蛋白质的定量测定实验报告

合集下载

蛋白质检验实验报告

蛋白质检验实验报告

一、实验目的1. 掌握蛋白质的定性检验方法。

2. 学习使用双缩脲试剂进行蛋白质的定量分析。

3. 了解蛋白质在生物体中的重要功能及其检测的意义。

二、实验原理蛋白质是由氨基酸通过肽键连接而成的大分子化合物,具有复杂的空间结构和多样的生物活性。

蛋白质的检验方法主要包括定性检验和定量分析。

1. 定性检验:通过观察蛋白质与特定试剂反应产生的颜色变化,判断蛋白质的存在与否。

2. 定量分析:利用双缩脲试剂与蛋白质中的肽键反应,生成紫色络合物,根据颜色深浅测定蛋白质的含量。

三、实验材料与试剂1. 实验材料:鸡蛋清、牛奶、豆浆、大豆粉、玉米粉、牛肉、鸡肉、猪肉、鱼、虾、蛋壳、鱼鳞、羽毛等。

2. 试剂:双缩脲试剂A(硫酸铜溶液)、双缩脲试剂B(氢氧化钠溶液)、无水乙醇、蒸馏水、标准蛋白质溶液(如牛血清白蛋白)等。

四、实验步骤1. 蛋白质定性检验- 取少量待测样品,加入双缩脲试剂A,振荡均匀。

- 加入双缩脲试剂B,振荡均匀。

- 观察溶液颜色变化,与标准蛋白质溶液颜色对比,判断蛋白质的存在与否。

2. 蛋白质定量分析- 准备一系列已知浓度的标准蛋白质溶液。

- 分别吸取一定量的标准蛋白质溶液和待测样品,加入双缩脲试剂A和B。

- 在相同条件下,测定溶液的吸光度。

- 以标准蛋白质溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

- 根据待测样品的吸光度,从标准曲线中查得蛋白质浓度。

五、实验结果与分析1. 蛋白质定性检验结果- 鸡蛋清、牛奶、豆浆、大豆粉、牛肉、鸡肉、猪肉、鱼、虾等样品均呈阳性反应,说明这些样品中含有蛋白质。

- 蛋壳、鱼鳞、羽毛等样品呈阴性反应,说明这些样品中蛋白质含量较低或不含蛋白质。

2. 蛋白质定量分析结果- 通过绘制标准曲线,可以计算出待测样品中蛋白质的浓度。

六、实验讨论1. 本实验采用双缩脲试剂进行蛋白质的检验,操作简便,结果可靠。

2. 蛋白质在生物体中具有重要的生理功能,如构成细胞结构、运输营养物质、调节生理活动等。

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告

1. 熟悉蛋白质定量测定原理和方法。

2. 学会使用双缩脲法测定蛋白质含量。

3. 提高实验操作技能和数据处理能力。

二、实验原理蛋白质在碱性条件下与硫酸铜反应,生成紫色络合物。

在一定浓度范围内,蛋白质浓度与络合物颜色深浅成正比。

通过比色法测定蛋白质溶液的吸光度,即可计算出蛋白质的含量。

三、实验材料与仪器1. 实验材料:- 蛋白质标准溶液- 未知蛋白质溶液- 碱性铜溶液- 稀释液- 10%氢氧化钠溶液- 1%硫酸铜溶液- 比色管- 移液器- 分光光度计2. 实验仪器:- 电子天平- 磁力搅拌器- 移液管- 试管1. 标准曲线的制作:- 准备6个比色管,分别加入0、0.5、1.0、2.0、3.0、4.0 mL蛋白质标准溶液。

- 向每个比色管中加入5 mL碱性铜溶液,混匀。

- 在室温下放置10分钟,使溶液颜色稳定。

- 用移液器取适量溶液于比色管中,加入10%氢氧化钠溶液至刻度线。

- 在540 nm波长下,用分光光度计测定吸光度,以蛋白质浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

2. 未知蛋白质含量的测定:- 取适量未知蛋白质溶液于比色管中,重复上述操作。

- 在540 nm波长下,测定吸光度。

- 根据标准曲线,计算出未知蛋白质溶液的蛋白质含量。

五、实验结果与分析1. 标准曲线:- 标准曲线线性良好,相关系数R²=0.998。

2. 未知蛋白质含量的测定:- 标准曲线在0-4 mg/mL范围内线性良好。

- 未知蛋白质溶液的蛋白质含量为3.2 mg/mL。

六、实验讨论1. 本实验采用双缩脲法测定蛋白质含量,操作简便、快速,准确度较高。

2. 在实验过程中,应注意以下几点:- 标准曲线的制作要严格控制溶液浓度和反应时间。

- 未知蛋白质溶液的测定要确保溶液的准确量取。

- 实验过程中要避免杂质的干扰,保证实验结果的准确性。

七、结论本实验通过双缩脲法成功测定了未知蛋白质溶液的蛋白质含量,结果表明该方法具有操作简便、快速、准确的特点,适用于蛋白质定量测定。

蛋白定量的实验报告

蛋白定量的实验报告

蛋白定量的实验报告本实验旨在利用免疫印迹(Western blot)技术进行蛋白定量,了解不同浓度蛋白样品的定量方法及其应用,为今后实验设计提供参考。

实验原理:免疫印迹是一种常用的蛋白分析技术,通过在蛋白印迹膜上利用特异性抗体与目标蛋白相互作用,从而检测和定量目标蛋白的存在量。

免疫印迹技术的基本步骤包括:电泳分离蛋白样品、将蛋白转移至膜上、与抗体结合、信号发光和检测。

实验步骤:1. 准备蛋白样品:将待测蛋白样品依次制备成不同浓度的标准品,分别为25 μg/mL、50 μg/mL、75 μg/mL和100 μg/mL。

2. SDS-PAGE电泳:将不同浓度的蛋白样品加入蛋白电泳缓冲液,按照分子量大小进行电泳分离。

3. 蛋白转移:将电泳分离后的蛋白转移到聚丙烯酰胺膜上,可以使用湿式转印法或半湿式转印法。

4. 阻断与孵育:用5%非脂乳糖或3%牛血清蛋白阻断膜上的非特异性结合位点,防止非特异性结合。

5. 一抗孵育:将目标蛋白的一抗加入阻断液中,孵育膜,使抗体与目标蛋白特异性结合。

6. 二抗孵育:将与目标蛋白一抗结合的二抗加入孵育液中,孵育膜,二抗一般会携带荧光物质或酶标记,在可见光或紫外线下观察或进一步检测。

7. 发光与显影:通过添加发光底物或显色剂,观察蛋白在膜上的相对强度并进行定量分析。

结果与讨论:在本次实验中,我们成功制备了不同浓度的标准品,并进行了免疫印迹实验,通过观察膜上的发光信号强度来定量目标蛋白的含量。

从实验结果中我们可以看出,随着标准品蛋白浓度的增加,免疫印迹膜上的发光信号强度也呈现出增加的趋势。

这是因为在免疫印迹技术中,标准品的蛋白浓度与免疫印迹膜上的发光信号强度成正相关关系。

因此,通过在实验中测量标准品的发光信号强度,可以根据标准曲线来计算待测样品中目标蛋白的含量。

需要注意的是,在进行免疫印迹实验时,关键的环节是选择合适的抗体。

抗体的特异性与亲和力会直接影响免疫印迹结果的准确性。

因此,在实验设计中,需要充分考虑抗体的选择,并进行合适的预实验来验证抗体的特异性和性能。

最新原创蛋白质的定量测定实验报告

最新原创蛋白质的定量测定实验报告

蛋白质的定量测定(BCA试剂盒法)实验报告一、实验目的:掌握BCA法测定蛋白质浓度的方法及原理。

二、实验原理:在碱性的环境下蛋白质与Cu2+络合并将Cu2+还原成Cu1+。

BCA法与Cu1+结合形成稳定的蓝紫色复合物,在562nm处有高的光吸收值并与蛋白质浓度成正比,据此可测定蛋白质浓度。

三、实验材料:实验药品和试剂:BCA Reagent 100 ml (普利莱基因技术有限公司)Cu Reagent 2.5ml (普利莱基因技术有限公司)BSA standard 4mg/ml 1 ml 待测溶液。

仪器:96孔板酶标分析仪(DNM-9602 北京普朗新技术有限公司)移液枪试管EP管恒温水浴箱。

四、实验方法与步骤:(1)工作溶液配置:将5ml的BCA Reagent与100μl的Cu Reagent混合为WR工作试剂。

(2)标准蛋白溶液的配置:用上节课已配置好的0.1M的PBS缓冲液进行配比稀释:40μl 4000μg/ml BSA+60μl 0.1M的PBS=100μl(BSA=1600μg/ml)。

(3)倍比稀释:为减小误差,将标准蛋白和待测样本分为三个相同组,每个孔加25μl,浓度从上到下依次增加,H行为待测溶液。

从配置好的100μl标准蛋白溶液中取出75μl(浓度为1600μg/ml),再将75μl标准蛋白溶液取出一半到EP管中,将37.5μl的PBS缓冲液加入取出的蛋白溶液中(浓度为800μg/ml),在EP管上做好浓度标记,依次倍比稀释,得到BSA标准溶液1600,800,400,200,100,50,25μg/ml,各75μl。

省略1600μg/ml标准管直接从800μg/ml开始。

(4)标准测定:在每孔25μl标准品或待测样品中,各加入200μl WR 工作液轻摇混合。

表1 微板测定方案的加样量和比例(5)反应:将配好溶液的96孔板37℃恒温水浴箱放置30min。

(6)测定:30min后将96孔板放进酶标分析仪中进行结果的检测,以A1做参比,在562nm波长下比色,记录吸光值。

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告

蛋白质的定量测定实验报告一、实验目的。

本实验旨在通过比色法和BCA法两种方法,对蛋白质的定量测定进行实验,以便了解蛋白质含量的测定原理和方法。

二、实验原理。

1. 比色法,比色法是通过测定蛋白质与试剂发生的化学反应后产生的色素溶液的吸光度,从而计算出蛋白质的含量。

常用的试剂有布拉德福试剂和Lowry试剂。

2. BCA法,BCA法是通过测定蛋白质与BCA试剂在碱性条件下发生的紫色螯合物的吸光度,从而计算出蛋白质的含量。

三、实验材料和仪器。

1. 实验材料,蛋白质标准品、蛋白质样品、比色法试剂(布拉德福试剂或Lowry试剂)、BCA试剂、离心管、比色皿等。

2. 实验仪器,分光光度计、离心机、移液器、比色皿架等。

四、实验步骤。

1. 比色法实验步骤:a. 取适量蛋白质标准品和待测样品,分别加入布拉德福试剂或Lowry试剂。

b. 在室温下反应一定时间后,用分光光度计分别测定吸光度。

c. 根据标准曲线,计算出待测样品中蛋白质的含量。

2. BCA法实验步骤:a. 取适量蛋白质标准品和待测样品,分别加入BCA试剂。

b. 在室温下反应一定时间后,用分光光度计测定吸光度。

c. 根据标准曲线,计算出待测样品中蛋白质的含量。

五、实验结果与分析。

通过比色法和BCA法两种方法测定了蛋白质的含量,得到了相应的实验数据。

经过对实验数据的分析,可以得出蛋白质含量的定量结果。

六、实验结论。

根据实验结果,比色法和BCA法都可以用于蛋白质的定量测定,但在实际应用中需要根据具体情况选择合适的方法。

同时,实验结果也验证了蛋白质定量测定方法的准确性和可靠性。

七、实验总结。

本实验通过比色法和BCA法两种方法,对蛋白质的定量测定进行了实验,深化了对蛋白质含量测定原理和方法的理解,提高了实验操作技能和数据处理能力。

八、参考文献。

1. 《生物化学实验技术手册》。

2. Smith, P. K., et al. (1985). "Measurement of protein using bicinchoninic acid." Analytical Biochemistry 150(1): 76-85.以上就是本次蛋白质的定量测定实验报告的全部内容。

蛋白质含量测定实验报告

蛋白质含量测定实验报告

蛋白质含量测定实验报告
实验目的:测定样品中蛋白质的含量。

实验原理:
蛋白质是生物体中重要的营养成分,其含量的测定对于食品、生物化学研究等都具有重要意义。

本实验采用双氧水法测定蛋白质的含量。

双氧水法原理是将双氧水与被测物中的蛋白质发生氧化反应,生成到氨基酸的过氧化氢,过氧化氢再与钼酸铵生成深蓝色化合物。

根据形成的深蓝色化合物的吸光度与蛋白质的含量成正比关系,可以通过比色法测定样品中蛋白质的含量。

实验步骤:
1. 将待测样品和标准蛋白质溶液分别取1ml到不同的试管中。

2. 加入4ml双氧水试剂,混匀。

3. 在室温下放置20分钟。

4. 加入适量的硫酸试剂,混匀。

5. 在60℃水浴锅中恒温加热10分钟。

6. 冷却至室温。

7. 分别将标准蛋白质溶液和待测样品溶液吸取1ml到比色皿中。

8. 用比色皿中的溶液分别测定吸光度,以比色皿中双氧水试剂为参比。

9. 根据标准曲线计算待测样品中蛋白质的含量。

实验结果:
根据吸光度测定值和标准曲线得到待测样品中蛋白质的含量为X mg/ml。

实验讨论:
蛋白质的含量测定是一项常见的实验,通过双氧水法可以快速准确地测定样品中蛋白质的含量。

在实验过程中,应注意操作的准确性和实验条件的控制,避免测定误差的产生。

此外,标准曲线的制备和测定结果的分析也是关键步骤,应进行仔细的处理和验证。

实验结论:
经过测定,得到待测样品中蛋白质的含量为X mg/ml。

蛋白质测定的实验报告

蛋白质测定的实验报告

蛋白质测定的实验报告蛋白质测定的实验报告引言:蛋白质是生命体内重要的组成部分,对于维持生命活动起着重要作用。

因此,准确测定蛋白质的含量对于生物学研究和医学诊断具有重要意义。

本实验旨在通过两种常用的蛋白质测定方法——布拉德福法和BCA法,来测定未知蛋白质溶液的含量,并比较两种方法的优缺点。

实验材料和方法:实验所需材料包括:布拉德福试剂盒、BCA试剂盒、未知蛋白质溶液、标准蛋白质溶液、比色皿、吸光度计等。

实验步骤如下:1. 准备工作:将布拉德福试剂盒和BCA试剂盒从冰箱中取出,恢复至室温。

2. 制备标准曲线:分别取不同浓度的标准蛋白质溶液,加入相应的试管中,然后按照试剂盒说明书的方法进行反应,最后测定吸光度。

3. 测定未知样品:将未知蛋白质溶液加入比色皿中,然后按照试剂盒说明书的方法进行反应,最后测定吸光度。

4. 计算蛋白质浓度:根据标准曲线上的吸光度值,通过线性回归计算未知蛋白质溶液的浓度。

实验结果:经过实验测定,我们得到了未知蛋白质溶液的浓度。

使用布拉德福法测定的结果为X g/L,而使用BCA法测定的结果为Y g/L。

讨论:布拉德福法和BCA法是常用的蛋白质测定方法,它们各自有着优缺点。

布拉德福法是一种基于蛋白质与染料结合的方法。

其优点是操作简单,结果稳定可靠。

然而,布拉德福法对于某些蛋白质可能存在的干扰物敏感,因此在选择试剂盒时需要根据具体样品的特点进行选择。

此外,布拉德福法对于低浓度的蛋白质测定不够敏感,因此在测定低浓度样品时需要进行稀释。

BCA法是一种基于蛋白质与铜离子的还原反应的方法。

其优点是对于大部分蛋白质都具有较好的灵敏度和特异性。

此外,BCA法在测定低浓度样品时表现出较好的线性关系,因此在测定低浓度样品时更为适用。

然而,BCA法对于一些干扰物,如还原剂和某些金属离子,也较为敏感,因此在实验操作时需要注意。

综上所述,布拉德福法和BCA法都是常用的蛋白质测定方法,它们各有优劣。

在实际应用中,我们需要根据具体样品的特点和测定的目的选择合适的方法。

蛋白质含量测定实验报告

蛋白质含量测定实验报告

一、实验目的1. 理解并掌握考马斯亮蓝法测定蛋白质含量的原理和操作步骤。

2. 学习使用分光光度计进行比色分析。

3. 通过实验,掌握蛋白质含量测定的实际操作,提高实验技能。

二、实验原理考马斯亮蓝法是一种快速、简便的蛋白质定量方法。

该法基于蛋白质与考马斯亮蓝G-250染料的结合,蛋白质含量与染料结合程度呈线性关系。

通过测定溶液在特定波长下的吸光度,可以计算出蛋白质的含量。

实验原理:蛋白质分子中的肽键在碱性条件下能与考马斯亮蓝G-250染料发生结合,形成有色的复合物。

该复合物在特定波长下有特征性吸收峰,其吸光度与蛋白质含量呈线性关系。

三、实验材料1. 蛋白质标准品(如牛血清白蛋白)。

2. 考马斯亮蓝G-250染料。

3. 6.0mol/L NaOH溶液。

4. 双蒸水。

5. 分光光度计。

6. 试管、移液器、吸管等实验器材。

四、实验步骤1. 标准曲线制作:将不同浓度的蛋白质标准品配制成溶液,分别加入考马斯亮蓝G-250染料,在特定波长下测定吸光度,绘制标准曲线。

2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。

3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。

五、实验结果与分析1. 标准曲线制作:根据实验数据,绘制标准曲线,得出线性方程。

2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。

3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。

实验结果显示,待测样品中的蛋白质含量为XX g/L。

六、实验讨论1. 实验过程中,应注意操作规范,避免污染和误差。

2. 在制作标准曲线时,应选择合适的浓度范围,保证线性关系良好。

3. 待测样品的稀释倍数应根据实际浓度选择,以保证在检测范围内。

4. 在测定吸光度时,应注意仪器校准和操作,避免误差。

七、实验总结本次实验通过考马斯亮蓝法测定了待测样品中的蛋白质含量,实验结果准确可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②碱性硫酸铜溶液(组成:碱溶液与硫酸铜溶液按50:1混合而成,使用时该溶液必须新鲜配制,当日有效);
③Folin-酚试剂(配制过程较为复杂)
注:此次实验所用的试剂全部已由老师制备好,所以无配制过程,但需知道配制流程,可查阅实验书P105。
①V-1100可见光分光光度计;
②恒温水浴箱;
③试管6支、试管架;
2.3实验原始数据
本次实验原始数据是在500nm的波长下,各试管混合液的吸光度值,结果见下表1
表1500nm波长吸光度值记录
测定次数
各管吸光度值
2
3
4
5
6
1
0.353
0.561
0.744
0.938
0.172
2
0.350
0.562
0.744
0.938
0.172
3
0.351
0.562
0.743
0.938
其次,回顾全部过程的原理,我们猜测可能存在的造成结果低的情况为:
①在室温冷却后,实验室没有空余的分光光度计,排队时间应该是全部小组中最长的,基本花去30多分钟。而这也导致了最后的显色增强(其具体的显色原因可能为物质间的复杂反应导致)从而使得最后的标准曲线的斜率增大,导致测定的标准的样品液蛋白质含量的下降。即A<B,如图所示:
实验时间表:
总表
实验步骤
消耗时间
混合溶液
未计时
滴加溶液静置
10min
加Folin-酚试剂、水浴
10min
室温冷却
27min
等待
20min
比色测定
6min
附表
项目时刻表
试管1
试管2
试管3
试管4
试管5
试管6
加硫酸铜
8’42”09
8’43”20
8’44”29
8’45”45
8’46”55
8’47”55
水浴
8’52”09
②在分光比色的时候,测量一次后重新凋零,不能继续测量等。
操作失误:
全部实验过程中,就出现了一次失误,即在试管4加入Folin-酚试剂,充分摇匀,在放入水浴加热之间,部分液体由于磕碰而溅出。其余操作严格按照要求一步步完成,理论不存在着失误。
分析:Folin-酚与液体已经混合均匀并反应,在后面的水浴加热后,只是影响到了整体的试管4的反应后得到的溶液量,而不影响颜色的变化及最后的比色测定,故该失误不会对实验产生测定的偏差。
2.2实验现象
①在滴加硫酸铜溶液后,摇匀,产生较多的黏性气泡且附着在液体表面。液体颜色变化不深。
②在滴加Folin-酚试剂水浴加热后,除试管1为淡黄色外,其余试管均成不同的蓝色。具体看下图:
图一水浴后各试管的情况图
分析:标准液的试管中(2-5)蓝色不断加深,同实际的标准液的含量多少正相关,而试管6的颜色不深,在1-2试管之间,根据实验原理初步可以判定的是:该样品液的蛋白质含量将不会在60-80g/L之间,而是在0-40g/L。即实验存在一定的问题,详见结果的分析与讨论。
在碱性溶液中,双缩脲( )能和 作用,发生配位反应,形成紫色或紫红色的络合物,即为双缩脲反应。
由于蛋白质的肽键结构与双缩脲结构相似,故在碱性溶液中,蛋白质的分子中肽键能和碱性铜试剂中的 作用,生成紫红色的蛋白质- 复合物。对于蛋白质的测定来说,这一步是基础,这也是Folin-酚法的基础原理。
1.1.3Folin-酚显色反应
④加样枪、加样枪架。
1.3实验步骤
步骤
操作
(1)反应体系设置
取6只洁净的试管,利用加样枪按要求量取相应量的溶液,混合均匀(各试管的需加入的试剂和量见下表):
1
2
3
4
5
6
牛血清蛋白质标准液
0
0.2
0.4
0.6
0.8
0
样品液
0
0
0
0
0
0.5
蒸馏水
1.0
0.8
0.6
0.4
0.2
0.5
(2)双缩脲反应
每隔一分钟,依次往1号试管到6号试管中加入2mL的碱性硫酸铜溶液,摇匀并记录每支试管的加入硫酸铜时间,室温静置10min
血清蛋白浓度(g/ml)=样品蛋白质浓度×2×300
参考:正常人血清蛋白浓度范围为60~80 g/L。
①试剂要求:实验所需的试剂必须是新鲜配制,不然会存在被空气及其他物质氧化还原的情况,干扰实验的测定。
②控制时间:Lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间。严格按照实验步骤的操作,规定的时间是多少就多少。水浴时间也不宜过长。同时,在最后从水浴加热后取出冷却后,需及时的进行比色测定。防止混合液中物质发生系列变化和反应。
0.172
各管平均值
三、结果与讨论
3.1数据处理
3.1.1利用原始数据,可得到各管的平均值:
2管: =(0.353+0.350+0.351)/3=0.3513;
3管: =(0.561+0.562+0.562)/3=0.5617;
依次得到4-6管的吸光度值如下所示:
测定次数
各管吸光度值
2
3
4
5
6
各管平均值
本实验以上述两个反应原理为基础,再通过设置空白对照组,标准管中设置蛋白标准液的一系列浓度梯度( , , , )通过分光光度计测定吸光度,从而获取标准曲线,样品管通过测定的吸光度值,在标准曲线中找到较为准确对应的含量。
1.2实验材料
①血清稀释液(正常人血清稀释300倍)
①200g/ml牛血清白蛋白标准液(BSA);
3.4复习思考题
参考资料来源:
《生物化学与分子生物学实验技术》王晓华,朱文渊主编
1、试述Folin-酚试剂法的优点?
答:根据所学及所查知识,优点总结如下:
①测定蛋白质灵敏度高,较为准确,可检测最低蛋白质量达5 ,通常范围为: 在生物化学领域应用广泛。
②操作虽受时间限定,但是只需加入两种试剂,即可起作用,总体上说,操作简单,原理清晰易懂。
②分光光度计的比色杯清晰不干净,存在蒸馏水的稀释,且稀释的总体效果是使样品液的含量测定下降。
③开始实验的试管清洗的不充分,可能存在部分的杂质,导致显色反应的增强。
④分光光度计的几个比色杯透明面被碰到,影响到了液体的吸光度,吸光度的下降,使得样品液的测定值偏低。
最后,有可能在以后的时间里,可以重新做该实验,从多方面来验证自己的分析。多和老师同学交流,得到较好的结果
③适用性广,除测定蛋白质的含量,还可特定的适用于酪氨酸和色氨酸的定量测定。
2、应用本方法有哪些干扰作用?为什么?应如何注意?
答:①对双缩脲反应有干扰的离子,同样干扰Lowry反应,且影响还要大得多。酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。
原因是:Lowry反应的第一步即是双缩脲反应,即为之基础。需要尽可能地降低杂质的影响,严格控制实验时间,提高反应的效率。
②调至A档,依次测定2-6试管的吸光度,并读取数据。
③重复操作,再读取数据2次,并记录。数据表格见表1
(5)绘制标准曲线
利用测得的数据,绘制以 值为纵坐标,牛血清清蛋白标准液浓度为横坐标的准备曲线,具体绘制利用excel制作,结果可见图2
(6)测样品蛋白质含量
根据样品管(6管)的吸光度值,在标准曲线中找到对应的蛋白质浓度,再乘以稀释倍数(300),得出每毫升未稀释血清含蛋白质的微克数,即每毫升血清中蛋白质的微克数(mg/ml)。
0.3513
0.5617
0.7437
0.9380
0.1720
3.1.2Excel绘制蛋白质的标准曲线
根据用Excel绘制标准曲线PPt所示步骤,最终得到如下结果:
图2标准曲线图
从图中我们可以看到线性方程: ,
将样品溶液的吸光度(即y值)代入方程,可得出样品浓度(即x值);由相关指数值 可看出误差大小。
⑤绘制曲线要求:作过原点的直线或光滑连续的曲线,该线表示实验点的平均变动情况,因此该线不需全部通过各点,但应尽量使未经过线上的实验点均匀分布在曲线或直线两侧。(电脑Excel绘图,可以不考虑)
⑥操作要按照实验步骤,一步一步来,防止操作问题导致的操作误差的出现等。
二、实验记录
2.1实验条件
材料及试剂:本次实验的试剂和材料均是实验室配制好的,比例和浓度同实验预习,故不再赘述。
血清蛋白浓度(g/ml)=样品蛋白质浓度×2×300
故得血清蛋白浓度为 。
3.2结果
由上数据处理可知,最后的待测样品的蛋白质含量为 。而真正的正常人血清蛋白浓度范围为60~80g/L。因此,存在一定问题,具体分析见3.3分析与讨论。
3.3分析与讨论
首先,我们回顾了整个操作过程,在整个过程中,我们基本都是按照要求操作,并不存在着明显的操作问题。通过上面水浴加热后的图可以明显看到,结果的确应该在0-20g/L之间。同时我们与和我们一样使用试剂的组讨论后发现,他们的结果也是在10几左右;同时,很多组测出的结果都偏低,故可以初步判定结果的测量方式上不存在明显问题。
Folin-酚试剂在碱性条件下极不稳定,其磷钼酸盐-磷钨酸盐易背酚类化合物还原而呈现蓝色。酪氨酸(Tyr)含有酚羟基,故蛋白质- 复合物含有的酪氨酸或色氨酸残基还原酚试剂中的磷钼酸和磷钨酸,生成蓝色的化合物。
在一定的浓度范围内,蓝色的深浅与蛋白质的浓度呈线性关系。故可以利用上述两种反应通过分光光度法测定待测样品的蛋白质含量。
(3)Folin-酚反应
①将静置时间达到10min中的试管中,加入0.20mL的Folin-酚试剂,快速摇匀(一般在2s以内)。
②在40 下水浴加热10min钟同样需计时。
③10min钟后取出冷却至室温。
相关文档
最新文档