牛顿——拉夫逊法进行潮流计算
牛顿拉夫逊法潮流计算

牛顿拉夫逊法潮流计算 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】摘要本文,首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。
众所周知,电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。
在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。
此外,在进行电力系统静态及暂态稳定计算时,要利用潮流计算的结果作为其计算的基础;一些故障分析以及优化计算也需要有相应的潮流计算作配合;潮流计算往往成为上述计算程序的一个重要组成部分。
以上这些,主要是在系统规划设计及运行方式安排中的应用,属于离线计算范畴。
牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次数少。
本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,最后介绍了利用MTALAB程序运行的结果。
关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLABABSTRACTThis article first introduces the flow calculation based on the principle of MALAB Bank of China, meaning, and then use specific examples, a brief introduction, how to use MALAB to the flow calculation in power systems.As we all know, is the study of power flow calculation of power system steady-state operation of a calculation, which according to the given operating conditions and system wiring the entire power system to determine the operational status of each part: the bus voltage flowing through the components power, system power loss and so on. In power system planning power system design and operation mode of the current study, are required to quantitatively calculated using the trend analysis and comparison of the program or run mode power supply reasonable, reliability and economy.In addition, during the power system static and transient stability calculation, the results of calculation to take advantage of the trend as its basis of calculation; number of fault analysis and optimization also requires a corresponding flow calculation for cooperation; power flow calculation program often become the an important part. These,mainly in the way of system design and operation arrangements in the application areas are off-line calculation.Newton - Raphson power flow calculation in power system is one commonly used method, it is good convergence of the iteration number of small, introduce the trend of computer-aided power system analysis of the basic knowledge and power flow Newton - Raphson method, introduced by the last matlab run results.Keywords:power system flow calculation, Newton – Raphson method, matlab目录1 绪论课题背景潮流计算是研究电力系统的一种最基本和最重要的计算,最初,电力系统潮流计算是通过人工手算的,后来为了适应电力系统日益发展的需要,采用了交流计算台。
牛顿拉夫逊法计算潮流步骤

牛顿拉夫逊法计算潮流步骤牛顿拉夫逊法(Newton-Raphson Method)是一种常用于计算潮流的数值求解方法。
它是基于潮流计算的功率流方程的非线性特性而设计的,通过迭代求解来逼近潮流计算的稳态解。
下面将介绍牛顿拉夫逊法计算潮流的基本步骤。
首先,我们需要明确潮流计算的目标,即确定电力系统中各节点的电压相角和幅值。
这些节点是电力系统中的发电机、负荷和交流输电线路的连接点。
通过潮流计算,我们可以得到各节点的电压相角和幅值,从而分析系统的功率分布、电压稳定性等运行特性。
接下来,我们需要建立电力系统的潮流计算模型。
这个模型中,我们需要考虑发电机的注入功率、负荷的吸收功率、线路的传输损耗等因素。
通过利用功率流方程,我们可以将这些因素表示为电压、功率和导纳之间的方程。
然后,我们需要进行初始化操作。
在进行牛顿拉夫逊法迭代计算之前,我们需要对电力系统的各节点进行初始电压值的设定。
这些初始值可以根据经验或者历史数据来得到,但需要满足物理约束条件,如一致性、电压幅值在合理范围内等。
接下来,我们进入迭代计算的过程。
首先,我们需要对系统的节点进行编号,然后选择某一节点作为基准节点,其他节点相对于基准节点的电压相角进行计算。
然后,我们根据节点注入功率和导纳矩阵的关系,得到节点注入电流。
接着,我们根据节点注入电流和电压相角的关系,计算各节点的电压相角和幅值的改变量。
在计算改变量后,我们需要对节点电压进行更新。
更新后,我们判断系统是否达到收敛条件。
如果满足收敛条件,则停止迭代,得到最终的潮流计算结果;如果不满足收敛条件,则继续进行下一轮迭代计算。
最后,我们对潮流计算结果进行分析和验证。
通过比较计算得到的结果和实际运行数据进行对比,我们可以评估潮流计算的准确性。
同时,我们还可以通过故障分析、电压稳定性评估等手段对电力系统进行优化和改进。
总而言之,牛顿拉夫逊法是一种常用的求解潮流计算问题的方法。
它通过迭代求解潮流计算的功率流方程,逼近潮流计算的稳态解。
牛顿拉夫逊法计算潮流步骤

牛顿拉夫逊法计算潮流步骤牛顿拉夫逊法(Newton-Raphson method)是一种用于求解非线性方程组的迭代方法,它可以用来计算电力系统潮流的解。
潮流计算是电力系统规划和运行中的重要任务,它的目标是求解电力系统中各节点的电压幅值和相角,以及线路的功率流向等参数,用于分析电力系统的稳定性和安全性,以及进行电力系统规划和调度。
下面是使用牛顿拉夫逊法计算潮流的一般步骤:步骤1:初始化首先,需要对电力系统的各个节点(包括发电机节点和负荷节点)的电压幅值和相角进行初始化,一般可以使用其中一种估计值或者历史数据作为初始值。
步骤2:建立潮流方程根据电力系统的潮流计算模型,可以建立节点电压幅值和相角的平衡方程,一般采用节点注入功率和节点电压的关系来表示。
潮流方程一般是一个非线性方程组,包含了各个节点之间的复杂关系。
步骤3:线性化方程组将潮流方程组进行线性化处理,一般采用泰勒展开的方法,将非线性方程组变为线性方程组。
线性化的过程需要计算雅可比矩阵,即方程组中的系数矩阵。
步骤4:求解线性方程组利用线性方程组的求解方法,比如高斯消元法或LU分解法等,求解线性方程组,得到电压幅值和相角的修正量。
步骤5:更新节点电压根据线性方程组的解,更新各个节点的电压幅值和相角,得到新的节点电压。
步骤6:检查收敛性判断节点电压的修正量是否小于设定的收敛阈值,如果满足收敛条件,则停止迭代;否则,返回步骤3,循环进行线性化方程组和线性方程组的求解。
步骤7:输出结果当潮流计算收敛时,输出最终的节点电压幅值和相角,以及线路的功率流向等参数。
牛顿拉夫逊法是一种高效、快速且收敛性良好的方法,广泛应用于电力系统潮流计算。
在实际应用中,可能会遇到多次迭代或者收敛性不好的情况,此时可以采用退火技术或其他优化算法进行改进。
此外,牛顿拉夫逊法的计算也可以并行化,利用多核处理器或者分布式计算集群来加速计算过程。
总之,牛顿拉夫逊法是一种重要的潮流计算方法,通过迭代计算逼近非线性方程组的解,可以得到电力系统中各节点的电压幅值和相角,用于分析电力系统的稳定性和安全性。
潮流计算的基本算法及使用方法

潮流计算的基本算法及使用方法一、 潮流计算的基本算法1. 牛顿-拉夫逊法1.1 概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。
这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。
牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。
因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。
而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。
1.2 一般概念对于非线性代数方程组()0=x f即 ()0,,,21=n i x x x f ()n i ,2,1= (1-1)在待求量x 的某一个初始计算值()0x附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组()()()()()0000=∆'+x x f x f (1-2)上式称之为牛顿法的修正方程式。
由此可以求得第一次迭代的修正量()()()[]()()0100x f x f x -'-=∆ (1-3)将()0x ∆和()0x相加,得到变量的第一次改进值()1x 。
接着再从()1x 出发,重复上述计算过程。
因此从一定的初值()0x出发,应用牛顿法求解的迭代格式为()()()()()k k k x f x x f -=∆' (1-4)()()()k k k x x x ∆+=+1 (1-5)上两式中:()x f '是函数()x f 对于变量x 的一阶偏导数矩阵,即雅可比矩阵J ;k 为迭代次数。
由式(1-4)和式子(1-5)可见,牛顿法的核心便是反复形成求解修正方程式。
牛顿拉夫逊法潮流计算

牛顿拉夫逊法潮流计算
油田自出井管网的潮流模拟分析是油田开发运行中的重要工作,是保
证油田系统安全运行的基础性工作。
牛顿-拉夫逊法是一种经典的油田自
出井管网的潮流模拟计算方法。
本文介绍了牛顿-拉夫逊法的概念,原理,特点,以及利用牛顿-拉夫逊法求解油田自出井管网潮流问题的基本方法
和步骤。
一、牛顿-拉夫逊方法的概念
牛顿-拉夫逊法也叫牛顿-拉夫逊潮流计算法,它是一种迭代法,用于
求解牛顿-拉夫逊方程,即求解由牛顿-拉夫逊节点组成的网络中流动矢量
的幅值和相位角。
牛顿-拉夫逊方程是以节点电压和电流矢量以及节点内
的电阻和电感量建立的方程组,是油田自出井管网潮流模拟计算的基础方
程组。
牛顿-拉夫逊方程是一组非线性方程,其解依赖节点网络结构,因
此实施计算时需要迭代求解,因此被称为牛顿-拉夫逊迭代法或牛顿-拉夫
逊方法。
二、牛顿-拉夫逊方法原理
牛顿-拉夫逊方法是一种迭代法,它采用迭代新旧节点电压矢量的比
例来求解油田自出井管网潮流模拟问题,算法充分利用了网络的放大、收敛、稳定特性,每一次迭代,都可以有效地拿到更新的节点电压矢量。
牛顿—拉夫逊法在电力系统潮流计算的 应用与分析

牛顿—拉夫逊法在电力系统潮流计算的应用与分析潮流计算是电力系统进行稳定计算和故障分析的基础,可以得到各电网各节点的电压,并求得网络的潮流及网络中各元件的电力损耗,进而求得电能损耗。
随着现代电力系统的不断扩大,需要对传统的牛顿-拉夫逊法进行改进,降低初值选取的敏感性和提高收敛速度。
经典的牛顿法给定潮流计算时各节点的类型,确定导纳矩阵、修正方程和迭代收敛条件,将非线性方程组线性化为修正方程组反复迭代求解,因此收敛范围依赖电压的初值;同时求解雅克比矩阵计算量较大,影响计算速度。
1 算法原理1.1 原理介绍牛顿迭代法是取之后,找更接近的方程根,一步一步迭代,找到更接近方程根的近似根。
牛顿迭代法是求方程根的重要方法之一,最大优点是在方程的单根附近具有平方收敛,且还可用来求方程的重根、复根。
电力系统潮流计算,各个母线所供负荷的功率是已知的,各个平衡节点外的节点电压是未知的,可以根据网络结构形成节点导纳矩阵,由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转为求解非线性方程组的问题。
为便于用迭代法解方程组,需将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、未知节点电压不平衡量构成误差方程,解方程得到节点电压不平衡量,节点电压加上其不平衡量构成新的节点电压初值,将其带入原功率平衡方程,重新形成雅可比矩阵,计算新的电压不平衡量,这样不断迭代,一般迭代三到五次就能收敛。
1.2 牛顿—拉夫逊迭代法的一般步骤:(1)形成各节点导纳矩阵 Y。
(2)设节点电压的初始值 U、相角初始值 e、迭代次数初值 0。
(3)计算各节点的功率不平衡量。
(4)根据收敛条件判断是否满足,若不满足则向下进行。
(5)计算雅可比矩阵中的各元素。
(6)修正方程式节点电压。
牛顿拉夫逊法潮流计算

牛顿拉夫逊法潮流计算牛顿-拉夫逊法(Newton-Raphson method)是一种用于求解非线性方程的数值方法。
它通过迭代逼近根的方式,将非线性方程转化为一系列的线性方程来求解。
在电力系统中,潮流计算用于确定电力网中节点的电压幅值和相角。
潮流计算是电力系统分析的重要基础,可以用于计算电力系统的潮流分布、功率损耗、节点电压稳定度等参数,为电力系统的规划、运行和控制提供参考依据。
牛顿-拉夫逊法是一种常用的潮流计算方法,它的基本思想是通过不断迭代来逼近电网的潮流分布,直到满足一定的收敛条件。
下面将对牛顿-拉夫逊法的具体步骤进行详细介绍。
首先,我们需要建立电力网络的节点潮流方程,即功率方程。
对于每一个节点i,其节点功率方程可以表示为:Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij * sin(θi -θj))) = 0Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij * cos(θi -θj))) = 0其中,Pi和Qi分别为节点i的有功功率和无功功率,Vi和θi分别为节点i的电压幅值和相角,Gij和Bij分别为节点i和节点j之间的导纳和电纳。
接下来,我们需要对每个节点的电压幅值和相角进行初始化。
一般情况下,可以将电压幅值设置为1,相角设置为0。
然后,我们可以开始进行迭代计算。
在每一轮迭代中,我们需要计算每个节点的雅可比矩阵和功率残差,然后更新电压幅值和相角。
雅可比矩阵可以通过对节点功率方程进行求导得到,具体如下:dPi/dVi = -sum(Vj * (Gij * sin(θi - θj) + Bij * cos(θi - θj)))dPi/dθi = sum(Vj * (Gij * Vi * cos(θi - θj) - Bij * Vi * sin(θi - θj)))dQi/dVi = sum(Vj * (Gij * cos(θi - θj) - Bij * sin(θi - θj)))dQi/dθi = sum(Vj * (Gij * Vi * sin(θi - θj) + Bij * Vi * cos(θi - θj)))功率残差可以通过将节点功率方程代入得到,如下:RPi = Pi - Vi * (sum(Gij * cos(θi - θj)) - sum(Bij *sin(θi - θj)))RQi = Qi - Vi * (sum(Gij * sin(θi - θj)) + sum(Bij *cos(θi - θj)))最后,我们可以使用牛顿-拉夫逊法的迭代公式来更新电压幅值和相角,具体如下:Vi(new) = Vi(old) + ΔViθi(new) = θi(old) + Δθi其中,ΔVi和Δθi分别为通过求解线性方程组得到的电压幅值和相角的增量。
牛顿拉夫逊法潮流计算

摘要本文,首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。
众所周知,电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。
在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。
此外,在进行电力系统静态及暂态稳定计算时,要利用潮流计算的结果作为其计算的基础;一些故障分析以及优化计算也需要有相应的潮流计算作配合;潮流计算往往成为上述计算程序的一个重要组成部分。
以上这些,主要是在系统规划设计及运行方式安排中的应用,属于离线计算范畴。
牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次数少。
本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,最后介绍了利用MTALAB程序运行的结果。
关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLABABSTRACTThis article first introduces the flow calculation based on the principle of MALAB Bank of China, meaning, and then use specific examples, a brief introduction, how to use MALAB to the flow calculation in power systems.As we all know, is the study of power flow calculation of power system steady-state operation of a calculation, which according to the given operating conditions and system wiring the entire power system to determine the operational status of each part: the bus voltage flowing through the components power, system power loss and so on. In power system planning power system design and operation mode of the current study, are required to quantitatively calculated using the trend analysis and comparison of the program or run mode power supply reasonable, reliability and economy.In addition, during the power system static and transient stability calculation, the results of calculation to take advantage of the trend as its basis of calculation; number of fault analysis and optimization also requires a corresponding flow calculation for cooperation; power flow calculation program often become the an important part. These, mainly in the way of system design and operation arrangements in the application areas are off-line calculation.Newton - Raphson power flow calculation in power system is one commonly used method, it is good convergence of the iteration number of small, introduce the trend of computer-aided power system analysis of the basic knowledge and power flow Newton - Raphson method, introduced by the last matlab run results.Keywords:power system flow calculation, Newton – Raphson method, matlab目录1 绪论 (1)1.1 课题背景 (1)1.2 电力系统潮流计算的意义 (2)1.3 电力系统潮流计算的发展 (2)1.4 潮流计算的发展趋势 (4)2 潮流计算的数学模型 (5)2.1 电力线路的数学模型及其应用 (5)2.2 等值双绕组变压器模型及其应用 (6)2.3 电力网络的数学模型 (8)2.4 节点导纳矩阵 (9)2.4.1 节点导纳矩阵的形成 (9)2.4.2 节点导纳矩阵的修改 (10)2.5 潮流计算节点的类型 (11)2.6 节点功率方程 (12)2·7 潮流计算的约束条件 (13)3 牛顿-拉夫逊法潮流计算基本原理 (14)3.1 牛顿-拉夫逊法的基本原理 (14)3.2 牛顿-拉夫逊法潮流计算的修正方程 (17)3.3 潮流计算的基本特点 (20)3.4 节点功率方程 (21)4牛顿-拉夫逊法分解潮流程序 (22)4·1 牛顿-拉夫逊法分解潮流程序原理总框图 (22)4.2 形成节点导纳矩阵程序框图及代码 (23)4.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%本程序的功能是用牛顿——拉夫逊法进行潮流计算% B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳% 5、支路的变比;6、支路首端处于K侧为1,1侧为0% B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值% 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量% 6、节点分类标号:1为平衡节点(应为1号节点);2为PQ节点;% 3为PV节点;clear;n=10;%input('请输入节点数:n=');nl=10;%input('请输入支路数:nl=');isb=1;%input('请输入平衡母线节点号:isb=');pr=0.00001;%input('请输入误差精度:pr=');B1=[1 2 0.03512+0.08306i 0.13455i 1 0;2 3 0.0068+0.18375i 0 1.02381 1;1 4 0.05620+0.13289i 0.05382i 1 0;4 5 0.00811+0.24549i 0 1.02381 1;1 6 0.05620+0.13289i 0.05382i 1 0;4 6 0.04215+0.09967i 0.04037i 1 0;6 7 0.0068+0.18375i 0 1.02381 1;6 8 0.02810+0.06645i 0.10764i 1 0;8 10 0.00811+0.24549i 0 1 1;8 9 0.03512+0.08306i 0.13455i 1 0]B2=[0 0 1.1 1.1 0 1;0 0 1 0 0 2;0 0.343+0.21256i 1 0 0 2;0 0 1 0 0 2;0 0.204+0.12638i 1 0 0 2;0 0 1 0 0 2;0 0.306+0.18962i 1 0 0 2;0 0 1 0 0 2;0.5 0 1.1 1.1 0 3;0 0.343+0.21256i 1 0 0 2];%input('请输入各节点参数形成的矩阵:B2=');Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl);% % %---------------------------------------------------for i=1:nl %支路数if B1(i,6)==0 %左节点处于1侧p=B1(i,1);q=B1(i,2);else %左节点处于K侧p=B1(i,2);q=B1(i,1);endY(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5)); %非对角元Y(q,p)=Y(p,q); %非对角元Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2; %对角元K侧Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2; %对角元1侧end%求导纳矩阵disp('导纳矩阵Y=');disp(Y)%----------------------------------------------------------G=real(Y);B=imag(Y); %分解出导纳阵的实部和虚部for i=1:n %给定各节点初始电压的实部和虚部e(i)=real(B2(i,3));f(i)=imag(B2(i,3));V(i)=B2(i,4); %PV节点电压给定模值endfor i=1:n %给定各节点注入功率S(i)=B2(i,1)-B2(i,2); %i节点注入功率SG-SLB(i,i)=B(i,i)+B2(i,5); %i节点无功补偿量end%=================================================================== P=real(S);Q=imag(S); %分解出各节点注入的有功和无功功率ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0; %迭代次数ICT1、a;不满足收敛要求的节点数IT2 while IT2~=0 % N0=2*n 雅可比矩阵的阶数;N=N0+1扩展列IT2=0;a=a+1;for i=1:nif i~=isb %非平衡节点C(i)=0;D(i)=0;for j1=1:nC(i)=C(i)+G(i,j1)*e(j1)-B(i,j1)*f(j1);%Σ(Gij*ej-Bij*fj)D(i)=D(i)+G(i,j1)*f(j1)+B(i,j1)*e(j1);%Σ(Gij*fj+Bij*ej)endP1=C(i)*e(i)+f(i)*D(i);%节点功率P计算eiΣ(Gij*ej-Bij*fj)+fiΣ(Gij*fj+Bij*ej)Q1=C(i)*f(i)-e(i)*D(i);%节点功率Q计算fiΣ(Gij*ej-Bij*fj)-eiΣ(Gij*fj+Bij*ej) %求i节点有功和无功功率P',Q'的计算值V2=e(i)^2+f(i)^2; %电压模平方%========= 以下针对非PV节点来求取功率差及Jacobi矩阵元素========= if B2(i,6)~=3 %非PV节点DP=P(i)-P1; %节点有功功率差DQ=Q(i)-Q1; %节点无功功率差%=============== 以上为除平衡节点外其它节点的功率计算=================%================= 求取Jacobi矩阵===================for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % dP/de=-dQ/dfX2=B(i,j1)*e(i)-G(i,j1)*f(i); % dP/df=dQ/deX3=X2; % X2=dp/df X3=dQ/deX4=-X1; % X1=dP/de X4=dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;m=p+1; % X3=dQ/de J(p,N)=DQ节点无功功率差J(m,q)=X1;J(m,N)=DP;q=q+1; % X1=dP/de J(m,N)=DP节点有功功率差J(p,q)=X4;J(m,q)=X2; % X4=dQ/df X2=dp/dfelseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX3=D(i)+B(i,i)*e(i)-G(i,i)*f(i); % dQ/deX4=-C(i)+G(i,i)*e(i)+B(i,i)*f(i);% dQ/dfp=2*i-1;q=2*j1-1;J(p,q)=X3;J(p,N)=DQ;%扩展列△Qm=p+1;J(m,q)=X1;q=q+1;J(p,q)=X4;J(m,N)=DP;%扩展列△PJ(m,q)=X2;endendelse%=============== 下面是针对PV节点来求取Jacobi矩阵的元素=========== DP=P(i)-P1; % PV节点有功误差DV=V(i)^2-V2; % PV节点电压误差for j1=1:nif j1~=isb&j1~=i %非平衡节点&非对角元X1=-G(i,j1)*e(i)-B(i,j1)*f(i); % dP/deX2=B(i,j1)*e(i)-G(i,j1)*f(i); % dP/dfX5=0;X6=0;p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV; % PV节点电压误差m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6; % PV节点有功误差J(m,q)=X2;elseif j1==i&j1~=isb %非平衡节点&对角元X1=-C(i)-G(i,i)*e(i)-B(i,i)*f(i);% dP/deX2=-D(i)+B(i,i)*e(i)-G(i,i)*f(i);% dP/dfX5=-2*e(i);X6=-2*f(i);p=2*i-1;q=2*j1-1;J(p,q)=X5;J(p,N)=DV; % PV节点电压误差m=p+1;J(m,q)=X1;J(m,N)=DP;q=q+1;J(p,q)=X6; % PV节点有功误差J(m,q)=X2;endendendendend%========= 以上为求雅可比矩阵的各个元素及扩展列的功率差或电压差=====================for k=3:N0 % N0=2*n (从第三行开始,第一、二行是平衡节点)k1=k+1;N1=N; % N=N0+1 即N=2*n+1扩展列△P、△Q 或△Ufor k2=k1:N1 % 从k+1列的Jacobi元素到扩展列的△P、△Q 或△UJ(k,k2)=J(k,k2)./J(k,k);% 用K行K列对角元素去除K行K列后的非对角元素进行规格化endJ(k,k)=1; % 对角元规格化K行K列对角元素赋1%==================== 回代运算=======================================if k~=3 % 不是第三行k > 3k4=k-1;for k3=3:k4 % 用k3行从第三行开始到当前行的前一行k4行消去for k2=k1:N1 % k3行后各行上三角元素J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算(当前行k列元素消为0)end %用当前行K2列元素减去当前行k列元素乘以第k行K2列元素J(k3,k)=0; %当前行第k列元素已消为0endif k==N0 %若已到最后一行break;end%================== 前代运算==================================for k3=k1:N0 % 从k+1行到2*n最后一行for k2=k1:N1 % 从k+1列到扩展列消去k+1行后各行下三角元素J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算end %用当前行K2列元素减去当前行k列元素乘以第k行K2列元素J(k3,k)=0; %当前行第k列元素已消为0endelse %是第三行k=3%====================== 第三行k=3的前代运算========================for k3=k1:N0 %从第四行到2n行(最后一行)for k2=k1:N1 %从第四列到2n+1列(即扩展列)J(k3,k2)=J(k3,k2)-J(k3,k)*J(k,k2);%消去运算(当前行3列元素消为0)end %用当前行K2列元素减去当前行3列元素乘以第三行K2列元素J(k3,k)=0; %当前行第3列元素已消为0endendend%====上面是用线性变换方式高斯消去法将Jacobi矩阵化成单位矩阵===== for k=3:2:N0-1L=(k+1)./2;e(L)=e(L)-J(k,N); %修改节点电压实部k1=k+1;f(L)=f(L)-J(k1,N); %修改节点电压虚部end%------修改节点电压-----------for k=3:N0DET=abs(J(k,N));if DET>=pr %电压偏差量是否满足要求IT2=IT2+1; %不满足要求的节点数加1endendICT2(a)=IT2; %不满足要求的节点数ICT1=ICT1+1; %迭代次数end%用高斯消去法解"w=-J*V"disp('迭代次数:');disp(ICT1);disp('没有达到精度要求的个数:');disp(ICT2);for k=1:nV(k)=sqrt(e(k)^2+f(k)^2); %计算各节点电压的模值sida(k)=atan(f(k)./e(k))*180./pi; %计算各节点电压的角度E(k)=e(k)+f(k)*j; %将各节点电压用复数表示end%=============== 计算各输出量=========================== disp('各节点的实际电压标幺值E为(节点号从小到大排列):');disp(E); %显示各节点的实际电压标幺值E用复数表示disp('-----------------------------------------------------');disp('各节点的电压大小V为(节点号从小到大排列):');disp(V); %显示各节点的电压大小V的模值disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida); %显示各节点的电压相角for p=1:nC(p)=0;for q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q)); %计算各节点的注入电流的共轭值endS(p)=E(p)*C(p); %计算各节点的功率S = 电压X 注入电流的共轭值enddisp('各节点的功率S为(节点号从小到大排列):');disp(S); %显示各节点的注入功率disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))...-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)./B1(i,5))...-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);enddisp(Si(p,q));SSi(p,q)=Si(p,q);ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);disp('-----------------------------------------------------');enddisp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))...-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)*B1(i,5))...-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);enddisp(Sj(q,p));SSj(q,p)=Sj(q,p);ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);disp('-----------------------------------------------------');enddisp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');for i=1:nlp=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);disp(DS(i));DDS(i)=DS(i);ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);disp('-----------------------------------------------------');endfigure(1);subplot(1,2,1);plot(V);xlabel('节点号');ylabel('电压标幺值');grid on;subplot(1,2,2);plot(sida);xlabel('节点号');ylabel('电压角度');grid on;figure(2);subplot(2,2,1);P=real(S);Q=imag(S);bar(P);xlabel('节点号');ylabel('节点注入有功');grid on;subplot(2,2,2);bar(Q);xlabel('节点号');ylabel('节点注入无功');grid on;subplot(2,2,3);P1=real(Siz);Q1=imag(Siz);bar(P1);xlabel('支路号');ylabel('支路首端注入有功');grid on;subplot(2,2,4);bar(Q1);xlabel('支路号');ylabel('支路首端注入无功');grid on;。