基于极坐标的牛顿拉夫逊潮流计算
基于极坐标的牛顿拉夫逊潮流计算

基于极坐标的牛顿拉夫逊潮流计算
极坐标牛顿拉夫逊潮流(PNF)计算也称为极坐标矢量法,是一种利用
极坐标变换计算复杂电力系统潮流的数值计算方法。
极坐标牛顿拉夫逊潮
流计算把复杂的三相系统潮流变换为一种简单的极坐标系统,把潮流计算
变换为水平和垂直运动,而每一个潮流方程只需要解决一个联立方程,从
而大大简化了潮流计算的复杂性。
极坐标牛顿拉夫逊潮流计算首先把潮流计算分为两部分,第一部分是
极坐标系变换,把复杂的三相系统潮流变换为一种简单的极坐标系统,这
部分计算主要包括把直流潮流变换为极坐标系统、设置极坐标参数等步骤;第二部分是牛顿拉夫逊潮流计算,即基于极坐标系统解决潮流方程。
牛顿
拉夫逊潮流计算的核心部分是极坐标潮流模型,包括水平潮流模型和垂直
潮流模型。
极坐标牛顿拉夫逊潮流计算的优势主要体现在潮流计算过程简单、求
解效率高。
基于极坐标的牛顿拉夫逊法潮流计算设计

基于极坐标的牛顿拉夫逊法潮流计算设计极坐标的牛顿拉夫逊法潮流计算是一种在电力系统分析中广泛使用的方法。
它通过使用极坐标来表示节点电压和角度,对电力系统的潮流进行计算。
这种方法具有计算速度快、收敛性好等优点,在实际工程中具有很高的实用性。
首先,我们需要明确定义该计算的目标。
潮流计算的目标是计算电力系统中各个节点的电压幅值和相角,以及系统中每一根支路上的潮流大小和方向。
这些计算结果可以帮助我们了解电力系统中的潮流分布情况,并为系统的运行与调度提供指导。
极坐标的牛顿拉夫逊法潮流计算的核心思想是通过迭代计算节点的电压幅值和相角,最终使得系统总功率平衡和节点潮流满足潮流方程。
这个方法的基本步骤可以总结为以下几步:1.初始化电压幅值和相角:首先,我们需要对电力系统中各个节点的电压幅值和相角进行初始化。
这可以通过读取系统的初始状态或者通过简化的方法进行估算得到。
2.计算节点注入功率:根据节点电压和相角,以及负载和发电机的参数,计算每个节点的注入功率(即电流乘以电压的复数形式)。
这个计算可以使用潮流方程进行表达。
3.计算雅可比矩阵:根据节点注入功率的变化对节点电压的变化进行线性近似,得到雅可比矩阵。
雅可比矩阵的元素可以通过潮流方程的偏导数计算得到。
4.解线性方程:通过雅可比矩阵和节点注入功率的计算结果,求解线性方程组。
这个方程组的解表示节点电压的变化量。
5.更新节点电压:根据线性方程组的解,更新节点的电压幅值和相角。
6.检查收敛准则:判断节点电压的更新是否符合收敛准则。
如果不满足准则,返回步骤4;如果满足准则,继续下一步。
7.计算支路潮流:根据节点电压幅值和相角,以及支路的参数,计算每一根支路上的潮流大小和方向。
这个计算可以使用潮流方程进行表达。
8.检查潮流误差:判断计算得到的支路潮流是否与预期的值相符合。
如果不符合,则调整节点电压,并返回步骤4;如果符合,则计算结束。
上述步骤中的潮流方程可以根据电力系统的拓扑结构和支路参数,以及节点电压和功率注入的情况,进行建模和推导。
基于极坐标的牛顿拉夫逊法潮流计算设计

毕业设计基于极坐标的牛顿-拉夫逊法潮流计算摘要潮流计算是电力系统最基本的计算功能,其基本思想是根据电力网络上某些节点的已知量求解未知量,潮流计算在电力系统中有着独特的作用。
它不仅能确保电力网络能够正常的运行工作、提供较高质量的电能,还能在以后的电力系统扩建中各种计算提供必要的依据。
计算潮流分布的方法很多,本设计主要用的是基于极坐标的牛顿-拉夫逊法。
根据电力系统网络的基本知识,构建出能代表电力系统系统网络的数学模型,然后用牛顿—拉夫逊法反复计算出各个接点的待求量,直到各个节点的待求量满足电力系统的要求。
我们可以画出计算框图,用MATLAB编写出程序,来代替传统的手算算法。
复杂电力系统是一个包括大量母线、支路的庞大系统。
对这样的系统进行潮流分析时,采用人工计算的方法已经不再适用。
计算机计算已逐渐成为分析复杂系统潮流分布的主要方法。
本设计中还用了一个五节点的电力系统网络来验证本设计在实际运行中的优越性。
关键词:牛顿-拉夫逊法,复杂电力系统,潮流计算The method of Newton- Raphson based on polarABSTRACTPower system load flow calculation is the most basic computing functions, the basic idea is based on some of the electricity network nodes to solve the unknown quantity of known volume,In power system, power flow, which can ensure that electrical net can work well and give the high quality power, but also later provide the necessary datas in the enlargement of the power system. has special function.There are lots of methods about power flow. We mainly use the method of Newton-Raphson based on polar in my design. According to the basic knowledge of the electrical network, we established the mathematics model which can presents the power system ,then computed again and again unknown members of the each bus with the method of Newton-RaphSon until the unknown numbers meet the demand of the power system. We can write down the block diagram and write the order with the Matlab in place of the traditional methods. Complex power system is a large system which involves lots of bus bars and branches. We also chose a five-bus power system for testing the advantages in the relity.KEY WORDS: Newton-Raphson,power system,power flow目录前言 (1)第一章电力系统潮流计算的基本知识 (2)1.1潮流计算的定义及目的 (2)1.2潮流计算方法的发展及前景 (2)第二章潮流计算的节点 (5)2.1 节点的分类 (5)2.2潮流问题变量的约束条件 (7)第三章电力网络的数学模型 (8)3.1 节点导纳矩阵的形成 (9)3.2 节点导纳矩阵的修改 (9)第四章潮流计算的原理 (12)4.1 牛顿-拉夫逊法 (12)第五章计算实例 (17)5.1算例 (17)5.2 节点导纳的形成 (17)5.3 计算结果 (18)结论 (20)谢辞 (22)参考文献 (23)附录 (24)计算程序 (25)外文资料翻译 (41)前言潮流计算是电力系统中应用最广泛和最重要的一种电气计算。
基于极坐标的牛顿拉夫逊法潮流计算设计

基于极坐标的牛顿拉夫逊法潮流计算设计极坐标是一种非常有效的数学工具,可用于描述圆形或球形的物体。
在潮流计算中,借助极坐标可以更准确地描述电网中节点之间的电流和电压。
牛顿拉夫逊法(Newton-Raphson method)是一种数值计算方法,用于求解非线性方程组。
在潮流计算中,我们需要求解电网中节点的电压相位和模值,这可以通过牛顿拉夫逊法进行迭代计算。
潮流计算的目标是确定电网中各个节点的电压相位和模值,以及支路中的电流大小和相位差。
利用极坐标可以更直观地表示电流和电压的相位差。
在设计基于极坐标的牛顿拉夫逊法潮流计算时,首先需要建立电网的节点导纳矩阵和负荷模型。
然后,可以开始迭代计算,以下是该方法的步骤:1.初始化节点电压的相位和模值。
可以使用已知的节点电压作为初始猜测值。
2.计算节点注入功率,包括负荷注入功率和支路注入功率。
3.计算节点电流注入向量,通过求解节点电压和节点注入功率之间的关系。
4.根据电流注入向量,计算雅可比矩阵。
雅可比矩阵描述了节点电流注入向量与节点电压之间的关系。
5.利用雅可比矩阵和节点电流注入向量,求解节点电压的变化量。
可以使用牛顿迭代公式进行计算。
6.更新节点电压,计算新的节点电压值。
7.判断节点电压是否收敛。
如果未收敛,返回步骤4进行下一次迭代;如果已收敛,结束迭代过程。
通过以上迭代计算,可以求得电网中各个节点的电压相位和模值。
基于极坐标的计算结果可以更清晰地展示节点之间的电流和电压关系,有助于对电网的运行状态进行分析和优化。
综上所述,基于极坐标的牛顿拉夫逊法潮流计算设计十分可行和有效。
该方法能够提供更准确的节点电压和电流信息,有助于电力系统的运行控制和优化。
《电力系统分析》课程设计-极坐标表示的牛顿拉夫逊法潮流计算程序设计

目录1任务书 (2)2.模型简介及等值电路 (3)3.设计原理 (4)4.修正方程的建立 (6)5.程序流程图及MATLAB程序编写 (8)6.结果分析 (14)7.设计总结 (17)8.参考文献 (17)《电力系统分析》课程设计任务书题目极坐标表示的牛顿拉夫逊法潮流计算程序设计学生姓名学号专业班级电气工程及其自动化设计内容与要求1. 设计要求掌握MATLAB语言编程方法;理解和掌握运用计算机进行潮流计算的基本算法原理;针对某一具体电网,进行潮流计算程序设计。
其目的在于加深学生对电力系统稳态分析中课程中基本概念和计算方法的理解,培养学生运用所学知识分析和解决问题的能力。
2. 内容1)学习并掌握MATLAB语言。
2)掌握变压器非标准变比概念及非标准变比变压器的等值电路。
掌握节点导纳矩阵的概念及导纳矩阵的形成和修改方法。
3)掌握电力系统功率方程、变量和节点分类。
4)掌握利用极坐标表示的牛-拉法进行潮流计算的方法和步骤。
5)选择一个某一具体电网,编制程序流程框图。
6)利用MATLAB语言编写该模型的潮流计算程序,并上机调试程序,对计算结果进行分析。
7)整理课程设计论文。
起止时间2013 年7 月 4 日至2013 年7月10日指导教师签名年月日系(教研室)主任签名年月日学生签名年月日2 模型简介及等值电路 2.1 课程设计模型:模型3电力网络接线如下图所示,各支路阻抗标幺值参数如下:Z12=0.02+j0.06,Z13=0.08+j0.24, Z23=0.06+j0.18, Z24=0.06+j0.12, Z25=0.04+j0.12, Z34=0.01+j0.03, Z45=0.08+j0.24, k=1.1。
该系统中,节点1为平衡节点,保持11.060V j =+&为定值;节点2、3、4都是PQ 节点,节点5为PV 节点,给定的注入功率分别为:20.200.20S j =+,3-0.45-0.15S j =,40.400.05S j =--,50.500.00S j =-+,5 1.10V =&。
基于极坐标的牛顿拉夫逊潮流计算

前言电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行件及系统接线情况确定整个电力系统各部分的运行状态。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量分析、比较供电方案或运行方式的合理性、可靠性和经济性。
本次课程设计任务是闭式网络的潮流计算,用到的方法为牛顿拉夫逊极坐标法潮流计算。
牛顿法是数学中解决非线性方程式的典型方法,有较好的收敛性。
解决电力系统潮流计算问题是以导纳距阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数距阵的稀疏性,就可以大大提高牛顿法潮流程序的放率。
自从20 世纪60 年代中期利用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、速度方面都超过了阻抗法,成为直到目前仍在广泛采用的优秀方法。
目录1任务书 (2)2.模型简介及等值电路 (3)3.设计原理 (4)4.修正方程的建立 (7)5.程序流程图及MATLAB程序编写 (9)6.结果分析 (15)7.设计总结 (25)8.参考文献 (26)《电力系统分析》课程设计任务书2 模型简介及等值电路2.1 课程设计模型:模型3电力网络接线如下图所示,各支路阻抗标幺值参数如下:Z12=0.02+j0.06,Z13=0.08+j0.24, Z23=0.06+j0.18, Z24=0.06+j0.12, Z25=0.04+j0.12,Z34=0.01+j0.03, Z45=0.08+j0.24, k=1.1。
该系统中,节点1为平衡节点,保持为定值;节点2、3、4都是PQ节点,节点5为PV节点,给定的注入功率分别为:,,,,。
各节点电压(初值)标幺值参数如下:节点 1 2 3 4 5Ui(0)=ei(0)+jfi(0) 1.06+j0.0 1.0+j0.0 1.0+j0.0 1.0+j0.0 1.1+j0.0 计算该系统的潮流分布。
计算精度要求各节点电压修正量不大于10-5。
图2-12.2模型分析节点类型介绍按变量的不同,一般将节点分为三种类型。
牛顿、拉夫逊法在潮流计算中的应用

牛顿-拉夫逊法在潮流计算中的应用简介牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
由于便于编写程序用计算机求解,应用较广。
下面以一元非线性代数方程的求解为例,来说明牛顿-拉夫逊法的基本思想。
设欲求解的非线性代数方程为f(x)=o设方程的真实解为x*,则必有f(x*)=0。
用牛顿-拉夫逊法求方程真实解x*的步骤如下:首先选取余割合适的初始估值x°作为方程f(x)=0的解,若恰巧有f(x°)=0,则方程的真实解即为x*= x°若f(x°)≠0,则做下一步。
取x¹=x°+Δx°为第一次的修正估值,则f(x¹)=f(x°+Δx°)其中Δx°为初始估值的增量,即Δx°=x¹-x°。
设函数f(x)具有任意阶导数,即可将上式在x°的邻域展开为泰勒级数,即:f(x¹)=f(x°+Δx°)=f(x°)+f'(x°)Δx°+[f''(x°)(Δx°)2]/2+…若所取的|Δx°|足够小,则含(Δx°)²的项及其余的一切高阶项均可略去,并使其等于零,即:f(x¹)≈f(x°)+f'(x°)Δx°=0Δx°=-f(x°)/f'(x°)x¹= x°-f(x°)/f'(x°)可见,只要f'(x°)≠0,即可根据上式求出第一次的修正估值x¹,若恰巧有f(x¹)=0,则方程的真实解即为x*=x¹。
牛顿-拉夫逊算法(极坐标)潮流计算算例

极坐标系下的潮流计算
潮流计算
在电力系统中,潮流计算是一种常用的计算方法,用于确定在给定网络结构和参数下,各节点的电压 、电流和功率分布。在极坐标系下进行潮流计算,可以更好地描述和分析电力系统的电磁场分布和变 化。
极坐标系下的潮流计算特点
在极坐标系下进行潮流计算,可以更直观地描述电力线路的走向和角度变化,更好地反映电力系统的 复杂性和实际情况。此外,极坐标系下的潮流计算还可以方便地处理电力系统的非对称性和不对称故 障等问题。
03
CATALOGUE
极坐标系下的牛顿-拉夫逊算法
极坐标系简介
极坐标系
一种二维坐标系统,由一个原点(称为极点)和一条从极点出发的射线(称为 极轴)组成。在极坐标系中,点P的位置由一个角度θ和一个距离r确定。
极坐标系的应用
极坐标系广泛应用于物理学、工程学、经济学等领域,特别是在电力系统和通 信网络中,用于描述电场、磁场、电流和电压等物理量的分布和变化。
极坐标形式
将电力系统的节点和支路参数以极坐 标形式表示,将实数问题转化为复数 问题,简化计算过程并提高计算效率 。
02
CATALOGUE
牛顿-拉夫逊算法原理
算法概述
牛顿-拉夫逊算法是一种迭代算法,用于求解非线性方程组。在电力系统中,它 被广泛应用于潮流计算,以求解电力网络中的电压、电流和功率等参数。
准确的结果。
通过极坐标系的处理,算法 能够更好地处理电力系统的 复杂结构和不对称性,提高 了计算的准确性和适应性。
算例分析表明,该算法在处理 大规模电力系统时仍具有较好 的性能,能够满足实际应用的
需求。
展望
进一步研究牛顿-拉夫逊算法在极坐标 系下的收敛性分析,探讨收敛速度与电 力系统规模、结构和参数之间的关系, 为算法的优后的电压、电流和功 率等参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行件及系统接线情况确定整个电力系统各部分的运行状态。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量分析、比较供电方案或运行方式的合理性、可靠性和经济性。
本次课程设计任务是闭式网络的潮流计算,用到的方法为牛顿拉夫逊极坐标法潮流计算。
牛顿法是数学中解决非线性方程式的典型方法,有较好的收敛性。
解决电力系统潮流计算问题是以导纳距阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数距阵的稀疏性,就可以大大提高牛顿法潮流程序的放率。
自从20 世纪60 年代中期利用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、速度方面都超过了阻抗法,成为直到目前仍在广泛采用的优秀方法。
目录1任务书 (2)2.模型简介及等值电路 (3)3.设计原理 (4)4.修正方程的建立 (7)5.程序流程图及MATLAB程序编写 (9)6.结果分析 (15)7.设计总结 (25)8.参考文献 (26)《电力系统分析》课程设计任务书2 模型简介及等值电路2.1课程设计模型:模型3电力网络接线如下图所示,各支路阻抗标幺值参数如下:Z12=0.02+j0.06,Z13=0.08+j0.24,Z23=0.06+j0.18,Z24=0.06+j0.12,Z25=0.04+j0.12,Z34=0.01+j0.03,Z45=0.08+j0.24,k=1.1。
该系统中,节点1为平衡节点,保持11.060V j=+为定值;节点2、3、4都是PQ节点,节点5为PV节点,给定的注入功率分别为:20.200.20S j=+,3-0.45-0.15S j=,40.400.05S j=--,50.500.00S j=-+,51.10V =。
各节点电压(初值)标幺值参数如下:节点 1 2 3 4 5Ui(0)=ei(0)+jfi(0)1.06+j0.0 1.0+j0.0 1.0+j0.0 1.0+j0.0 1.1+j0.0 计算该系统的潮流分布。
计算精度要求各节点电压修正量不大于10-5。
图2-12.2模型分析节点类型介绍按变量的不同,一般将节点分为三种类型。
1 PQ节点这类节点的有功功率和无功功率是给定的,节点(,)Vδ是待求量。
通常变电所都是这一类型节点。
由于没有发电设备,故其发电功率为零。
有些情况下,系统中某些发电厂输出的功率在一段时间内是固定时,该发电厂母线也作为PQ节点。
因此,电力系统中绝大多数节点属于这一类型。
2 PV节点这类节点有功功率P和电压幅值V是给定的,节点的无功功率Q和电压的相位δ是待求量。
这类节点必须有足够的可调无功容量,用以维持给定的电压幅值,因此又称为电压控制节点。
一般选择有一定无功储备的发电厂和具有可调无功电源设备的变电所作为PV节点。
3 平衡节点在潮流分布算出以前,网络中的功率损耗是未知的,因此,网络中至少有一个节点的有功功率P不能给定,这个节点承担了系统系统的有功功率平衡,故称之为平衡节点。
1.2、各节电参数:由模型中所给列出下表:各节点电压和注入功率(初值)标幺值参数如下:各节点之间的导纳:y12=5.000-j15.000,y13=1.2500-j3.7500,y22=0.2750-j0.8250,y23=1.667-j5.000,y24=3.333-j6.667,y25=2.7500-j8.2500,y34=10.0000-j30.0000,y55=-0.25+j0.751.3 等值电路模型由于计算时一般将平衡节点放到最大编号,故在本模型中将节点2、3、4、5、1分别替换为节点1、2、3、4、5,也即是4换为PV节点,5为平衡节点。
将变压器用等值电路,由此绘制等值电路如下:y12=1.667-j5,y13=3.333-j6.667,y14=2.75-j8.25,y15=5-j15,y52=1.25-j3.75,y23=10-j30,y34=1.25-j3.75,y11=0.275-j0.825,y44=-0.25+j0.75。
2.3 等值电路模型在图2-2中,将图2-1中的编号重新编排,节点2、3、4、5、1替换为1、2、3、4、5。
则各节点之间的导纳变为y12=1.667-j5,y13=3.333-j6.667,y14=2.75-j8.25,y15=5-j15,y52=1.25-j3.75,y23=10-j30,y34=1.25-j3.75,y11=0.275-j0.825,y44=-0.25+j0.75。
3 设计原理本题采用了题目要求的牛顿-拉夫逊潮流计算的方法。
牛顿法是数学中解决非线性方程式的典型方法,有较好的收敛性。
解决电力系统潮流计算问题是以导纳距阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数距阵的稀疏性,就可以大大提高牛顿法潮流程序的放率。
3.1潮流计算的定解条件题中所给图表示一个五节点的简单电力系统,n 个节点电力系统的潮流方程的一般形式是..1n i ij ij j iP jQ V Y V =-=∑ (1,2,3,...)i n =或..1nj i i i ij j V P jQ V Y =+=∑ (1,2,3,...)i n =3.2潮流计算的约束条件(1)所有节点电压必须满足min max i i V V V ≤≤(2)所有电源节点的有功功率和无功功率必须满足min max min max}Gi Gi Gi Gi Gi Gi P P P Q Q Q ≤≤≤≤(3)某些节点之间的电压应满足max i j i j δδδδ-<-3.3牛顿-拉夫逊的基本原理设欲求解的非线性代数方程为()0f x =设方程的真实解为x ,则必有()0f x =。
用牛顿-拉夫逊法求方程真实解x 的步骤如下:首先选取余割合适的初始估值(0)x 作为方程(0)()0f x =的解,若恰巧有(0)()0f x =,则方程的真实解即为(0)x x =若(0)()0f x ≠,则做下一步。
取(1)(0)(0)x x x =+∆ 则(1)(0)(0)()()f x f x x =+∆其中(0)x∆为初始估值的增量,即(0)(1)(0)x x x ∆=-。
设函数()f x 具有任意阶导数(1)(0)(0)(0)'(0)(0)''(0)(0)2()()()()[()]/2...f x f x x f x f x x f x x =+∆=+∆+∆+若所取的(0)x ∆足够小,则含(0)2()x ∆的项及其余的一切高阶项均可略去,并使其等于零,即:(1)(0)(0)(0)'(0)(0)()()()()0f x f x x f x f x x =+∆≈+∆= 故得(0)(0)'(0)()()f x xf x ∆=-可见,只要'(0)()f x ≠0,即可根据上式求出第一次的修正估值(1)x ,若恰巧有(1)()f x =0,则方程的真实解即为(1)x x =。
若(1)()0f x ≠,则用上述方法由(1)x 再确定第二次的修正估值。
如此反复叠代下去,直到求得真实解x 为止。
设第K 次的估值为第(K+1)次的修正估值,则有()(1)()'()()()k k k k f x xxf x +=-迭代过程的收敛数据为1()()k f x ε<或2()k x ε∆<其中,1ε,2ε为预先给定的小正数。
4 修正方程的建立极坐标表示的牛拉法修正方程为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∆∆∆∆∆∆∆∆∆∆∆∆δδδδn Pnn np n n n n pn pp P P P P n p n p np n p n P U U U U H H N H N H H H N H N H J J L J L J H H N H N H J J L J L J H H N H N H P P Q P Q P 2221112211221122222221212222222121111212111111121211112211// 式中留出了(n-m )行空格和(n-m )列空列。
式中的有功,无功功率不平衡量Q Pii∆∆.分别由式(3-1a ),式(3-1b )可得为∑==+-=∆nj j ij ij ij ij i i B G U U P P 1j i sin cos )(δδ∑==--=∆nj j ij ij ij ij i i B G U U Q Q 1j i cos sin )(δδ (3-1a ,b )而式中雅可比矩阵的各个元素则分别为 j i P H δ∂∂=ij ;j j i ij U U P N ∂∂=;j i Q J δ∂∂=ij ; j jiij U U Q L ∂∂= (3-2) 式(4-44)中将i U ∆改为/i i U U ∆只是为使公式(4-46)中个偏导数的表示形式上更相似,为求取这些偏导数,可将i P 、i Q 分别展开如下()()2121cos sin sin cos j ni iii i j ij ij ij ij j j i j ni iii i j ij ij ij ij j j iP U G U U G B Q U B U U G B δδδδ==≠==≠=++=-+-∑∑ (3-3a,b )计及cos cos()sin()sin ()sin sin()cos()cos ()cos cos()sin()sin ()sin sin()cos()cos ()iji j i j ijj i j ij i j i j ij j i j ij i j i j ij i i j ij i j i j ij i i j δδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδ∂∂-⎫==-=∂-∂-∂∂-==--=-∂-∂-⎬∂∂-==--=-∂∂-∂∂-==-=∂∂-⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭(3-4)j i ≠时,由于对特定的j ,只有该特定节点的j δ,从而特定的ij i j δδδ=-是变量,由式(4-46)到式(4-48)可得()()sin cos cos sin i ij i j ij ij ij ij j iij i j ij ij ij ij i P H U U G B Q J U U G B δδδδδδ∂⎫==-⎪∂⎪⎬∂⎪==-+⎪∂⎭(3-5a )相似的,由于对特定的j ,只有该特定节点的j U 是变量,可得()()cos sin sin cos i ij i j ij ij ij ij i iij i j ij ij ij ij jP N U U G B U Q L U U G B U δδδδ∂⎫==+⎪∂⎪⎬∂⎪==-⎪∂⎭ (3-5b ) j=i 时,由于i δ是变量,所有ij i j δδδ=-都是变量,可得()()11sin cos cos sin j niii i j ij ij ij ij j i j i j niii i j ij ij ij ij j i j i P H U U G B Q J U U G B δδδδδδ==≠==≠⎫∂==--⎪∂⎪⎪⎬∂⎪==+⎪∂⎪⎭∑∑ (3-5c ) 相似的,由于i U 是变量,可得()()2121cos sin 2sin cos 2j niii i j ij ij ij ij i ii j i j i j niii i j ij ij ij ij i ii j i j i P N U U G B U G U Q L U U G B U B U δδδδ==≠==≠⎫∂==++⎪∂⎪⎪⎬∂⎪==--⎪∂⎪⎭∑∑ (3-5d )5 设计流程图及程序的编写程序中用到的符号所代表的意义:Y 代表导纳矩阵JJ 代表雅克比矩阵∆pp代表有功功率的不平衡量P i∆qq 代表无功功率的不平衡量Q i∆Uuu 代表各节点电压和相角的不平衡量δ∆U 代表各节点的电压S 代表线路的功率Q4 代表PV节点的注入无功功率K 代表迭代次数N1 代表PQ节点和PV节点的总数m,n代表系统中的节点总数,把平衡节点标为最大号S5 平衡节点功率d 变压器对地导纳%The following program for load calculation is based on MATLAB6.5 %以下部分为输入原始数据(到标示‘///’标志为止)。