -3, X2=2.由x2+x= — 2,得方程X2÷X+2=0,b2-4ac=l-4×2=-7<0,此时方程无解.所以原方程的解为、二-3, X2=2.20.⑴〔2〕设2001年至2003年平均每年增长率为x,那么2001年用电量为14.73亿kW ∙ h,2002 年为14.73 [l+x]亿kW ∙ h,2003 年为14.73 [l+xj 2亿kW ∙ h.那么可列方程:14.73 [l+x] 2=21.92, 1+X=±1.22,∕.xι=0.22=22%, x2=-2.22〔舍去〕.那么2001〜2003年年平均增长率的百分率为22%.21. [1]设每件应降价x元,由题意可列方程为〔40-x〕∙〔30+2x〕=1200,解得X]=0, X2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.〔2〕设商场每天盈利为W元.W=〔40—x〕(30+2x] =-2X2+50X+1200=-2[X2-25X] +1200=-2 [χ-12.5] 2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22. ∙.∙,χ2+扬x+c-'a=0有两个相等的实数根,2 2判别式=[y[b ] 2—4×一[c -------------- a] =0,2 2整理得a+b-2c=0 ①,又3cx+2b=2a 的根为x=0,**- a—b ②.把②代入①得a=c,Λa=b=c, ∙∙∙4ABC为等边三角形.〔2〕a, b是方程x2+mx-3m=0的两个根,所以I∏2-4X〔一3m〕=0,即f∏2+12m=0,∕.t∏ι=0, m2=-12.当m=0时,原方程的解为x二O〔不符合题意,舍去〕,∕.m=12.23.上述解答有错误.〔1〕假设方程有两个不相等实数根,那么方程首先满足是一元二次方程,二.&2壬0 且满足〔2a-1〕2—4a2>0, .,.a< 一且a#0.4〔2〕a不可能等于!.2〔1〕中求得方程有两个不相等实数根,同时a的取值围是av,且aK0,4而a=—> 一〔不符合题意〕2 4所以不存在这样的&值,使方程的两个实数根互为相反数.。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

一元二次方程综合练习+有答案

一元二次方程综合练习+有答案

一元二次方程一.选择题(共19小题)1.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对2.已知关于x的方程(m﹣1)+2x﹣3=0是一元二次方程,则m的值为()A.1 B.﹣1 C.±1 D.不能确定3.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,④+x=2,⑤x3﹣3x+8=0,⑥x2﹣5x+7=0,⑦(x﹣2)(x+5)=x2﹣1.其中是一元二次方程的有()A.2 B.3 C.4 D.54.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±25.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1 B.0 C.﹣1 D.26.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥27.一元二次方程x2﹣4=0的根为()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=48.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对9.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或9+ +38.用公式法解下列方程2x2+6=7x.39.已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.40.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.41.解方程:2(x﹣3)2=x2﹣9.42.解方程:x2﹣3x+2=0.43.解方程:x2+2x﹣3=0.44.解方程:x2﹣x﹣12=0.45.解方程:x2﹣6x+5=0 46 x2﹣5x﹣6=0.47.3x(x﹣1)=2(x﹣1).48.解方程:x(x﹣2)+x﹣2=0.49.(x﹣3)2+2x(x﹣3)=0.+,;+﹣+.;2,2;开方得x﹣3=±,∴x1=3+,x2=3﹣.36.用配方法解方程2x2﹣4x﹣3=0.【解答】解:∵2x2﹣4x﹣3=0,∴,∴,∴x﹣1=±,∴.37.用公式法解方程:x2﹣x﹣2=0.【解答】解:∵a=1、b=﹣1、c=﹣2,∴△=1﹣4×1×(﹣2)=9>0,∴x==,即x=﹣1或x=2.38.用公式法解下列方程2x2+6=7x.【解答】解:方程整理得:2x2﹣7x+6=0,这里a=2,b=﹣7,c=6,∵△=49﹣48=1,∴x=,解得:x1=2,x2=.39.已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.【解答】解:(1)根据题意得m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>0,解得m<6且m≠2;(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,∴(3x+4)(x+2)=0,∴x1=﹣,x2=﹣2.40.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.41.解方程:2(x﹣3)2=x2﹣9.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.42.解方程:x2﹣3x+2=0.【解答】解:∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,∴x1=1,x2=2.43.解方程:x2+2x﹣3=0.【解答】解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.44.解方程:x2﹣x﹣12=0.【解答】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.45.解方程:x2﹣6x+5=0.【解答】解:分解因式得:(x﹣1)(x﹣5)=0,x﹣1=0,x﹣5=0,x1=1,x2=5.46.解方程:x2﹣5x﹣6=0.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.47.解方程:3x(x﹣1)=2(x﹣1).【解答】解:移项得:3x(x﹣1)﹣2(x﹣1)=0,(x﹣1)(3x﹣2)=0,x﹣1=0,3x﹣2=0,x1=1,x2=.48.解方程:x(x﹣2)+x﹣2=0.【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,∴x1=2,x2=﹣1.49.(x﹣3)2+2x(x﹣3)=0.【解答】解:由原方程,得3(x﹣3)(x﹣1)=0,所以,x﹣3=0或x﹣1=0,解得,x1=3,x2=1.第11页(共11页)。

一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析一、单选题(共7题;共14分)1.如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C点,OA=OC则由抛物线的特征写出如下结论()A. abc>0B. 4ac-b2>0C. a-b+c>0D. ac+b+1=02.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A. abc<0B. b2﹣4ac<0C. a﹣b+c<0D. 2a+b=03.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.4.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为( )A. 27B. 23C. 22D. 185.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB 绕点O逆时针旋转90°,点B的对应点的坐标是()A. B. C. D.6.如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A. 25mB. 24mC. 30mD. 60m7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A. B. 2 C. 2 D. (1+2 )二、填空题(共2题;共2分)8.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n 30 75 130 210 480 856 1250 2300发芽数m 28 72 125 200 457 814 1187 21850.9333 0.9600 0.9615 0.9524 0.9521 0.9509 0.9496 0.9500发芽频率依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是________(结果精确到0.01). 9.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是________.三、作图题(共1题;共5分)10.已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.①画出关于原点成中心对称的,并写出点的坐标;②画出将绕点按顺时针旋转所得的.四、综合题(共13题;共178分)11.如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,﹣5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.12.已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4)(1)求b,c满足的关系式(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式(3)若该函数的图象不经过第三象限,当-5sx≤1时,函数的最大值与最小值之差为16,求b的值13.已知抛物线y=2x2-4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.14.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?15.如图所示・二次函数的图像与一次函数的图像交于A、B两点,点B 在点A的右側,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图像的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.16.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标。

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案

一.选择题(每小题3分,共39分)1.下列方程是关于x 的一元二次方程的是(D );A .02=++c bx axB .2112=+x xC .1222-=+x x xD .)1(2)1(32+=+x x 2.方程()()24330x x x -+-=的根为( D );A .3x =B .125x =C .12123,5x x =-=D .12123,5x x == 3.解下面方程:(1)()225x -=(2)2320x x --=(3)260x x +-=,较适当的方法分别为( D )A .(1)直接开平法方(2)因式分解法(3)配方法B .(1)因式分解法(2)公式法(3)直接开平方法C .(1)公式法(2)直接开平方法(3)因式分解法D .(1)直接开平方法(2)公式法(3)因式分解法4.方程5)3)(1(=-+x x 的解是 ( B );A .3,121-==x xB .2,421-==x xC .3,121=-=x xD .2,421=-=x x5.方程x 2+4x =2的正根为( D )A .2-6B .2+6C .-2-6D .-2+6 6.方程x 2+2x -3=0的解是( B )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-37.某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增率是x ,则可以列方程( B );A .720)21(500=+xB .720)1(5002=+xC .720)1(5002=+xD .500)1(7202=+x 8.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( B )A .200(1+a%)2=148B .200(1-a%)2=148C .200(1-2a%)=148D .200(1-a 2%)=1489.关于x 的一元二次方程02=+k x 有实数根,则( D )A .k <0B .k >0C .k ≥0D .k ≤010.方程02=x 的解的个数为( C )A .0B .1C .2D .1或211.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( A )A .m >-1B .m <-2C .m ≥0D .m <012.已知x =1是一元二次方程x 2-2mx +1=0的一个解,则m 的值是( A)A .1B .0C .0或1D .0或-1 13.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于( C )A .6-B .1C .6-或1D .2二.填空题(每小题3分,共45分)1.把一元二次方程12)3)(31(2+=+-x x x 化成一般形式是: 5x 2 +8x-2=0 _____________ ;它的二次项系数是 5 ;一次项系数是 8 ;常数项是 -2 。

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案

一元二次方程综合测试题+答案1.正确的选项为(D);正确的改写为:下列方程中是关于x的一元二次方程的是(D);2.正确的选项为(D);正确的改写为:方程4(x-3)+x(x-3)=0的根为(D);3.正确的选项为(D);正确的改写为:解下列方程:(1)(x-2)^2=5(2)x^2-3x-2=0(3)x^2+x-6=0,较适当的方法分别为(D);4.正确的选项为(B);正确的改写为:方程(x+1)(x-3)=5的解是(B);5.正确的选项为(D);正确的改写为:方程x^2+4x-2=0的正根为(D);6.正确的选项为(B);正确的改写为:方程x^2+2x-3=0的解是(B);7.正确的选项为(B);正确的改写为:某厂一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增率是x,则可以列方程(B);8.正确的选项为(B);正确的改写为:某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是(B);9.正确的选项为(D);正确的改写为:关于x的一元二次方程x^2+k=0有实数根,则(D);10.正确的选项为(C);正确的改写为:方程x^2=0的解的个数为(C);11.正确的选项为(A);正确的改写为:已知关于x的一元二次方程x^2-m=2x有两个不相等的实数根,则m的取值范围是(A);12.正确的选项为(A);正确的改写为:已知x=1是一元二次方程x^2-2mx+1=0的一个解,则m的值是(A)。

13.一元二次方程 $(m-2)x-4mx+2m-6$ 有两个相等的实数根,则 $m$ 等于 $\boxed{\text{C。

}-6\text{或}1}$。

1.把一元二次方程 $(1-3x)(x+3)=2x+1$ 化成一般形式是$5x^2+8x-2=0$;它的二次项系数是 $5$;一次项系数是 $8$;常数项是 $-2$。

2.已知关于 $x$ 的方程 $(m-1)x+(m+1)x+m-2$,当 $m\neq \pm 1$ 时,方程为一元二次方程;当 $m=1$ 时,方程是一元一次方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根的判别、根与系数的关系专项训练1.已知关于x 的一元二次方程x 2+(m -1)x -2m 2+m=0(m 为实数)有两个实数根1x 、2x . (1)当m 为何值时,12x x ≠; (2)若22122x x += ,求m 的值.2. 已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.3.已知抛物线22(23).y x m x m =+++(1)m 满足什么条件时,抛物线与x 轴有两个的交点; (2)若抛物线与x 轴两个交点的横坐标分别为12,x x ,且12111x x +=-,求m 的值.4.已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.5.已知关于x 的方程x 2+(2k -1)x +(k -2)(k +1)=0……①和kx 2+2(k -2)x +k -3=0……②. ⑴求证:方程①总有两个不相等的实数根;⑵已知方程②有两个不相等的实数根,求实数k 的取值范围;⑶如果方程②的两个不相等实数根α、β的倒数和等于方程①的一个根,求k 的值.6.已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.7. 已知一元二次方程2 10x px q +++=的一根为 2. (1)求q 关于p 的关系式;(2)求证:抛物线2 y x px q =++与x 轴有两个交点;(3)设抛物线2y x px q =++的顶点为 M ,且与 x 轴相交于A (1x ,0)、B (2x ,0)两点,求使△AMB 面积最小时的抛物线的解析式.8.已知关于x 的方程21(21)4()02x k x k -++-=(1)求证:无论k 取什么实数,这个方程总有实根;(2)若等腰ABC 的边长a=4,另两边的长b 、c 恰好是这个方程的两个根,求ABC 的周长。

答案1.解:(1) △=(m -1)2-4(-2m 2+m)=m 2-2m +1+8m 2-4m=9m 2-6m +1=(3m -1)2……………………………………………3分 要使x 1≠x 2 , ∴△>0即△=(3m -1)2>0 ∴ m ≠13……………………5分另解:由x 2+(m -1)x -2m 2+m=0得x 1=m ,x 2=1-2m要使x 1≠x 2,即m ≠1-2m ,∴m ≠13.(2)∵x 1=m ,x 2=1-2m ,x 12+x 22=2 ………………………………………………8分∴m 2+(1-2m )2=2解得121,15m m =-=. …………………………………………………10分另解: ∵x 1+x 2=-(m -1) , x 1·x 2=-2m 2+m ,x 12+x 22=2∴(x 1+x 2)2-2x 1x 2=2 [-(m -1)]2-2(-2m 2+m)=2 5m 2-4m -1=0 ∴m 1=15- , m 2=1.2.解:(1)由题意有22(21)40m m ∆=--≥, ················ 2分 解得14m ≤. 即实数m 的取值范围是14m ≤. ······················· 4分 (2)由22120x x -=得1212()()0x x x x +-=. ················· 5分若120x x +=,即(21)0m --=,解得12m =. ················ 7分 1124>,12m ∴=不合题意,舍去. ···················· 8分 若120x x -=,即12x x = 0∴∆=,由(1)知14m =.故当22120x x -=时,14m =. ······················· 10分4. (1)证明:△=222341()44k k k -⨯⨯-=. ………………2分∵k >0,∴△= 4k 2>0 . ……………………………3分 ∴此抛物线与x 轴总有两个交点. ………………4分 (2)解:方程22304x kx k +-=的解为1322x k x k ==-或. ……………6分∵11203ON OM -=>,∴OM > ON .∵k > 0,∴M 3(,0)2k -,N 1(,0)2k∴OM =32k ,ON =12k . ……………………8分 ∴1111213322ONOMkk-=-=,解得,k =2. ………………………10分6. 解:(1)令y =0,得:x 2-(2m -1)x +m 2+3m +4=0△=(2m -1)2-4(m 2+3m +4)=-16m -15…………………………1分 当△>0时,方程有两个不相等的实数根,即-16m -15>0∴m <-1516此时,y 的图象与x 轴有两个交点………………………………2分 当△=0时,方程有两个相等的实数根,即-16m -15=0∴m =-1516此时,y 的图象与x 轴只有一个交点………………………………3分 当△<0时,方程没有实数根,即-16m -15<0∴m >-1516此时,y 的图象与x 轴没有交点∴当m <-1516时,y 的图象与x 轴有两个交点;当m =-1516时,y 的图象与x 轴只有一个交点;当m >-1516时,y 的图象与x 轴没有交点.……………………4分(评分时,考生未作结论不扣分)(2)由根与系数的关系得x 1+x 2=2m -1,x 1x 2=m 2+3m +4………………5分21x +22x =(x 1+x 2)2-2x 1x 2=(2m -1)2-2(m 2+3m +4)=2m 2-10m -7……6分 ∵21x +22x =5,∴2m 2-10m -7=5,∴m 2-5m -6=0解得:m 1=6,m 2=-1 ∵m <-1516,∴m =-1∴y =x 2+3x +2……………………………………………………………………7分 令x =0,得y =2,∴二次函数y 的图象与y 轴的交点C 坐标为(0,2) 又y =x 2+3x +2=(x +32)2-14,∴顶点M 的坐标为(-32,-14)设过C (0,2)与M (-32,-14)的直线解析式为y =kx +bk =322= b -14=32k +b ,b =2∴所求的解析式为y =32x +2…………………………………………8分7. (1)解:由题意,得22210p q +++=,即(25)q p =-+. ······ (2 分) (2)证明:∵一元二次方程20x px q ++=的判别式24p q ∆=-,由(1)得2224(25)820(4)40p p p p p ∆=++=++=++>, ······ (3 分) ∴一元二次方程20x px q ++=有两个不相等的实根. ··········· (4 分) ∴抛物线2y x px q =++与x 轴有两个交点. ··············· (5 分)(3)解:抛物线顶点的坐标为2424p q p M ⎛⎫-- ⎪⎝⎭,, ············ (6分)∵12x x ,是方程20x px q ++=的两个根,∴1212.x x p x x q +=-⎧⎨=⎩,∴22121212||||()44AB x x x x x x p q =-=+-=- ············ (7分)∴222141||(4)4248AMBq p S AB p q p q -==--△, ··········· (8分) 要使AMB S △最小,只须使24p q -最小.而由(2)得224(4)4p q p -=++,所以当4p =-时,有最小值4,此时AMB S △13q ==,. ·········· (9分) 故抛物线的解析式为243y x x =-+. ················· (10分)【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】解得感谢您的支持与配合,我们会努力把内容做得更好!。

相关文档
最新文档