SDS-PAGE测定蛋白质相对分子质量实验报告

合集下载

SDS-PAGE测定蛋白质相对分子质量

SDS-PAGE测定蛋白质相对分子质量

【SDS-PAGE基本原理】
SDS-PAGE 是在蛋白质样品中加入SDS和含有巯基乙 醇的样品处理液,SDS是一种很强的阴离子表面活性剂, 它可以断开分子内和分子间的氢键,破坏蛋白质分子的 二级和三级结构。
强还原剂巯基乙醇可以断开二硫键破坏蛋白质的四级 结构。使蛋白质分子被解聚成肽链形成单链分子。解 聚后的侧链与SDS充分结合形成带负电荷的蛋白质-SDS 复合物。
4、加样
用移液器分别取10 l样品液,小心将样品加 到凝胶凹形样品槽底部。
5、电泳 将电泳仪的正负极与电泳槽正负极相连接, 打开电泳仪开关,设置电压为110V,电泳 80mins,此时溴酚蓝染料达到凝胶底部,停止 电泳,关闭电源。
6 、染色与脱色 电泳结束后,取下玻板,在自来水下用特制板撬开短 玻璃板,从凝胶板上切下一角作为加样标记,在两侧溴 酚蓝染料区带中心,插入细铜丝作为前沿标记。加入染 色液染色60 mins,再用脱色液脱色,直至蛋白质区带 清晰,即可计算相对迁移率。
2、凝胶的制备
2)浓缩胶的制备
配 制 3% 浓 缩 胶 。 在 烧 杯 中 依 次 加 入 重 蒸 水 3.12ml,浓缩胶缓冲液1.25ml,10%SDS 0.05ml,凝 胶储备液0.6ml,10% 过硫酸铵 25ul和TEMED 5ul(两块胶的量???)。混匀后用注射器加到已 聚合的分离胶上方,直至距离短玻璃板上缘约 0.5cm处(立即清洗注射器及针头)。
【操作方法】 1、垂直板电泳槽
2、凝胶的制备
1)分离胶的制备
配 制 12% 分 离 胶 。 在 烧 杯 中 依 次 加 入 重 蒸 水 3.35ml,分离胶缓冲液2.5ml,10%SDS 0.1ml,凝胶 储备液4.0ml,10% 过硫酸铵50ul和TEMED 10ul (两块胶的量???)。由于AP和TEMED相遇后 凝胶即开始聚合,所以应立即混匀混合液,用移液 枪抽取3.2~3.5ml凝胶液加至长、短玻璃板间的窄缝 内.再用注射器在凝胶表面沿短玻璃板边缘轻轻加一 层重蒸水,用于隔绝空气,使胶面平整。37℃烘箱下 聚合(约30 -60min)。待凝胶完全聚合.将贮槽的 蒸馏水倒去 ,用细条滤纸吸去残留的水液。

实验一 SDS-PAGE测定蛋白质的相对分子量

实验一 SDS-PAGE测定蛋白质的相对分子量

3.浓缩胶的制备 按下表配制浓缩胶, 按下表配制浓缩胶,将浓缩胶混 匀后直接灌注在已聚合的分离胶 立即插入梳子, 上,立即插入梳子,将凝胶垂直 放于室温下聚合。 放于室温下聚合。
浓缩胶的配制
H2O 30%丙烯酰胺 丙烯酰胺 浓缩胶缓冲液(pH6.8) 浓缩胶缓冲液(pH6.8) 10% SDS TEMED 10%过硫酸铵 过硫酸铵 总体积 4%(ml) 3.05 0.65 1.25 0.05 2小滴 小滴 0.05 5ml
4.样品预处理: 样品预处理: 取样品液与等体积样品缓冲液 混合,100℃加热1 分钟。 混合,100℃加热1~2分钟。 5.待浓缩胶聚合完全后,小心移出 待浓缩胶聚合完全后, 梳子, 梳子,然后将胶板固定于电泳装置 上下槽各加入电极缓冲液。 上,上下槽各加入电极缓冲液。 6.加样: 加样: 用微量进样器加样。 用微量进样器加样。 每个样品孔加入20ul样品 样品。 每个样品孔加入20ul样品。 同时加一个标准品。 同时加一个标准品。
分离胶的配制
H2O 30%丙烯酰胺 丙烯酰胺 分离胶缓冲液(pH8.8) 分离胶缓冲液(pH8.8) 10% SDS TEMED 10%过硫酸铵 过硫酸铵 总体积 10%(ml) 10 10 7.5 0.3 1滴 滴 0.1 30ml
将分离胶混匀后立即灌注于玻板间 隙中,上层小心覆盖一层正丁醇。 隙中,上层小心覆盖一层正丁醇。 将胶板垂直放于室温下, 将胶板垂直放于室温下,待分离胶 聚合完全后, 聚合完全后,倾去正丁醇并用滤纸 吸干。 吸干。
操作步骤 1.安装制胶模具 A 、要用琼脂进行封边,防止 要用琼脂进行封边, 凝胶泄露, 凝胶泄露,尤其注意边角的 地方。 地方。 B、安装时,要将螺丝拧紧, 安装时,要将螺丝拧紧, 也是为了防止泄露。 也是为了防止泄露。

SDS-PAGE电泳测定蛋白质相对分子质量

SDS-PAGE电泳测定蛋白质相对分子质量

SDS-PAGE电泳测定蛋白质相对分子质量SDS-PAGE电泳是现代生物学和生物化学研究中最常用的方法之一,可用于测定蛋白质的相对分子质量、纯度和数量等指标。

下面将就SDS-PAGE电泳测定蛋白质相对分子质量进行介绍。

SDS-PAGE电泳的原理:SDS-PAGE电泳是一种基于PAG(聚丙烯酰胺凝胶板)的矩阵上运行的直流凝胶电泳。

相对分子质量(MW)是以电泳迁移距离为单位来表示的。

蛋白质在PAG上被限制在孔道中运动,因此,蛋白质分子迁移距离与分子大小成正比。

通过使用外部标准,可以精确地将样品的迁移距离转换为分子量。

这种分离方法受到电荷和大小作用的影响,电势梯度使带电的蛋白质分子在凝胶中迁移。

SDS-PAGE电泳的过程:SDS-PAGE电泳的过程主要包括:样品加载、电泳和染色步骤。

(1)样品加载:样品的制备:蛋白质样品通常经过还原和变性,以便将所有蛋白质中的二硫键断裂并且在孔道中呈现线性的多聚蛋白质结构。

这需要在治疗过程中对样品添加SDS缓冲液,然后在热水浴或高压下暴露于还原剂,例如2-硫代乙酸(DTT)或β-巯基乙酸(MEA)。

(2)电泳:将处理过的样品通过凝胶基质中的丝状孔道。

随着电场的施加,蛋白质会在SDS凝胶板上自由迁移,从而分离出蛋白系列。

(3)染色:电泳结束后,将凝胶板进行染色。

目前较常用的方法是银染、共染和Coomassie Brilliant Blue染色法。

SDS-PAGE电泳的应用:SDS-PAGE电泳广泛应用于研究蛋白质相对分子质量、活性定量、纯度评估、亚基分离等方面。

其中,蛋白质相对分子质量的测定是SDS-PAGE电泳的最主要应用之一。

通过将未知蛋白与已知分子质量蛋白一起电泳,可以通过线性回归计算未知标本的分子大小。

SDSPAGE测定蛋白质相对分子质量实验报告

SDSPAGE测定蛋白质相对分子质量实验报告

SDS_PAGE测定蛋白质相对分子质量实验报告实验报告:SDS-PAGE测定蛋白质相对分子质量一、实验目的通过SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳)测定蛋白质相对分子质量,了解其基本原理和实验操作流程。

二、实验原理SDS-PAGE是一种常用的测定蛋白质相对分子质量的方法。

它利用十二烷基硫酸钠(SDS)与蛋白质的结合性质,将蛋白质变性并带负电荷,使得蛋白质在电场中的迁移率仅取决于相对分子质量,而与蛋白质的等电点、电荷性质无关。

通过比较标准蛋白质的迁移率和已知相对分子质量的蛋白质,可确定待测蛋白质的相对分子质量。

三、实验步骤1.准备试剂和器材:SDS-PAGE所需试剂包括丙烯酰胺、N-丙基甲基丙烯酰胺、过硫酸铵、甘氨酸、十二烷基硫酸钠、tris缓冲液、G250染料、乙醇等;器材包括电泳槽、制胶板、移液器、电泳仪、电源等。

2.制备标准蛋白样品:选择已知相对分子质量的标准蛋白样品,将其与G250染料混合,煮沸变性,冷却后作为标准蛋白样品。

3.制备样品:将待测蛋白质样品与G250染料混合,加入适量SDS-PAGE缓冲液,煮沸变性,冷却后作为待测样品。

4.制胶:将丙烯酰胺、N-丙基甲基丙烯酰胺、过硫酸铵、甘氨酸、tris缓冲液等混合,倒入制胶板中,插入样品梳子,静置凝固。

5.电泳:将凝胶放入电泳槽中,加入适量电泳液,将标准蛋白样品和待测样品分别加入对应的孔中。

打开电源,调整电流和电压,开始电泳。

6.染色和脱色:电泳结束后,将凝胶取出,用G250染料进行染色,然后进行脱色处理,以呈现清晰蛋白质条带。

7.相对分子质量测定:通过比较标准蛋白样品的迁移率和已知相对分子质量的蛋白样品,可确定待测蛋白质的相对分子质量。

四、结果分析通过本实验,我们成功地得到了SDS-PAGE凝胶电泳图谱,并测定了待测蛋白质的相对分子质量。

通过与标准蛋白样品的迁移率进行比较,发现待测蛋白质的相对分子质量约为50kDa。

此外,我们还发现不同浓度的待测蛋白质样品在凝胶电泳图谱上的条带位置也存在差异,表明它们具有不同的相对分子质量。

5 SDS-PAGE测定蛋白质的相对分子量

5 SDS-PAGE测定蛋白质的相对分子量

实验SDS - PAGE测定蛋白质的相对分子量一、目的了解SDS-聚丙烯酰胺凝胶电泳的原理,并学会用这种方法测定蛋白质的相对分子量。

二、原理聚丙烯酰胺凝胶电泳之所以能将不同的大分子化合物分开,是由于这些大分子化合物所带电荷的差异和分子大小不同之故,如果将电荷差异这一因素除去或减小到可以忽略不计的程度,这些化合物在凝胶上的迁移率则完全取决于相对分子质量。

SDS是十二烷基硫酸钠(sodium dodecyl sulfate)的简称,它是一种阴离子去污剂,它能按一定比例与蛋白质分子结合成带负电荷的复合物,其负电荷远远超过了蛋白质原有的电荷,也就消除或降低了不同蛋白质之间原有的电荷差别,这样就使电泳迁移率只取决于分子大小这一因素,就可根据标准蛋白质的相对分子量的对数对迁移率所作的标准曲线求得未知蛋白质的相对分子质量。

本实验用目前常用的垂直平板电泳,样品的起点一致,便于比较。

三、试剂和器材(一)试剂1. 凝胶贮备液:丙烯酰胺(Acr)29.2g和亚甲基双丙烯酰胺(Bis)0.8g重蒸水溶解后,定容至100ml,棕色试剂瓶4℃保存,30天内使用。

2. 分离胶缓冲液:1.5mol/L Tris-HCl,pH8.8。

18.15 Tris(三羟甲基氨基甲烷),少许重蒸水溶解,用1M HCl调pH8.8,重蒸水定容至100ml,4℃保存。

3. 浓缩胶缓冲液:0.5mol/LHCl,pH6.8。

6gTris,少许重蒸水溶解,用1M HCl调pH6.8,重蒸水定容至100ml,4℃保存。

4. 10%SDS,室温保存。

5. 两类样品缓冲液:2倍还原缓冲液(2×reducing buffer)0.5mol/L HCl,pH6.8 2.5 ml甘油 2.0 ml质量浓度10%SDS 4.0ml质量浓度0.1%溴酚蓝0.5mlβ-巯基乙醇 1.0 ml总体积10 ml6. 电极缓冲液,pH8.3。

Tris3g,甘氨酸14.4g,SDS1.0g加重蒸水溶解定容至1000ml,4℃保存。

SDS-PAGE实验报告

SDS-PAGE实验报告

生化实验总结报告实验名称:SDS - PAGE法测定蛋白质的相对分子量作者:田景辉(201306230114)专业:生物工程指导教师:许培雅日期:2015.12.30组员:杨瑞徐巧妹尹彪程健刘嘉南目录一、实验介绍 (3)二、实验原理 (3)三、实验材料、试剂、器皿 (4)四、操作步骤 (5)五、注意事项 (7)六、实验数据记录与处理 (7)七、总结与建议 (8)八、术语表 (9)九、参考文献 (9)十、附录 (9)一、实验介绍1.实验目的掌握SDS-聚丙烯酰胺凝胶电泳法和测定蛋白质分子量的技术。

2.实验背景在实验一中,用100g新鲜酵母用甲苯自溶法、研磨法、SDS(十二烷基苯磺酸钠)法进行了蔗糖酶的提取以及粗提取,得到初提取液A、热提取液B、乙醇提取液C。

最终得到9.0ml蔗糖酶初提取液。

实验二采用QAE-葡聚糖凝胶离子交换柱层析法进行蔗糖酶的纯化,得到经线性阶梯洗脱的分离液D1和经阶梯梯度洗脱的分离液D2。

实验三采用苯基琼脂糖凝胶柱层析法进行进一步纯化,得到经2mol/L(NH4)2SO4的0.05mol/L Tris-HCl ph7.3 缓冲液洗脱的分离液E1和经2mol/L NaCl的0.05mol/L Tris-HCl ph7.3 缓冲液洗脱的分离液E2。

二、实验原理SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基硫酸钠), SDS会与变性的多肽,并使蛋白带负电荷,由于多肽结合SDS的量几乎总是与多肽的分子量成正比而与其序列无关,因此SDS多肽复合物在丙稀酰胺凝胶电泳中的迁移率只与多肽的大小有关,在达到饱和的状态下,每克多肽可与1.4g去污剂结合。

当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。

SDS-PAGE测定蛋白质相对分子质量

SDS-PAGE测定蛋白质相对分子质量

【实验原理】
SDS与蛋白质结合后,还引起蛋白质构象的改变。蛋白 质-SDS复合物的流体力学和光学性质表明,它们在水溶液中 的形状,近似于雪茄烟形的长椭圆棒。不同蛋白质的SDS复 合物的短轴长度都一样,而长轴则随蛋白质相对分子质量的 大小成正比的变化。这样的蛋白质-SDS复合物在凝胶中的迁 移率,不再受蛋白质原有电荷和形状的影响,而只是椭圆棒 的长度,也就是蛋白质相对分子质量的函数。
【实验步骤】
一、安装垂直板型电泳装置
一、安装垂直板型电泳装置
将装好的电泳装置垂直放置,在长玻璃片下 端与硅胶框交界的缝隙内加入用电极缓冲溶液配 制的1%琼脂糖溶液,待其凝固后,即堵住凝胶 模板下面的窄缝(通电时又可作为盐桥)。
分离胶的配制
10%(ml)
H2O
10
30%丙烯酰胺
10
分离胶缓冲液(pH8.8)
【实验原理】
SDS是一种阴离子型去污剂,在蛋白质溶解液中加入 SDS和巯基乙醇后,巯基乙醇可使蛋白质分子中的二硫键还 原;SDS能使蛋白质的非共价键(氢键、疏水键)打开,并 结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS 结合比为1.4 g SDS/g蛋白质),形成蛋白质-SDS复合物。由 于SDS带有大量负电荷,当它与蛋白质结合时,所带的负电 荷的量大大超过了蛋白质原有的电荷量,因而掩盖了不同种 类蛋白质间原有的电荷差异。
剥胶示意图
七、染色和脱色
倾出固定液,加入染色液。染色过夜。 染色完毕,倾出染色液,加入脱色液。数小时 换一次脱色液,直至背景清晰,约需一昼夜。
八、Mr的计算
量出加样端距细铜丝间的距离(cm)以及各蛋白质样品区 带中心与加样端的距离(cm),按下式计算相对迁移率mr:
蛋白质样品迁移距离(cm) 相对迁移率mr = 溴酚蓝区带距加样端距离(cm)

SDS-PAGE测定蛋白质

SDS-PAGE测定蛋白质
分离胶
浓缩效应
样品进入浓缩胶有一个堆积 浓缩效应(缓冲液pH8.3) 蛋白质从“-”极向“+” 极移动,从浓缩胶进入分离 胶,速度变慢,堆积浓缩。
缓冲液 样品 浓缩胶
分离胶
浓缩效应
样品进入浓缩胶有一个堆积 浓缩效应(缓冲液pH8.3) 蛋白质从“-”极向“+” 极移动,从浓缩胶进入分离 胶,速度变慢,堆积浓缩。
【SDS-PAGE基本原理】
SDS-PAGE 是在蛋白质样品中加入SDS和含有巯基乙 醇的样品处理液,SDS是一种很强的阴离子表面活性剂, 它可以断开分子内和分子间的氢键,破坏蛋白质分子的 二级和三级结构。
强还原剂巯基乙醇可以断开二硫键破坏蛋白质的四级 结构。使蛋白质分子被解聚成肽链形成单链分子。解 聚后的侧链与SDS充分结合形成带负电荷的蛋白质-SDS 复合物。
3、蛋白质样品的处理
1)标准蛋白质样品的处理 低分子量标准蛋白试剂盒:兔磷酸化酶B MW=97,400
牛血清白蛋白 MW=66,200 牛碳酸酐酶 MW=31,000 胰蛋白酶抑制剂 MW=20,100 鸡蛋清溶菌酶 MW=14,400 开封后溶于200µl样品溶解液中,沸水浴中加热35min后上样。
4、加样
用移液器分别取10 l样品液,小心将样品加到凝胶 凹形样品槽底部。并做好标记。
5、电泳 将电泳仪的正极与下槽连接,负极与上槽连接,打开 电泳仪开关,开始时电流为10 mA,待样品进入分离 胶后,将电流调至20-30 mA,当溴酚蓝染料距硅胶框 1cm时,停止电泳,关闭电源。
ቤተ መጻሕፍቲ ባይዱ
Staking gel Separating gel
相对迁移率mR=
蛋白质样品迁移距离(cm) 溴酚蓝区带距加样端距离(cm)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SDS-PAGE测定蛋白质相对分子质量一、前言聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。

聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。

催化聚合的常用方法有两种:化学聚合法和光聚合法。

化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。

在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。

PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。

不连续体系由电极缓冲液、浓缩胶及分离胶所组成。

浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。

分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。

电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。

2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。

而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。

在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。

SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。

浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。

当样品液和浓缩胶选TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。

电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。

蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。

电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成一稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。

此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。

聚丙烯酰胺凝胶电泳作用原理聚丙烯酰胺凝胶为网状结构,具有分子筛效应。

它有两种形式:非变性聚丙烯酰胺凝胶电泳(Native-PAGE)及SDS-聚丙烯酰胺凝胶(SDS-PAGE);非变性聚丙烯酰胺凝胶,在电泳的过程中,蛋白质能够保持完整状态,并依据蛋白质的分子量大小、蛋白质的形状及其所附带的电荷量而逐渐呈梯度分开。

而SDS-PAGE仅根据蛋白质亚基分子量的不同就可以分开蛋白质。

该技术最初由shapiro于1967年建立,他们发现在样品介质和丙烯酰胺凝胶中加入离子去污剂和强还原剂(SDS即十二烷基硫酸钠)后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小(可以忽略电荷因素)。

二、实验目的1.学习SDS-PAGE测定蛋白质分子量的原理。

2.掌握垂直板电泳的操作方法。

3.运用SDS-PAGE测定蛋白质分子量及染色鉴定。

三、实验原理1.电泳带电颗粒在电场作用下,向着与其电荷相反的电极移动的现象。

在一定的电场强度下,分子在凝胶介质中的迁移速率取决于分子的大小、构型和带电量的大小。

2.PAGE聚丙烯酰胺凝胶(PAG)是由单体丙烯酰胺(Acr)和交联剂甲叉双丙烯酰胺(Bis)在加速剂四甲基乙二胺(TEMED)和引发剂过硫酸铵(AP) 的作用下聚合交联而成的三维网状结构的凝胶。

以此凝胶作为支持介质的电泳称为PAGE。

PAGE具有电泳和分子筛的双重作用。

PAG机械强度好,有弹性,透明,化学性质稳定,改变Acr浓度或Acr与Bis的比例可以得到不同孔径的凝胶。

PAGE分为连续系统和不连续系统两大类。

连续系统电泳体系中缓冲液pH值与凝胶中的相同.带电颗粒在电场作用下,主要靠电荷和分子筛效应。

不连续系统中带电颗粒在电场中泳动不仅有电荷效应、分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。

3.SDS-PAGE基本原理SDS-PAGE是在蛋白质样品中加入SDS和含有巯基乙醇的样品处理液,SDS是一种很强的阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构。

强还原剂巯基乙醇可以断开二硫键破坏蛋白质的四级结构。

使蛋白质分子被解聚成肽链形成单链分子。

解聚后的侧链与SDS充分结合形成带负电荷的蛋白质-SDS复合物。

蛋白质分子结合SDS阴离子后,所带负电荷的量远远超过了它原有的净电荷,从而消除了不同种蛋白质之间所带净电荷的差异。

蛋白质的电泳迁移率主要决定于亚基的相对分子质量。

而与其所带电荷的性质无关。

当蛋白质的分子量在17,000~165,000之间时,蛋白质-SDS复合物的电泳迁移率与蛋白质分子量的对数呈线性关系:lgMW = K - bm将已知分子量的标准蛋白质在SDS-PAGE 中的电泳迁移率对分子量的对数作图,即可得到一条标准曲线。

只要测得未知分子量的蛋白质在相同条件下的电泳迁移率,就能根据标准曲线求得其分子量。

四、实验器材和材料试剂仪器:垂直板型电泳槽;直流稳压电源;50或100μl微量注射器、玻璃板、水浴锅,染色槽;烧杯;吸量管;常头滴管等。

原料:低分子量标准蛋白质按照每种蛋白0.5-1mgml-1样品溶解液配制。

可配制成单一蛋白质标准液,也可配成混合蛋白质标准液。

试剂:(1)分离胶缓冲液(Tris-HCl缓冲液 PH8.9):取 1mol/L盐酸48mL,Tris 36.3g,用无离子水溶解后定容至 100mL;(2)浓缩胶缓冲液(Tris-HCl缓冲液 PH6.7):取 1mol/L盐酸48mL,Tris 5.98g,用无离子水溶解后定容至 100mL;(3)30%分离胶贮液:配制方法与连续体系相同,称丙烯酰胺(Acr) 30g及N,N’-甲叉双丙烯酰胺(Bis)0.8g,溶于重蒸水中,最后定容至100ml,过滤后置棕色试剂瓶中,4保存;(4)10%浓缩胶贮液:称Acr 10g及Bis 0.5g,溶于重蒸水中,最后定容至100mL,过滤后置棕色试剂瓶中,4贮存;(5)10%SDS溶液:SDS在低温易析出结晶,用前微热,使其完全溶解;(6)1%TEMED;(7)10%过硫酸铵(AP):现用现配;(8)电泳缓冲液(Tris-甘氨酸缓冲液PH8.3):称取Tris 6.0g, 甘氨酸28.8g, SDS 1.0g, 用无离子水溶解后定容至1L;(9)样品溶解液:取SDS 100mg,巯基乙醇0.1mL,甘油1mL,溴酚蓝2mg,0.2mol/L,pH7.2磷酸缓冲液0.5mL,加重蒸水至10mL(遇液体样品浓度增加一倍配制)。

用来溶解标准蛋白质及待测固体;(10)染色液:0.25g考马斯亮蓝G-250,加入454mL 50%甲醇溶液和46mL冰乙酸即可;(11)脱色液:75mL冰乙酸,875mL重蒸水与50mL甲醇混匀。

五、实验操作1.制胶玻板的清洗用海绵和洗涤剂轻柔地清洗,严禁使用刷子和颗粒状的去污粉与洗衣粉,完全冲洗干净后烘干。

2.垂直板电泳槽3.凝胶的制备①分离胶的制备配制12%分离胶。

在烧杯中依次加入重蒸水3.35ml,分离胶缓冲液(1.5mol/L Tris-HCl,pH8.8)2.5ml,10%SDS 0.1ml,凝胶储备液4.0ml,10% 过硫酸铵50ul和TEMED 10ul。

由于AP和TEMED相遇后凝胶即开始聚合,所以应立即混匀混合液,用移液枪抽取凝胶液加至长、短玻璃板间的窄缝内,留出梳齿的齿高加1cm的空间停止灌胶,小心覆盖一层蒸馏水,37℃烘箱下聚合(约30 min)。

待分离胶聚合完全后,除去覆盖的蒸馏水。

②浓缩胶的制备配制5%浓缩胶。

在烧杯中依次加入重蒸水2.92ml,浓缩胶缓冲液(0.5mol/L Tris-HCl,pH6.8) 1.25ml,10% SDS 0.05ml,凝胶储备液0.8ml,10% 过硫酸铵25ul和TEMED 10ul。

由于AP和TEMED相遇后凝胶即开始聚合,所以应立即混匀混合液,用移液枪抽取凝胶液加至长、短玻璃板间的窄缝内,灌满后小心插入梳齿,避免混入气泡,37℃烘箱下聚合(约30 min)。

4.蛋白质样品的处理①标准蛋白质样品的处理低分子量标准蛋白试剂盒:兔磷酸化酶B MW=97,400牛血清白蛋白 MW=66,200牛碳酸酐酶 MW=31,000胰蛋白酶抑制剂 MW=20,100鸡蛋清溶菌酶 MW=14,400开封后,沸水浴中加热3-5min后上样。

②样液的准备用移液枪小心吸取处理好的血清50ul至1.5ml的离心管中,再加入50ul上样缓冲液,混匀后沸水浴中加热3min,取出冷却后加样。

5.加样用移液器分别取5 ml样品液,小心将样品加到凝胶凹形样品槽底部。

6.电泳将电泳仪的正负极与电泳槽正负极相连接,打开电泳仪开关,设置电压为200V,电泳60mins,此时溴酚蓝染料达到凝胶底部,停止电泳,关闭电源。

7.染色与脱色电泳结束后,取下玻板,在自来水下用特制板撬开短玻璃板,从凝胶板上切下一角作为加样标记,在两侧溴酚蓝染料区带中心,插入细铜丝作为前沿标记。

加入染色液染色60 mins,再用脱色液脱色,直至蛋白质区带清晰,即可计算相对迁移率。

8.结果处理量出加样端距细铜丝间的距离(cm)以及各蛋白质样品区带中心与加样端的距离(cm),按下式计算相对迁移率mR:六、实验结果及数据处理1.实验现象:脱色结束后,经观察可知,点有maker的孔跑出来的有5个清晰笔直的条带,迁移率由低到高排列这5个条带分别是分别是兔磷酸化酶B、牛血清白蛋白、牛碳酸酐酶、胰蛋白酶抑制剂、鸡蛋清溶菌酶。

点有血清蛋白的点样孔跑出的结果在分离胶与浓缩胶交界处出现一大团成分未知着色团,经老师讲解并且上网查阅资料得知这种现象可能是所谓的“鬼带”现象。

“鬼带”就是在跑大分子构象复杂的蛋白质分子时,常会出现在泳道顶端(有时在浓缩胶中)的一些大分子未知条带或加样孔底部有沉淀。

出现这种现象主要由于还原剂在加热的过程中被氧化而失去活性,致使原来被解离的蛋白质分子重新折叠结合和亚基重新缔合,聚合成大分子,其分子量要比目标条带大,有时不能进入分离胶。

相关文档
最新文档