第五章运筹学线性规划在管理中的应用案例
简单的运筹学实际应用案例

简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
运筹学线性规划案例

运筹学线性规划案例 生产组织与计划问题A B可用资源 设备 原料1 原料2 1 2 2 1 0 1 300台时 400kg 250kg单位利润50 100A, B 各生产多少.可获最大利润?In 资源限制 设备 1 1r 3oo 會对.厦轧A2 1 400千克 0 1 颂千克刃元wo 元Max z = 50 Xi + 100 x 2 s.t.Xl + x? < 300 2 X! + x £< 400 Xj < 250Xi > 0衍> 0得到最优解:x d = 50, X 2 = 250 约束条佚 J - %1/ i fI t / J A B 最优目标值z = 27500目标函数:Max z= 50x1 + 100x2 线性规划模型=约束条件:s.t. xi+ X2 < 3002 Xj+ 勺 W 400 x2 W 250X], x2 $ 0•建模过程1. 理解要解决的问题,了解解题的目标和条件;2. 定义决策变量(X】,X2,…,Xn),每一组值表示一个方案;3. 用决策变量的线性函数形式写出目标函数,确定最大化或最小化目标;4. 用一组决策变量的等式或不等式表示解决问题过程中必须遵循的约束条件• 一般形式目标函数:Max (Min) z = c】x^ + c? x?+…约束条件:s.t. dll X1 + 62X2+ …+dln Xn W ( =, D ) bl02]衍 + 022七+…+匕5石 W ( =?) b2dml X] + 如2 旳+ …+ dmn % W ( =?) b mXj , X],・••,X n 0(1) 分别取决策变量X】,X2为坐标向量建立直角坐标系。
在直角坐标系里,图上任意一点的坐标代表了决策变量的一组值,题中的每个约束条件都代表一个半平面。
(2) 对每个不等式(约束条件),先取其等式在坐标系中作直线,然后确定不等式所决定的半平面。
[讲解]运筹学应用例题
![[讲解]运筹学应用例题](https://img.taocdn.com/s3/m/b6f6113a182e453610661ed9ad51f01dc28157b8.png)
线性规划在工商管理中的应用一、人力资源分配的问题例1某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如下表所示:设司机和乘务人员分别在各时间段开始时上班;并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?例2 一家中型的百货商场对售货员的需求经过统计分析如下表所示:为了保证售货员充分休息,要求售货员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货员的休息日期,既能满足工作需要,又使配备的售货员的人数最少?二、生产计划问题例3 某公司面临一个是外包协作还是自行生产的问题。
该公司有甲、乙、丙三种产品,这三种产品都要经过铸造、机械加工和装配三道工序。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须由本厂铸造才能保证质量。
有关情况如下表所示,公司中可利用的总工时为:铸造8000小时,机械加工12000小时和装配10000小时。
为了获得最大利润,甲、乙、丙三种产品各应生产多少件?甲、乙两种产品的铸件有多少由本公司铸造?有多少为外包协作?三、套裁下料问题例4 某工厂要做100套钢架,每套钢架需要长度分别为2.9米、2.1米、和1.5米的圆钢各一根。
已知原料每根长7.4米,问应如何下料,可使所用原料最省?四、配料问题例5某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,产品的规格要求、产品的单价、每天能供应的原材料数量及原材料单价如下表所示:问该厂应如何安排生产,才能使利润最大?五、投资问题例6某部门现有资金200万元,今后五年内考虑给以下的项目投资:项目A:从第一年到第五年每年年初都可以投资,当年末能收回本利110%;项目B:从第一年到第四年每年年初都可以投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;项目C:第三年初需要投资,到第五年末能收回本利140%,但规定每年最大投资额不能超过80万元;项目D:第二年初需要投资,到第五年末能收回本利155%,但规定每年最大投资额不能超过100万元。
运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。
运筹学的应用范围非常广泛,涉及到各个领域。
以下是一个关于运筹学应用的实际案例。
某公司是一家制造业企业,主要生产产品A和产品B。
这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。
公司的目标是最大化利润。
产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。
产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。
物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。
同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。
另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。
为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。
首先,公司需要确定目标函数。
由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。
假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。
那么公司的目标函数可以定义为:Z=10A+8B。
然后,公司需要确定约束条件。
根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。
由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。
最后,公司需要使用线性规划算法来求解最优解。
线性规划算法可以通过求解目标函数的最大值来找到最优解。
在这个案例中,可以使用单纯形法来求解最优解。
通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。
对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。
线性规划在管理中的应用

线性规划在管理中的应用摘要:本文从线性规划的概念、构成要素出发,给出了线性规划模型。
并给出了用单纯型法来求解线性规划模型的求解原理。
然后通过几个具体例子,如合理下料问题、运输问题、投资问题,建立了数学规划模型,并给出了如何对生活中有限资进行合理分配,对选择方案进行最优决策。
线性规划模型决策应用线性规划是运筹学中一种最常用的方法,线性规划在现代管理中起到了重要的作用,线性规划所处理的问题是怎样以最佳的方式在各项经济活动中分配有限的资,以便最充分地发挥资的效能去获取最佳经济效益。
线性规划在财务贸易、金融、工业制造、农业生产、交通运输、人事管理、设备维修等领域的管理决策分析^p 中均可帮助人们解决实际问题。
例如在原料分配问题上,研究如何确定各原料比例,才能降低生产成本,增加利润;在农作物规划中,如何安排各种农作物的布局,使生产率迅速提高;在生产计划安排中,选择什么样的生产方案才能提高生产产值。
线性规划为求解这类问题提供了实用性强的理论基础和具体求解方法。
一、线性规划数学模型经营管理中研究如何有效地利用现有的人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现,这个统筹规划的问题用可用数学语言表达。
线性规划模型从数学角度来归纳为三点:(1)每个问题都有一组变量,称为决策变量,一般记为,一般要求。
它是决策者对决策问题需要加以考虑和控制的因素。
(2)每个问题都有决策变量需要满足一定的条件,问题的限制条件用不等式或等式来表达,它是实现企业决策目标,限制性因素对实现目标起约束作用,称为约束条件。
(3)问题的目标通过变量的函数形式来表达,称为目标函数,且目标值与决策变量之间的关系是线性关系,要求在约束条件下,求目标函数的最大值或最小值。
(4)一般的线性规划数学模型为:线性规划标准形式特点:(1)目标函数求最大值(有时求最小值)(2)约束条件都为等式方程,且右端常数项bi都大于或等于零(3)决策变量xj为非负。
管理运筹学案例设计

管理运筹学案例设计管理运筹学是管理科学中一个重要的分支,通过运用数学、统计学和计算机科学等方法,对管理中的决策问题进行建模、分析和优化。
本文将介绍几个管理运筹学的案例,以帮助读者更好地理解其在实际管理中的应用。
案例一:生产调度优化某工厂生产多个产品,每个产品的生产需要不同的资源和时间。
工厂需要合理安排生产顺序,使得生产效率最大化,成本最小化。
通过管理运筹学的方法,可以建立数学模型来优化生产调度。
首先,我们需要确定每个产品的生产时间和资源需求。
然后,可以使用线性规划等数学方法,设计一个优化模型,以最小化总生产成本为目标函数,同时满足资源约束和交付期限。
案例二:库存管理优化某零售商经营多种商品,需要合理管理库存以满足需求,同时最小化库存成本。
通过管理运筹学的方法,可以建立库存管理模型来优化库存水平。
一种常见的方法是使用动态规划来确定最佳订货数量和补货时机,以最小化库存持有成本和缺货成本的总和。
通过对需求的预测和货架管理的优化,可以实现库存管理的最优化。
案例三:运输路线优化一家物流公司需要合理安排货物的运输路线,以最小化运输成本和时间。
通过管理运筹学的方法,可以设计运输路线优化模型,来寻找最佳的配送方案。
运输路线优化模型可以利用图论和网络优化方法,来确定最短路径和最优运输方案。
通过考虑货物的数量、目的地和运输方式等因素,可以制定最佳的运输策略,实现成本和效率的最优平衡。
结语管理运筹学是管理决策中的重要工具,可以帮助管理者在复杂的环境中做出最佳决策。
通过上述案例的介绍,我们可以看到管理运筹学在生产调度、库存管理和运输路线优化等方面的实际应用。
希望本文能够帮助读者更好地理解管理运筹学的概念和方法,从而在实际管理中取得更好的效果。
运筹学在物流管理中的应用案例

运筹学在物流管理中的应用案例物流管理是现代企业运作过程中至关重要的一环,它涉及到物流规划、采购、生产、仓储、配送等各个环节。
为了提高物流运营效率并降低成本,许多企业开始运用运筹学方法来优化物流管理。
本文将通过一个实际案例,介绍运筹学在物流管理中的应用。
案例背景某电子产品制造企业为了更好地满足全球市场的需求,决定进行物流网络优化。
该企业有多个工厂分布在不同地区,需要将产品从工厂运送到全球各地的分销中心。
为了确保产品能够及时到达,以及最大程度地减少物流成本,他们决定运用运筹学工具进行物流网络优化。
方案设计在设计物流网络优化方案之前,首先要明确一些关键的因素和约束条件,例如:工厂和分销中心的地理位置、产品的生产周期和需求量、运输的成本和时效、仓储设施的容量等。
基于这些信息,可以利用运筹学方法设计以下方案:1. 物流路径规划通过运筹学模型来确定产品从工厂到分销中心的最佳路径。
在此过程中,需要考虑运输成本、距离、交通状况等因素,以及协调不同地区的供应链环节。
运筹学模型可以通过线性规划、整数规划等方法来求解,以确定最佳物流路径。
2. 运输调度优化在确定了最佳物流路径后,下一步是对运输调度进行优化。
通过运筹学方法,可以建立模型考虑不同运输方式(如海运、铁路、公路)的成本和时效,以及不同的配送方式和批量配置。
运筹学模型可以通过动态规划、启发式算法等方法来求解,以达到优化运输调度的目的。
3. 仓储设施布局在物流管理中,仓储设施的布局对于物流效率和成本控制起着重要作用。
通过运筹学方法,可以分析和优化仓储设施的布局,以减少物流路径、降低仓储和运输成本,并提高物流处理效率。
运筹学模型可以通过网络流问题、图论等方法来求解,以确定最佳仓储设施布局方案。
4. 库存管理优化库存管理是物流管理中的一个关键环节。
通过运筹学方法,可以建立库存管理模型,以决定最佳的库存水平、采购和补充策略,以及最优的订货周期。
通过运筹学模型的求解,可以降低库存成本、减少过剩库存和缺货现象,提高物流管理的响应速度和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章线性规划在管理中的应用某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。
管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。
可用的机器设备是限制新产品产量的主要因素,具体数据如下表:司的利润最大化。
1、判别问题的线性规划数学模型类型。
2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。
3、建立该问题的线性规划数学模型。
4、用线性规划求解模型进行求解。
5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。
6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。
解:1、本问题是资源分配型的线性规划数学模型。
2、该问题的决策目标是公司总的利润最大化,总利润为:+ +决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1+ x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= + +3、本问题的线性规划数学模型max z= + +S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。
5、灵敏度分析目标函数最优值为: 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围:变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限.25 .333常数项数范围:约束下限当前值上限1 400 500 6002 275 350 无上限3 150(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。
最大利润值为30元。
(2)x3 的相差值是意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润元/件,提高到元/件。
(3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时;三个对偶价格,0,表明三种机床每增加一个工时可使公司增加的总利润额。
(4)目标函数系数范围表明新产品Ⅰ的利润在元/件以上,新产品Ⅱ的利润在到之间,新产品Ⅲ的利润在以下,上述的最佳方案不变。
(5)常数项范围表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在到工时之间。
各自每增加一个工时对总利润的贡献元,0元,元不变。
6、若产品Ⅲ最少销售18件,修改后的的数学模型是:max z= + +S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x3≥18x1≥0、x2≥0、x3≥0这是一个混合型的线性规划问题。
代入求解模板得结果如下:最优解(44,10,18),最优值:元。
灵敏度报告:目标函数最优值为:变量最优解相差值x1 44 0x2 10 0x3 18 0约束松弛/剩余变量对偶价格2 144 03 0 .0334 0目标函数系数范围:变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限.25 .333常数项数范围:约束下限当前值上限1 460 500 6922 206 350 无上限3 18 150 1654 0 18 30(1)最优生产方案:新产品Ⅰ生产44件、新产品Ⅱ生产10件、新产品Ⅲ生产18件。
最大利润值为元。
(2)因为最优解的三个变量都不为0,所以三个相关值都为0。
(3)四个约束的松弛/剩余变量0,144,0,0,表明铣床和磨床的可用工时已经用完,新产品Ⅲ的产量也刚好达到最低限制18件,而车床的可用工时还剩余144个工时;四个对偶价格,0,,表明三种机床每增加一个工时可使公司增加的总利润额,第四个对偶价格表明新产品Ⅲ的产量最低限再多规定一件,总的利润将减少元。
(4)目标函数系数范围表明新产品Ⅰ的利润在元/件以上,新产品Ⅱ的利润在到之间,新产品Ⅲ的利润在以下,上述的最佳方案不变。
(5)常数项范围表明铣床的可用条件在460到692工时之间、车铣床的可用条件在206工时以上、磨铣床的可用条件在18到165工时之间、新产品Ⅲ产量限制在30件以内。
各自每增加一个工时对总利润的贡献元,0元,元,元不变。
某铜厂轧制的薄铜板每卷宽度为100cm,现在要在宽度上进行切割以完成以下订货任务:32cm的75卷,28cm的50卷,22cm的110卷,其长度都是一样的。
问应如何切割可使所用的原铜板为最少解:本问题是一个套材下料问题,用穷举法找到所有可能切割的方式并建立数学模型:min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10. 3x1+2x2+2x3+x4+x5+x6≥75x2+2x4+x6+3x7+2x8+x9≥50x3+3x5+x6+2x8+3x9+4x10≥110x i≥0 (i=1,2…..10)用Excel线性规划求解模型板求解:最优解:(,0,0,0,20,0,,0,0,0),最优值:因为铜板切割时必须整卷切割所以需要做整数近似。
即其结果为:即最优解:(19 ,0,0,0,20,0,,0,0,0),最优值:64灵敏度分析报告:目标函数最优值为:变量最优解相差值x1 0x2 0 .056x3 0 .111x5 20 0x6 0 .167x7 0 .167x8 25 0x9 0 .056x10 0 .111约束松弛/剩余变量对偶价格1 02 03 0目标函数系数范围:变量下限当前值上限x1 .75 1x2 .944 1 无上限x3 .889 1 无上限x4 .889 1 无上限x5 .833 1x6 .833 1 无上限x7 .833 1 无上限x8 .444 1x9 .944 1 无上限x10 .889 1 无上限常数项数范围:约束下限当前值上限1 20 75 无上限2 0 50 1103 50 110 275这是一个统计型的线性规划问题,所以分析价值系数的取值范围和相差都没有意义。
松弛/剩余变量都为0,表示最优方案已达到三种规格薄铜板数量的最低限。
三个约束条件的对偶价格、、分别表示三种规格薄铜板数量的最低限再增加一个,将增加原铜板.333cm、.278cm、.222cm。
这个数字实际跟薄铜板长度规格相一致。
常数项数范围表示三种规格薄铜板数量的最低限在这些范围内,每增一个限额所原原铜板.333cm、.278cm、.222cm不变。
这里需要特别指出的是,第一种规格的薄铜板32cm宽,已使三块组合就能比较恰当地用完原铜板,所以这种规格的薄铜板无论增加多少,都不改变用原铜板的比例。
某医院对医生工作的安排为4小时一个工作班次,每人要连续工作二个班次。
各班次需要医生人数如下表:其中,第6班报到的医生要连续上班到第二天的第1班。
问在各班开始时应该分别有几位医生报到。
若参加1、2、6班的医生需要支付夜班津贴,为了使支付总的夜班津贴为最少,应如何安排各班开始时医生的报到人数。
解:第一步:不考虑夜班津贴。
线性规划数学模型为:min f=x1+x2+x3+x4+x5+x6. x6+x1≥4x1+x2≥7x2+x3≥9x3+x4≥12x4+x5≥8x5+x6≥6x i≥0(i=1,2,3,4,5,6)用Excel线性规划求解模板求解得:第一班安排7人,第三班安排10人,第四班安排2人,第五班安排6人,第二、第六班不安排人。
总人数为25人。
灵敏度分析报告:目标函数最优值为: 25变量最优解相差值x1 7 0x2 0 0x3 10 0x4 2 0x5 6 0x6 0 0约束松弛/剩余变量对偶价格1 3 .02 0 -13 1 .04 0 --15 0 . 06 0 --1目标函数系数范围:变量下限当前值上限x1 0 .1 1x2 1 1 无上限.x3 0 . 1 1x4 1 . 1 2x5 0 1 1x6 1 1 无上限常数项数范围:约束下限当前值上限1 无下限 4 72 4 7 无上限3 无下限9 104 11 12 无上限5 6 8 96 5 6 8松弛/剩余变量一栏就是上表的“多余人数”一列是各时间段安排所剩余的人数。
“对偶价格”一栏。
第一个常数项由4增加到5,因为还剩下2人,所以不会改变最优值;第二个常数项由7增加到8,因为再没有剩余的人,所以本班必须再多安排一个人最优值解也必须增加1,因为是求最小化问题,所以对偶价格为-1;第三个常数项由9增加到10,刚好将原来剩余的人用上,所以不会改变最优值;第四个、第六个常数项与第二个常数项一样;第五个常数项由2增加到3,因为再没有剩余的人,所以本班必须再多安排一个人,但下个班就可以再少安排一个人,所以不会改变最优值;本题的这种情况是每一个变量都会影响到两个时段的结果,所以在进行灵敏度分析时也必定要考虑这个因素,这里第一个时段是特殊情况(有资源剩余),其余的时段分析时相邻两个是相互影响的。
因此,第2时段为-1,第3时段为0,后面的依次相反。
若第2时段为0,则第3时段就为-1。
第二步:考虑夜班津贴。
线性规划数学模型为:min f=x1+x2+x3+x5+x6. x6+x1≥4x1+x2≥7x2+x3≥9x3+x4≥12x4+x5≥8x5+x6≥6x i≥0(i=1,2,3,4,5,6)用Excel线性规划求解模板求解得:即:总人数还是25人,但每班安排人数有所调整:第一班不安排人,第二班安排7人,第三班安排2人,第四班安排10人,第五班安排0人,第六班安排6人。
灵敏度分析报告:目标函数最优值为: 15变量最优解相差值x1 0 1x2 7 0x3 2 0x4 10 0x5 0 0x6 6 0约束松弛/剩余变量对偶价格1 2 02 0 03 0 -14 0 05 2 06 0 -1目标函数系数范围:变量下限当前值上限x1 0 1 无上限x2 1 1 2x3 0 1 1x4 0 0 1x5 1 1 无上限x6 0 1 1常数项数范围:约束下限当前值上限1 无下限 4 62 5 7 93 7 9 114 10 12 无上限5 无下限8 106 4 6 无上限这是一统计型线性规划规划问题,所以相差值的价值系数的变化范围没有必要分第一个常数项由4增加到5,因为还剩下2人,所以不会改变最优值;第二个常数项由7增加到8,由于上段时间已增一个人,这个人本班还上班,所以本也不需要增加人。
第三个常数项由9增加到10,前面安排的人都已下班,本班刚好只朋9人,若需求再增加一人,就需要新安排一人所以对偶价格-1;第四个、第五个、第六个常数项与前三个常数项一样;某塑料厂要用四种化学配料生产一种塑料产品,这四种配料分别由A、B、C三种化学要配制的塑料产品中,要求含有20%的原料A,不少于30%的材料B和不少于20%的原料C。