最新分子生物学(朱玉贤第四版)复习提纲思维导图-3.生物信息的传递DNA-RNA

合集下载

朱玉贤现代分子生物学第四版-第2章-染色体与DNA

朱玉贤现代分子生物学第四版-第2章-染色体与DNA

2020/6/18
26
第二节 DNA的结构
2. DNA的二级结构
❖ DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双 螺旋盘绕结构。
❖ DNA有三种构像:A-DNA、B-DNA、Z-DNA,其中AB为右 手构象,Z为左手构像。
❖ B型为普遍存在的结构。 ❖ A型、Z型可能具有不同
的生物活性 ❖ 还存在其他构型。
在危险。(尿嘧啶DNA糖苷酶可以灵敏识别DNA中的U 而随时将其剔除)。
2020/6/18
22
第二节 DNA的结构
1. DNA的一级结构
❖ DNA又称脱氧核糖核酸(deoxyribonucleic acid)。 ❖ DNA的一级结构即是指四种
核苷酸的连接及排列顺序, 表示该DNA分子的化学构成。 ❖ DNA由脱氧核苷酸聚合而成。 ❖ 碱基的不同决定了脱氧核苷 酸的不同。
~ 1 um (10-6m) long ~ 1300 um long !!!
2020/6/18
17
第一节 染色体
2.4. 真核细胞染色体的结构
❖ 超螺旋圆筒 有迹象表明:中期染色质是一细长、中 空的圆筒,直径4000nm,由30nm的螺 线管缠绕而成,压缩比为40。
❖ 染色单体 染色单体由超螺旋圆筒再压缩5倍而成。
2020/6/18
18
第一节 染色体
3. 原核生物基因组:
左手螺旋Z-DNA
Minor groove
Z-DNA
Major groove
- 3.8 Å/bp
- 18.4 Å wide
- 12 bp/turn
- base-pairs tilted about 9 degrees from axis of the helix

现代分子生物学第4版朱玉贤课后思考题答案word文档良心出品

现代分子生物学第4版朱玉贤课后思考题答案word文档良心出品

第一章1 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献 答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组 合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基 人;沃森和克里克在 1953 年提出 DAN 反向双平行双螺旋模型。

2 写出 DNARNA 的英文全称答:脱氧核糖核酸( DNA, Deoxyribonucleic acid ), 核糖核酸( RNA, Ribonucleic acid )3 试述“有其父必有其子”的生物学本质 答:其生物学本质是基因遗传。

子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的 一半来自于父方,一般来自于母方。

4 早期主要有哪些实验证实 DNA 是遗传物质?写出这些实验的主要步骤 答:一,肺炎双球菌感染实验, 1, R 型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。

2,S 型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。

3,用加热的方法杀死 S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验: 1,噬菌体侵染细菌的实验过程:吸附7侵入7复制7组装7释放。

2, DNA 中P 的含量多,蛋白质中 P 的含量少;蛋白质中有 S 而DNA 中没有S,所以用放射性同位素 35S 标记一部分噬菌体的蛋白质, 用放射性同位素32P 标记另一部分噬菌体的 DNA 。

用35P 标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部; 而用32P 标记DNA 的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA 进入了细菌体内。

三,烟草TMV 的重建实验:1957年,Fraenkel-Conrat 等人,将两个不同的 TMV 株系(S 株系和HR 株系)的蛋 白质和RNA 分别提取出来,然后相互对换,将 S 株系的蛋白质和 HR 株系的RNA ,或反过来将HR 株系的蛋 白质和S 株系的RNA 放在一起,重建形成两种杂种病毒,去感染烟草叶片。

分子生物学复习提纲思维导图生物信息的传递RNAProtein

分子生物学复习提纲思维导图生物信息的传递RNAProtein

翻译后转运
细胞核 叶绿体 线粒体 过氧化物酶体
分泌蛋白 膜蛋白 溶酶体
D臂
二级结构
三叶草
反密码子臂 多余臂
氢键
tRNA转运氨基酸
高级结构
TψC臂 倒L折叠式
起始tRNA
原核fMet-tRNAfMet 真核Met-tRNAMet
分类 延伸tRNA
校正tRNA
无义突变 错义突变
同义突变、移码突变
蛋白质 36种
50S rRNA 23S、5S
原核 70S 蛋白质 21种
30S
真核
与原核相似,无E位点 eEF-1,eEF-2
RF-1
UAA UAG
原核
RF-2
UAA UGA
终止
RF-3
UAA
真核
eRF-1
UAG UGA
eRF-3
N端fMet、Met切除
二硫键生成
多肽链加工
化学修饰 非必需氨基酸切除
蛋白质转运
信号肽、信号肽假说
折叠
分子伴侣
热休克蛋白 伴侣素
翻译转运同步
附着核糖体→rER→Golgi
生物信息的传递RNA-Protein
蛋白质生物合成物质基础
起始密码子
AUG 原核GUG、UUG
64个遗传密码
UAA
终止密码子 UAG
UGA
连续性
简并性
mRNA和遗传密码
普遍性 特殊性
特点
C G
U
摆动性
摆动学说
反密码子1位
A U
G
A
ICU一级结构4种A、U、G、C排列顺序,化学修饰ψ、D
3’受体臂,CCA3'

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

目录第1章绪论 (4)1.1复习笔记 (4)1.2课后习题详解 (5)1.3名校考研真题详解 (7)第2章染色体与DNA (10)2.1复习笔记 (10)2.2课后习题详解 (17)2.3名校考研真题详解 (22)第3章生物信息的传递(上)——从DNA到RNA (36)3.1复习笔记 (36)3.2课后习题详解 (44)3.3名校考研真题详解 (49)第4章生物信息的传递(下)——从mRNA到蛋白质 (62)4.1复习笔记 (62)4.2课后习题详解 (71)4.3名校考研真题详解 (78)第5章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术 (90)5.1复习笔记 (90)5.2课后习题详解 (96)5.3名校考研真题详解 (101)第6章分子生物学研究法(下)——基因功能研究技术 (114)6.1复习笔记 (114)6.2课后习题详解 (120)6.3名校考研真题详解 (124)第7章原核基因表达调控 (132)7.1复习笔记 (132)7.2课后习题详解 (138)7.3名校考研真题详解 (140)第8章真核基因表达调控 (147)8.1复习笔记 (147)8.2课后习题详解 (154)8.3名校考研真题详解 (158)第9章疾病与人类健康 (168)9.1复习笔记 (168)9.2课后习题详解 (174)9.3名校考研真题详解 (177)第10章基因与发育 (182)10.1复习笔记 (182)10.2课后习题详解 (183)10.3名校考研真题详解 (185)第11章基因组与比较基因组学 (186)11.1复习笔记 (186)11.2课后习题详解 (189)11.3名校考研真题详解 (192)第1章绪论1.1复习笔记一、分子生物的概念分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。

现代分子生物学笔记朱玉贤

现代分子生物学笔记朱玉贤

第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

一.DNA重组技术(recombinant DNA technology)定义:又称为基因工程,根据分子生物学和遗传学的原理,将一种生物的遗传物质DNA转移到另一生物体中,使后者获得新的遗传性状或表达出所需要的产物。

DNA重组技术的应用:利用微生物基因工程生产重组基因工程药物转基因植物和动物体细胞克隆基因表达与调控的基础研究二.生物大分子的结构功能研究三.基因组、功能基因组与生物信息学的研究基因组、蛋白质组与生物信息学基因组(Genome):细胞或生物体一条完整单体的全部染色体遗传物质的总和。

人类基因组计划(Human Genome Project, HGP):测定出人基因组全部DNA3109硷基对的序列、确定人类约5-10万个基因的一级结构。

基因组、蛋白质组与生物信息学蛋白组计划(Proteome project):又称为后基因组计划或功能基因组计划,用于揭示并阐明细胞、组织乃至整个生物个体全部蛋白质及其功能。

生物信息学(Bioinformatics):是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。

第二章染色体与DNA第一节染色体(chromosome)染色体(chromosome):原指真核生物细胞分裂中期具有一定形态特征的染色质。

现在这一概念已扩大为包括原核生物及细胞器在内的基因载体的总称。

染色质(chromatin):由DNA和蛋白质构成,在分裂间期染色体结构疏松,称为染色质。

其实染色质与染色体只是同一物质在不同细胞周期的表现。

常染色质(euchromatin):是进行活跃转录的部位,呈疏松的环状,电镜下表现为浅染,易被核酸酶在一些敏感的位点(hypersensitive sites)降解。

朱玉贤分子生物学重点

朱玉贤分子生物学重点

朱玉贤分子生物学重点等位基因:同一座位存在的两个以上不同状态的基因。

变性:双链DNA因加温, 极端pH, 尿素, 酰胺等变成单链DNA的过程。

复性:变性DNA在一定条件下恢复天然DNA的结构的过程。

熔点:OD增加值的中点温度。

增色效应:由于DNA变性而引起的光吸收的增加称为增色效应。

1.DNA与RNA结构上的主要区别是什么?1)核糖2)碱基3)单链/双链4)稳定性5)数量和长度2.Watson & Crick DNA 双螺旋模型的要点?1)脱氧核糖和磷酸基通过3’,5’磷酸二酯键交互连接,成为螺旋链的骨架。

螺旋的直径20Å。

主链处于螺旋的外侧,核糖平面与螺旋轴平行,碱基处于螺旋的内侧。

2)嘌呤和嘧啶相配,碱基平面与螺旋轴基本垂直。

3)螺距为34 Å,包含10个核苷酸。

4)双螺旋中存在大沟和小沟。

5)蛋白质因子与DNA 的特异结合依赖于氨基酸与DNA 间的氢键的形成。

6)蛋白质因子沿大沟与DNA形成专一性结合的机率与多样性高于沿小沟的结合。

3.影响DNA双螺旋结构稳定性的主要因素有那些?1)氢键,碱基堆积力(范德华力,疏水作用),磷酸酯键,核苷酸序列(从嘌呤到嘧啶的方向的碱基堆集作用显著大于同样组成的嘧啶到嘌呤方向的碱基堆集作用)2)磷酸基团间的静电斥力4.了解超螺旋的概念(83), 区分DNA拓扑异构酶I 和 II的不同作用机理。

(91)双螺旋线状分子再度螺旋化成为超螺旋结构。

Top I催化DNA链的断裂和重新连接,每次只作用于一条链,消除负超螺旋。

Top II同时断裂并连接双股DNA链,通常需要能量辅因子ATP。

分二类,DNA 旋转酶引入负超螺旋,另一类转变超螺旋DNA成为没有超螺旋的松弛形式。

Top I ~ Top II 含量的平衡严格控制体内负超螺旋维持在5%水平,保证DNA 的各种遗传活动。

2基因组:C值:单倍体基因组总DNA 的含量。

C值矛盾:1)生物体进化程度高低与大C值不成明显相关(非线性)2)亲缘关系相近的生物大C值相差较大3)一种生物内大C值与小c值相差极大。

2024版朱玉贤现代分子生物学第四版

2024版朱玉贤现代分子生物学第四版

朱玉贤现代分子生物学第四版•绪论•基因与基因组•DNA复制与修复•转录与转录后加工•蛋白质翻译与翻译后加工•基因表达的调控•基因工程与基因组学01绪论分子生物学的定义与发展分子生物学的定义分子生物学是研究生物大分子,特别是蛋白质和核酸的结构、功能及其相互作用的一门科学。

分子生物学的发展自20世纪50年代以来,随着DNA双螺旋结构的发现、遗传密码的破译、基因工程技术的建立等,分子生物学得到了迅速的发展,并在医学、农业、工业等领域产生了广泛的应用。

基因与基因组的结构与功能研究基因的结构、表达调控及其在生物体发育和进化中的作用。

DNA复制、转录与翻译的过程与调控研究DNA的复制、转录和翻译等过程及其调控机制,揭示生物体遗传信息传递的规律。

蛋白质的结构与功能研究蛋白质的结构、功能及其与生物体代谢和生理功能的关系。

基因表达的调控研究基因表达的时空特异性及其调控机制,揭示生物体发育和适应环境的分子基础。

包括DNA 重组技术、基因克隆技术、核酸序列分析技术等,用于研究基因的结构和功能。

分子生物学实验技术生物信息学方法细胞生物学和遗传学方法结构生物学方法利用计算机科学和数学的方法对生物大分子数据进行处理和分析,揭示生物大分子的结构和功能。

通过细胞培养和遗传学手段研究基因在细胞和组织中的表达和功能。

利用X 射线晶体学、核磁共振等技术解析生物大分子的三维结构,揭示其结构与功能的关系。

02基因与基因组基因的概念与结构基因是遗传信息的基本单位,控制生物性状的基本因子。

基因的结构包括编码区和非编码区,编码区又可分为外显子和内含子。

基因通过DNA序列的特异性来实现其遗传信息的传递和表达。

基因组的组成与特点基因组是一个生物体所有基因的总和,包括核基因组和细胞器基因组。

基因组具有高度的复杂性和多样性,不同生物体的基因组大小和基因数量差异巨大。

基因组中存在着大量的重复序列和非编码序列,这些序列在生物进化、基因表达和调控等方面发挥着重要作用。

北大分子生物学课件朱玉贤优秀ppt文档-2024鲜版

北大分子生物学课件朱玉贤优秀ppt文档-2024鲜版
分子生物学研究生物大分子的结构和功能,是揭示生命现象本质的基础科学,对生物学的发 展具有重要推动作用。
分子生物学与其他生物学科的交叉融合
分子生物学与遗传学、细胞生物学、发育生物学等生物学科相互渗透、交叉融合,共同推动 着生命科学的发展。
2024/3/27
分子生物学在医学、农业等领域的应用
分子生物学的研究成果在医学、农业等领域得到广泛应用,为疾病的诊断、治疗和农作物的 改良等提供了有力支持。
2024/3/27
20
DNA损伤的修复机制
直接修复
针对某些简单的DNA损伤,如碱 基错配或脱落,可通过特定的酶
直接进行修复。
2024/3/27
切除修复
对于较复杂的DNA损伤,如嘧啶 二聚体等,需要先将损伤部位切除, 然后通过DNA聚合酶和连接酶的 作用进行修复。
重组修复
在某些情况下,DNA损伤过于严重, 无法直接修复,此时可通过DNA重 组的方式,利用未损伤的同源序列 进行修复。
基因克隆技术应用
用于基因功能研究、基因工程疫苗研制、基因治疗等。
2024/3/27
25
DNA测序技术及应用
DNA测序技术
通过特定的方法和技术,对DNA序列进行测定和分析。
DNA测序技术应用
用于基因组学研究、疾病相关基因鉴定、个性化医疗等。
2024/3/27
26
分子生物学在医学、农业等领域的应用
医学领域应用
2024/3/27
12
RNA的二级结构
01 02
A型RNA双螺旋
RNA的二级结构大多数都是单链,但是可以形成局部双链结构,这些双 链结构是由于碱基配对形成的,常见的A型RNA双螺旋结构中的碱基对 是A-U和G-C。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档