列方程解应用题专题
(完整版)五年级列方程解应用题100题(有答案)

(完整版)五年级列方程解应用题100题(有答案)五年级列方程解应用题100题(有答案)最近,五年级的小朋友们正在学习列方程解应用题。
今天,我们来看看一百个列方程解应用题,并附上了答案。
让我们一起来挑战这些问题吧!1. 爸爸有10个苹果,妈妈给了他5个苹果,爸爸一共有多少个苹果?答案:10+5=152. 小明有三个篮球,小强有两个篮球。
他们一共有多少个篮球?答案:3+2=53. 弟弟用10个小方块建了一个正方形,他想知道每边有几个小方块?答案:10÷4=24. 一个数加4等于15,这个数是多少?答案:15-4=115. 一个数减5等于12,这个数是多少?答案:12+5=176. 买了一本书花了15元,比买两本书多花了9元,一本书多少元?答案:15-9=67. 一袋米有8千克,买了两袋米一共多少千克?答案:8×2=168. 我有23块糖,送了小红5块,还剩下几块糖?答案:23-5=189. 某天,小明骑自行车去了学校,一共用了30分钟。
他上学用了20分钟,回家用了多少分钟?答案:30-20=1010. 妈妈给小明10元,买了一本书花了7元,还剩下多少元?答案:10-7=311. 一辆公交车上有40个人,下车的人比上车的人少24个。
下车的人有多少人?答案:40-24=1612. 小华有28本故事书,小明有比小华少5本故事书,小明有多少本故事书?答案:28-5=2313. 一个数减9等于13,这个数是多少?答案:13+9=2214. 一包草莓糖有6颗,小明买了5包草莓糖一共有多少颗?答案:6×5=3015. 一周有7天,这个月有多少天?答案:7×30=21016. 小明有3个橡皮,他想分给他的2个朋友。
每人可以分到几个橡皮?答案:3÷2=1.517. 在一家商店里,一瓶可乐7元,小明买了3瓶可乐,一共花了多少元?答案:7×3=2118. 小华的爸爸比他多25岁,小华现在8岁,他的爸爸多少岁?答案:8+25=3319. 一块巧克力有15块,小红买了2块巧克力,一共花了多少块?答案:15×2=3020. 小兔子买了5个胡萝卜,每个胡萝卜1元钱,一共花了多少元?答案:5×1=521. 小明妈妈给他50元,他花了20元买书,还剩下几元?答案:50-20=3022. 这个月有30天,小明想知道一共有几周?答案:30÷7=4余223. 一包糖有8颗,小明买了3包糖一共有多少颗?答案:8×3=2424. 一本书比另一本书多20页,一本书有多少页?答案:20+20=4025. 某天,小明放风筝用了1小时,其中飞行了45分钟,他使劲拉线用了多少分钟?答案:60-45=1526. 一张纸有10厘米,小华要剪成2段,每段多长?答案:10÷2=527. 小明喝了一瓶汽水,喝了三分之一,这是这瓶汽水的几分之一?答案:3×3=928. 小明有一些糖果,他先吃了5颗,还剩下的糖果有8颗,开始有多少颗糖果?答案:8+5=1329. 弟弟拿东西走了10步,还剩下的路程是全程的几分之一?答案:10×10=10030. 考试总共有20分,小红得了15分,得了总分的几分之几?答案:15÷20=0.7531. 一位老师有30支铅笔,她想把铅笔均分给15位学生。
列方程解应用题

列方程解应用题专项练习1、我们的球场的长是28米,面积是420平方米,宽是多少米?2、王老师买了一个足球和6个排球,一共花了470元。
一个足球的价格是80元,一个排球的价格是多少元?3、大象的年龄是小象的5倍,大象比小象大24岁,(1)大象和小象各是多少岁?(2)再过几年后大象的年龄是小象的6倍。
4、故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。
天安门广场的面积多少万平方米?5、一个等腰三角形,其中一个内角度数是另一个内角的2倍,这个三角形的三个内角分别是多少度?6、北京和上海相距1320km。
甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?7、甲、乙两艘轮船同时从上海出发开往青岛,经过18小时后,甲船落在乙船后面57.6千米,甲船每小时行32.5千米,乙船每小时行多少千米?8(1)摆一个六边形要()根小棒,摆2个要()根小棒,摆3个要()根,摆n 个要()根。
(2)1151根小棒能摆多少个六边形?(用两种方法解)9、一幅油画的长是宽的2倍,我做画框用了1.8m木条。
这幅画的长、宽、面积分别是多少?10、小明的玻璃球是小刚的2倍,小明给小刚3颗,他俩就一样多了。
他们两个人分别有多少颗玻璃球?11、王芳的存款数是李丽存款数的2.2倍,如果李丽再存入银行75元,两人的存款数就相等了,原来两人各存款多少元?11、张老师第一次到体育用品商店买了24套运动服,第二次又买了同样的运动服30套,第二次比第一次多付了510元。
每套运动服多少元?12、幼儿园大班有10个小朋友,现在有60个苹果平均分给大班和小班的小朋友,每个小朋友可分得2个,小班有多少个小朋友?13、小象刚出生时体重只有150千克,之后平均每年增加250千克,现在它的体重是4150千克,这只象现在有几岁了?。
列方程解应用题专题

---------------------------------------------------------------最新资料推荐------------------------------------------------------列方程解应用题专题小学奥数习题全解列方程解应用题专题1.4 个连续奇数的和是136,其中最小的一个奇数是多少?设:最小一个基数为 X。
X+(X+2) +(X+4) +(X+6) =136 解:4X+12=1364X=124 X=31 2.4 个连续自然数的和102,其中最大的一个自然数是多少?设:最小的一个自然数是 X。
X+(X-1) +(X-2) +(X-3) =102 解:4X-6=1024X=108 X=27 3.三个连续自然数的和是228,求这三个连续的自然数。
设:最小的自然数为 X。
X+(X+1)+(X+2) =228 解:3X+3=228 3X=225 X=75 75+1=76 75+2=77 4.某车间男工人数是女工人数的两倍,若调走 18 个男工,那么女工人数是男工人数的两倍,这个车间的女共有多少人?设:这个车间共有女工 X 人。
1/ 232(X-18) =X 解:4X-36=X 3X=36 X=12 5.某数的两倍减去一等于这个数加上五,求某数。
设:某数为 X。
2X-1=X+5 X=6 6.甲乙两地的公路长 800 千米,两辆汽车分别从甲乙两地相对开出,快车的速度是慢车速度的三倍,五小时相遇,慢车每小时行多少千米?设:慢车每小时行 X 千米。
(X+3X) 5=800 解:4X=160 X=40 7.甲乙丙三名工人十二月份平均所得奖金是 500 元,已知甲比乙多分得 216 元,丙比甲多分的132 元。
甲乙丙各分得奖金多少元?设:甲工人的工资为 X 元。
5003=X+X+216+216+132 解:1500=3X+564 2X =963 X=312 312+216=528 312+132=660 8.师院附小少年活动中心四五六年级共有 1992 人,六年级的学生人数是五年级的 1.08 倍,四年级比五年级多 60 人,三个年级各有学生多少人?设:五年级的人数为 X 人。
列方程解应用题50道

列方程解应用题50道一、行程问题(10道)1. 甲、乙两地相距300千米,一辆汽车从甲地开往乙地,平均每小时行60千米,行了x小时后,距离乙地还有70千米。
求汽车行驶的时间x。
- 解析:汽车行驶的路程为速度乘以时间,即60x千米。
总路程是300千米,此时距离乙地还有70千米,那么汽车行驶的路程就是300 - 70 = 230千米。
可列方程60x=230,解得x = 23/6小时。
2. 一辆客车和一辆货车同时从相距540千米的两地相对开出,客车每小时行65千米,货车每小时行55千米。
经过x小时两车相遇,求x的值。
- 解析:两车相对而行,它们的相对速度是两车速度之和,即65 + 55 = 120千米/小时。
经过x小时相遇,根据路程=速度×时间,可列方程(65 + 55)x=540,120x = 540,解得x = 4.5小时。
3. 小明和小亮在400米的环形跑道上跑步,小明每秒跑5米,小亮每秒跑3米,他们同时从同一点出发,同向而行,经过x秒小明第一次追上小亮,求x。
- 解析:同向而行时,小明第一次追上小亮时,小明比小亮多跑了一圈,即400米。
小明每秒比小亮多跑5 - 3 = 2米。
可列方程(5 - 3)x = 400,2x = 400,解得x = 200秒。
4. 甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,经过x小时两人还相距10千米,A、B两地相距100千米,求x。
- 解析:甲、乙两人x小时一共走了(8 + 6)x千米,此时两人还相距10千米,而A、B两地相距100千米,可列方程(8+6)x+10 = 100,14x+10 = 100,14x = 90,解得x = 45/7小时。
5. 一辆汽车以每小时45千米的速度从A地开往B地,另一辆汽车以每小时55千米的速度从B地开往A地,两车同时出发,经过x小时相遇,A、B两地相距400千米,求x。
列方程解应用题100道附详解

列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。
(完整版)列方程解应用题练习题

一、列方程解应用题和倍问题例1 图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有多少本?例2 一个果园有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵树是龙眼的3倍,芒果的棵树是龙眼的2倍,这三种果树各有多少棵?例3一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍。
水池里有16吨水,打开两管5小时能把水排完,甲管每小时排水量多少吨?例4 某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米免的5倍,卖出的大米比玉米面多多少千克?较复杂的和倍问题例1甲粮仓有510吨大米,乙粮仓有1170吨大米,每天从乙粮仓调30吨大米到甲粮仓,多少天以后甲粮仓大米的吨数是乙粮仓的6倍?例2 图书馆买回来故事书、科普书和连环画236本,如果故事书增加10本,就是科普书本数的2倍,科普书减少12本,就是连环画本数的一半,买回来的故事书有多少本?例3 甲数与乙数的和是30,甲数的8倍与乙数的3倍的和是160.甲数、乙数各是多少?例4 甲站和乙站相距299千米,一辆大客车从甲站开往乙站,1.5小时后一辆小轿车从乙站开往甲站,行驶速度是客车的3倍,小轿车行驶2.5小时遇见大客车,小轿车每小时行多少千米?差倍问题一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。
列方程解差倍问题,可以吧问题中的一个未知数量用x表示,再根据问题中的“差”或“倍”的关系,把其他未知数量用含有x 的式子表示,再找出数量之间的等量关系列方程。
在设未知数x时,通常把倍的关系中作为1的数量设为x较好。
例1一张办公桌的价钱是一把椅子的4倍,办公桌的定价比椅子贵138元,一张办公桌的价钱是多少钱?例2 一个书柜下层放的书的本数是上层的3倍,如果从下层取43本数放到上层,两层的书的本数相同,这个书柜一共方有多少本书?例3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的2倍,第二天售出的千克数是第三天的1.5倍,第三天售出的比第一天少88千克,这批西瓜共有多少千克?例4 有对黑棋子和白棋子,其中黑棋子的个数是白棋子的3倍,每次取走相同的个数的黑棋子和白棋子,取了若干次后,白棋子还剩8个,黑棋子还剩94个,原来这堆棋子中多少个黑棋子?较复杂的差倍问题例1 有两根同样长的绳子,第一根绳子剪去10米,第二根绳子剪去28米,第一根绳子剩下的长度是第二根的4倍。
专题四 列方程解应用题

列方程解应用题专题一一、知识引领列方程解题是一种常用的解题方法,其关键在于理解题意,找出等量关系,从而建立方程。
列方程解题的步骤是:1、理解题意,找出一个未知数,用字母x表示。
如果有两个未知数,先设一个未知数为x,另一个未知数用含有x的式子来表示。
设未知数还可以采用间接设未知数的方法,先求和问题相关的未知数量,再求题目要求的问题。
2、找出题目中的等量关系。
3、根据等量关系列出方程。
4、解方程并检验,写答语。
二、例题讲解例1:学校美术兴趣小组的男生比女生多51人,男生的人数是女生的4倍。
学校美术兴趣小组的男生和女生各多少人?举一反三1、果园的苹果树比梨树多64棵,已知苹果树的棵树是梨树的3倍,果园里有苹果树和梨树各多少棵?2、妈妈买了一些苹果和梨,共8千克,其中苹果的重量是梨的3倍。
妈妈买了苹果和梨各多少千克?例2:一本笔记本的价钱是一支圆珠笔价钱的4.5倍。
乐乐买了2本笔记本和5支圆珠笔,一共花了28元。
问笔记本和圆珠笔的价钱各是多少元?举一反三1、一支钢笔的价钱是一支圆珠笔价钱的6.5倍。
乐乐买了3支钢笔和4支圆珠笔,一共花了47元。
钢笔和圆珠笔的单价各是多少元?2、一个书包的价钱是一个文具盒15倍。
福利院买了3个书包和4个文具盒,共花了588元。
书包和文具盒的单价各是多少元?例3:小王骑自行车从单位到局里开会,每小时行16千米。
他出发0.8小时后,小张有急事要通知小王,乘汽车从单位出发,经过0.2小时追上小王。
汽车每小时行多少千米?举一反三1、甲、乙两地相距300千米,客车从甲地开往乙地,每小时行40千米,1小时候,货车从乙地开往甲地,每小时行60千米。
货车出发几小时后与客车相遇?2、甲乙两船分别从相距550千米的A,B两港相向开出,甲船每小时行30千米,出发2小时候后,乙船从B港出发,速度为每小时40千米。
乙船开出几小时后与甲船相遇?例4:早晨爸爸和小明从同一地点沿着长1千米的小河同方向跑步,10分钟后,爸爸追上小明。
五年级列方程解应用题100题

1. 甲班有30名学生,乙班比甲班少10名学生,求乙班的学生人数。
2. 小明用20元买了一本书,剩下的钱比原来的三分之一还少5元,请问小明原来有多少钱?3. 一个数字的3倍加上5等于20,求这个数字是多少?4. 甲、乙两个数相差7,乙比甲大9,求甲和乙各是多少?5. 一辆自行车和一辆电动车一共值4500元,自行车比电动车便宜2500元,请问自行车和电动车各多少钱?6. 一架飞机飞行了x小时,总共飞行了600千米。
如果每小时飞行速度减少10千米,则飞行y小时能飞行多少千米?7. 甲班和乙班一共有60名学生,甲班人数是乙班人数的两倍,求甲班和乙班各有多少学生?8. 一个数的四分之一减去6等于12,求这个数是多少?9. 某校图书馆有A本书,借出后还剩下原来的一半,求借出了多少本书?10. 甲、乙两个数相差4,乙比甲大8,求甲和乙各是多少?11. 甲班有40名学生,乙班比甲班多15名学生,求乙班的学生人数。
12. 小明用一部分钱买了一本书,剩下的钱是原来的四分之三,他原本有多少钱?13. 一个数字的两倍减去7等于13,求这个数字是多少?14. 甲、乙两个数相差12,乙比甲大16,求甲和乙各是多少?15. 一辆汽车和一辆摩托车一共值8000元,摩托车比汽车便宜6000元,请问汽车和摩托车各多少钱?16. 一架飞机飞行了x小时,总共飞行了1200千米。
如果每小时飞行速度增加20千米,则飞行y小时能飞行多少千米?17. 甲班和乙班一共有80名学生,甲班人数是乙班人数的三倍,求甲班和乙班各有多少学生?18. 一个数的五分之一加上4等于12,求这个数是多少?19. 某校图书馆有B本书,借出后还剩下原来的四分之三,求借出了多少本书?20. 甲、乙两个数相差8,乙比甲大10,求甲和乙各是多少?21. 甲班有50名学生,乙班比甲班多20名学生,求乙班的学生人数。
22. 小明用一部分钱买了一本书,剩下的钱是原来的五分之四,他原本有多少钱?23. 一个数字的三倍减去10等于25,求这个数字是多少?24. 甲、乙两个数相差15,乙比甲大20,求甲和乙各是多少?25. 一辆汽车和一辆自行车一共值12000元,自行车比汽车便宜8000元,请问汽车和自行车各多少钱?26. 一架飞机飞行了x小时,总共飞行了1800千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题专题列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值。
列方程解应用题的优点在于可以使未知数直接参加运算。
解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。
而找出等量关系又在于熟练运用数量之间的各种已知条件。
掌握这两点就能正确地列出方程。
列方程解应用题的一般步骤是:(1).审:审请题意,弄清题目中的数量关系;(2).设:用字母表示题目中的一个未知数;(3).找:找出题目中的等量关系;(4).列:根据所设未知数和找出的等量关系列方程;(5).解:解方程,求未知数;(6).答:检验所求解,写出答案。
实际问题中,设未知数的方法可能不唯一,要寻找最简捷的设法;解题时,检验过程不可少,但可不写在书面上。
用列方程解应用题的几个注意事项:(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.(2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等.)(3)要养成“验”的好习惯,即所求结果要使实际问题有意义.(4)不要漏写“答”,“设”和“答”都不要丢掉单位名称. (5)分析过程可以只写在草稿纸上,但一定要认真.例1 列方程,并求出方程的解。
(1)减去一个数,所得差与加上的和相等,求这个数。
解:设这个数为x.则依题意有-x=+检验:把X= 代入原方程,左边= ,与右边相等。
所以X= 是方程的解。
(2)某数的比它的倍少11,求某数。
解:设某数为X。
依题意,有:例2 商店有胶鞋、布鞋共46双,胶鞋每双元,布鞋每双元,全部卖出后,胶鞋比布鞋多收入10元。
问:胶鞋有多少双分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。
设胶鞋有x双,则布鞋有(46-x)双。
胶鞋销售收入为元,布鞋销售收入为(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。
]解:设有胶鞋x双,则有布鞋(46-x)双。
(46-x)=10,, =, x=21。
答:胶鞋有21双。
例2袋子里有红、黄、蓝三种颜色的球,黄球个数是红球的4/5,蓝球的个数是红球的2/3,黄球个数的3/4比蓝球少2个。
袋中共有多少个球分析:因为题目条件下中黄球、蓝球个数都是与红球个数进行比较,所以高红球个数为X比较简单。
再根据黄球个数的3/4比蓝球少2个,可列出方程。
解:设红球个数为X,则黄球个数为4/5X,蓝球个数为2/3X。
2/3X-4/5X乘3/4=2 X=30X+4/5X+2/3X=30+24+20=74(个)答:袋中共有74个球。
在例2中,求胶鞋有多少双,我们设胶鞋有x双;在例3中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。
像例2那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例3那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。
具体采用哪种方法,要看哪种方法简便。
在小学阶段,大多数题目可以使用直接设元法。
例4 已知篮球、足球、排球平均每个36元,篮球比排球每个多10元,足球比排球每个多8元,每个足球多少元分析:①篮球、足球、排球平均每个36元,购买三种球的总价是:36×3=108(元)。
②篮球和足球都与排球比,所以把排球的单价作为标准量,设为X。
③列方程时,等量关系可以确定为分类购球的总价=平均值导出的总价。
~解:设每个排球X元,则每个篮球(X+10)元,每个足球(X+8)元。
依题意,有:X+X+10+X+8=36×33X+18=108 3X=90 X=30 X+8=30+8=38答:每个足球38元。
例5 妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个,如果每天吃6个,则又少8个苹果。
问:妈妈买回苹果多少个计划吃多少天分析1根据已知条件分析出,每天吃苹果的个数及吃若干天后剩下苹果的个数是变量,而苹果的总个数是不变量。
因此列出方程的等量关系是苹果总个数=苹果总个数。
方程左边,第一种方案下每天吃的个数×天数+剩下的个数,等于右边,第二种方案下每天吃的个数×天数-所差的个数。
解:设原计划吃X天。
4X+48=6X-8 2X=56 X=28苹果个数:4×28+48=160答:妈妈买回苹果160个,原计划吃28天。
分析2 列方程等量关系确定为计划吃的天数=计划吃的天数。
)解:设妈妈公买回苹果X个。
例6 甲、乙、丙、丁四人共做零件270个。
如果甲多做10个,乙少做10个,丙的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等。
问:丙实际做了多少个(这是设间接未知数的例题)分析:根据“那么四人做的零件数恰好相等”,把这个零件相等的数设为X,从而得出:甲+10=乙-10=丙×2=丁÷2=X根据这个等式又可以推出:甲+10=X,(甲=X-10); 乙-10=X, (乙=X+10); 丙×2=X, (丙= );丁÷2=X,(丁=2X)。
又根据甲、乙、丙、丁四人共做零件270个,可以得到一个方程,它的左边表示零件的总个数,右边也表示零件的总个数。
解:设变换后每人做的零件数为X个。
X-10+X+10+2X+ =2702X+2X+X+4X=5409X=540 X=60∵丙×2=X=60, ∴丙=30 答:丙实际做零件30个。
例7 一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多少平方米分析:要想求出这块地的面积,必须求出长和宽各是多少米。
已知条件中给出长和宽的比是5:3,又知道长比宽多24米。
如果把宽设为X米,则长为(X+24)米,这样确定方程左边表示长与宽的比等于右边长与宽的比,再列出方程。
解:设长方形的宽是X米,长是(X+24)米。
5X=3X+72 2X=72 X=36&X+24=36+24=60,60×36=2160(平方米)。
答:这块地的面积是2160平方米。
例8 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。
若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。
问:计划修建住宅多少座分析与解一:用直接设元法。
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。
根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,80x-40=60x+80,20x=120,x=6分析与解二:用间接设元法。
设有灰砖x米3,则红砖有2x米3。
根据修建住宅的座数,列出方程。
(x-40)×80=(2x+40)×30,80x-3200=60x+1200,20x=4400,x=220(由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。
同理,也可设有红砖x米3。
例9 教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。
问:最初有多少个女生分析与解:设最初有x个女生,则男生最初有(x-10)×2个。
根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程x-10=[(x-10)×2-9]×5,x-10=(2x-29)×5,x-10=10x-145,9x=135,x=15(个)。
练习1、甲、乙二人共存款100元,如果甲取4/9,乙取出2/7,那么两人存款还剩60元。
问:甲、乙二人各有存款多少元2.妈妈带一些钱去买布。
买2米布后还剩下元;如果买同样的布4米则差元。
问:妈妈带了多少钱>3.第一车间个人人数是第二车间工人人数的3倍。
如果从第一车间调20名工人去第二车间,则两个车间人数相等。
求原来两个车间各有工人多少名4.两个水池共贮水40吨,甲池贮进4吨,乙池放出8吨,甲池水的吨数与乙池水的吨数相等,两个水池原来各贮水多少吨)5.两堆煤,甲堆煤有吨,乙堆煤油6吨,甲堆煤每天用去吨,乙堆煤每天用去吨。
几天后两堆煤剩下吨数相等6.小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动一下,小龙的球减少2个,小虎的球数增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了。
求原来每个人各有几个球7.把一堆苹果装在一些箱子里。
如果每箱装10千克,还有160千克无法装;如果每箱多装2千克,则正好装完。
这堆苹果共重多少千克<8、电动机车和磁悬浮列车从相距28千米的两地同时出发相对而行,磁悬浮列车的速度比电动机车速度的5倍还快20千米/小时,半小时后相遇。
两车的速度各是多少电动机车和磁悬浮列车从相距28千米的两地同时出发相对而行,磁悬浮列车的速度比电动机车速度的5倍还快20千米/小时,半小时后相遇。
两车的速度各是多少解,设电动机车速度是X,那么磁悬浮列车速度是5x+20,得: (x+5x+20)*==28 (6x+20)*==28 6x==56-20 6x= =36 x==6 所以磁悬浮列车的速度是50千米每小时,电动车列车速度是6千米每小时。