第一章 计算机基础知识-2(数制及编码)解析
计算机基础计算机系统数制和编码课件

十六进制数的基数为16,每一位数字的权值根据其位置而变化, 例如:个位为16^0,十位为16^1,百位为16^2,以此类推。
03
十六进制数的运算遵循四则运算规则,但需要注意A-F代表 的值为10-15。
03
编码系统
ASCII码
01
总结词
美国信息交换标准代码
02
详细描述
ASCII码是最早的编码标准之一,用于将字符转换为数字。它包含了 128个字符,使用7位二进制数表示,能够满足英文和部分特殊字符 的需求。
Unicode码
总结词
统一码、万国码
详细描述
Unicode码是一种国际化的编码标准,旨在解决不同语言和特殊字符的编码问题。它采用16位二进制数表示,能 够覆盖世界上大部分语言的字符,包括一些特殊符号和图形。
GB2312码
总结词
汉字国标码
详细描述
GB2312码是中国国家强制标准,主要用于汉字的编码。它包含了6000多个常 用汉字和英文、数字的符号,采用2个字节的16位二进制数表示。GB2312码是 简体中文的常用编码方式之一。
THANKS
详细描述
字节是计算机中常用的数据存储单位 ,由8个位组成。它可以表示的数值 范围从0到255。常见的存储单位还有 千字节(KB)、兆字节(MB)、吉 字节(GB)等。
字(Word)
总结词
字是计算机中自然的数据存储单位,通常由若干个字节组成 。
详细描述
字是计算机中自然的数据存储单位,通常由若干个字节组成 。不同架构的计算机可能有不同的字长,常见的有16位、32 位和64位等。字可以用来表示整数、浮点数等各种数据类型 。
余数,直到商为0为止。
二进制数与八进制数的转换
数字电路_2数制和编码

? 区位码——GB 2312的所有字符分布在一个94行×94列的二维平面内,行号称为区号,列号称 为位号。区号和位号的组合就可以作为汉字字符的编码,称为汉字的区位码。
加法
减法
十六进制
? 由于二进制数在使用时位数太长,不容易记忆,所以又推出了十六进制数。 ? 十六进制数有两个基本特点:
? 它由十六个字符 0~9以及A,B,C,D,E,F组成(它们分别表示十进制数 10~15);
? 十六进制数运算规律是逢十六进一,即基 R=16=2 4,通常在表示时用尾部标志 H或下标 16以示区别。 例如:十六进制数 4AC8可写成( 4AC8 )16,或写成 4AC8H 。
B表示。 例如:二进制数 10110011 可以写成( 10110011 )2,或写成 10110011B ? 对于十进制数可以不加注基数;
十进制
(D) 0 1 2 3 4
56
7
8
9 10
二进制 (B) 0 1 10 11 100 101 110 111 1000 1001 1010
计算机采用二进制数
(101.11)B= 1×22 +0×21+1×20+1×2-1+1×2-2 =(5.75)D
各数位的权是2的幂
十进制数 →二进制数 将整数部分和小数部分分别进行转换。
整数部分 ---除2取余,逆序排列 ; 合并
小数部分 ---乘2取整,顺序排列。
? 十进制数 44.375 转换成二进制等于多少?
(44.375)D=(?)B
十六进制数 →二进制数
? 十六进制数转换为二进制数时正好与上面所述相反,只要将每位的十六进制数对应的 4 位二进制写出来就行了。
《计算机应用基础》1.2数制与编码

位权
Ri就是位权。
《计算机应用基础》课程
1.数制与编码-常用数制及其转换
计算机为什么要采用二进制
• 易于物理实现 • 运算规则简单 • 机器可靠性高 • 逻辑判断方便
《计算机应用基础》课程
1.数制与编码-常用数制及其转换
二进制与十进制
十 各位位权
… 103 102 101 100 10-1 10-2 …
B
B 十六进制
《计算机应用基础》课程
1.数制与编码-常用数制及其转换
A 二进制数
十六进制数
[例] (111101.010111)2 = (3D.5C)16
● 规则:4位并1位 计数方向:左← . →右 位数不足补0
mod.2 mod.16
0011 1101 . 0101 B 十六进制数
《计算机应用基础》课程
3.数制与编码-计算机信息编码
反码
是数值存储的一种。正数的反码与其原码相同;负数的反码是对其原 码逐位取反,但符号位除外。
若用8位二进制表示一个数,则 [000001011]反= 000001011 [100001011]反= 111110100
1 11110100
3.数制与编码-计算机信息编码
《计算机应用基础》课程
3.数制与编码-计算机信息编码
区位码
GB2312-80《信息交换用汉字编码字符集》中,所有的国标汉字与符号 组成一个94×94的矩阵。此方阵中的每一行称为一个“区”68,2个每特一殊列字称符为一 个“位”。一个汉字所在的区号和位号简单地组合在一起就构成了该汉字的" 区位码"。
10010
0.8125 ×2
1.625 ×2
1.25 ×2
1-2计算机的数制与编码

1.2 计算机的数制与编码计算机能处理的信息有数值、字符、图形、声音等,它们都要转化为0、1代码串的形式,才能由计算机来处理。
1.2.1 数制 一、各种数制:所谓数制是指 。
都叫做进位记数制。
进位制的关键问题是决定数码 的和 。
●进位记数制中有数位、基数、位权三个要素: 数位是指数码在一个数中所处的位置;基数是指在某种进位记数制中,每个数位上所能使用的数码的个数。
权是指在某种进位记数制中,每个数位上的数码所代表的数值的大小。
如:表1.1 常用的几种进位制对同一个数值的表示(P9)二、数制间的转换:例:(重点:十进制与二进制的互相转换)●各种进制转十进制●十进制转各种进制●二进制转八进制、八进制转二进制与二进制转十六进制、十六进制转二进制练习:P39:20、21、22、23、24、25、26、27、28、29(写在课本上)如何检查?(计算器!)1.2.2 ASCII码●通称为字符。
字符没有数值意义。
为了便于计算机的应用推广,这些字符必须用统一的规定编码方式来表示。
目前在国际上广泛采用“”表示、和作为使用的等。
●ASCII码的英文全称:,中文。
●ASCII码用位0、1代码串来编码一个符号,每个符号占的存储空间,字节最高位(左)为,作奇偶校验用。
(注:1字节= 位,一个字符的ASCII码占位,余下位用作)●ASCII码给出了个数码,个英文字母,个通用符号,个动作控制符的编码标准。
◆例:查表P308(1)字母“A”的ASCCII的二进制表示为:,十六进制表示为:,十进制表示为:(2)将字符“2”的ASCII码当成数值,转换为十进制数得到50,数字字符“5”的ASCII码转换为十进制数应得到●ASCII码的比较:(详见附录1:P308)空格(space)的ASCCII码是32‘0’~‘9’的ASCCII码是48~57‘A’~‘Z’的ASCCII码是65~90‘a’~‘z’的ASCCII码是97~1221.2.3 汉字编码1.国标码GB 2312-80《》1级汉字个,按顺序排列、2级汉字个,按排列,汉字有6763个,常用符号、字母、图形符号等682个,共计7445个。
《数制与编码》课件

WAV
波形音频文件格式,未进 行压缩,音质较高但文件 较大。
AAC
高级音频编码,支持更高 的比特率和多声道,广泛 应用于流媒体和数字广播 。
05
编码的未来发展
编码技术的创新
总结词
随着技术的不断发展,编码技术也在不断创新和进步,未来将会有更多的新技 术应用于编码领域。
详细描述
随着云计算、大数据、物联网等技术的快速发展,编码技术也在不断创新和进 步。未来可能会出现更加高效、安全的编码算法和技术,以满足更加复杂和多 样化的应用需求。
非十进制转其他数制
通过连续除基取余法进行转换。
其他数制转十进制
通过乘基取整法或加权求和法进行转换。
非十进制转十进制
通过连续乘基取整法进行转换。
02
编码的基本概念
编码的定义
编码的定义
编码是将信息转换为一种能被机器识 别的语言,也就是用某种符号代表特 定的信息。编码是信息传输和存储的 关键环节,没有编码,计算机就无法 处理信息。
数制的分类
01
有符号数制和无符号数制:有符号数制表示数值的 正负,无符号数制只表示数值的大小。
02
定点数制和浮点数制:定点数制小数点位置固定, 浮点数制小数点位置可以浮动。
03
二进制数制、八进制数制、十进制数制和十六进制 数制:根据基数不同进行分类。
数制转换的方法
十进制转其他数制
通过除基取余法或乘基取整法进行转换。
编码在人工智能中的应用
总结词
人工智能技术的快速发展为编码技术的应用提供了新的机遇和挑战,未来编码将在人工智能中发挥更加重要的作 用。
详细描述
人工智能技术的核心是数据和算法,而编码技术是其中不可或缺的一部分。未来,随着人工智能技术的不断发展 和应用,编码技术的应用场景也将更加广泛和深入。同时,编码技术也面临着如何更好地支持人工智能技术的发 展和应用,如提高算法的效率和安全性等。
第一章 微型计算机基础知识

第一章微型计算机基础知识第一章微型计算机基础知识第一章微机基础知识1.1计算机中的数和编码1.1.1计算机中的数制计算机最初是作为一种计算工具出现的,所以它最基本的功能是处理和处理对数。
数字由机器中设备的物理状态表示。
具有两种不同稳定状态和相互转换的设备可用于表示1位二进制数。
二进制数具有操作简单、物理实现方便、节省设备等优点。
因此,目前,几乎所有的二进制数都用计算机来表示。
然而,二进制数太长,无法写入,不容易阅读和记忆;此外,目前大多数微机是8位、16位或32位,是4的整数倍,4位二进制数是1位十六进制数;因此,在微型计算机中,二进制数被缩写为十六进制数。
十六进制数使用16个数字,例如0~9和a~F来表示十进制数0~15。
8位二进制数由2位十六进制数表示,16位二进制数由4位十六进制数表示。
这便于书写、阅读和记忆。
然而,十进制数是最常见和最常用的。
因此,我们应该熟练掌握十进制数、二进制数和十六进制数之间的转换。
表1-1列出了它们之间的关系。
表1-1十进制数、二进制数及十六进制数对照表十进制二进制十六进制012345678910111213141500000001001000110100010101100111100010011010101111001101 111011110123456789abcdef为了区别十进制数、二进制数及十六进制数3种数制,可在数的右下角注明数制,或者在数的后面加一字母。
如b(binary)表示二进制数制;d(decimal)或不带字母表示十进制数制;h(hexadecimal)表示十六进制数制。
1.二进制数和十六进制数之间的转换根据表1-1所示的对应关系即可实现它们之间的转换。
二进制整数被转换成十六进制数。
方法是将二进制数从右(最低位)到左分组:每4位为一组。
如果最后一组少于4位,则在其左侧加0以形成一个4位组。
每组由一位十六进制数表示。
例如:1111111000111b→1111111000111b→0001111111000111b=1fc7h要将十六进制数转换为二进制数,只需使用4位二进制数而不是1位十六进制数。
计算机数制与信息编码介绍课件

演讲人
01.
02.
03.
04.
目录
计算机数制
信息编码
数据存储与传输
计算机网络与通信
计算机数制
数制基础
03
转换:不同进制之间的转换方法
02
进制:二进制、八进制、十进制、十六进制等
01
数制:计算机中表示数字的方法
04
应用:计算机硬件、软件、网络通信等领域中的数制表示
二进制、八进制、十六进制
数据安全与加密
01
数据加密技术:用于保护数据在传输和存储过程中的安全性
02
加密算法:包括对称加密算法和非对称加密算法
03
数字签名:用于验证数据的完整性和身份认证
04
安全协议:如SSL/TLS,用于保护数据在传输过程中的安全性
计算机网络与通信
网络基础
网络拓扑结构:总线型、星型、环型、树型等
网络协议:TCP/IP、UDP、IPX/SPX等
二进制:计算机内部使用的基本数制,由0和1组成,表示二进制数
八进制:由0到7的八个数字组成,表示八进制数
十六进制:由0到9和A到F的十六个数字组成,表示十六进制数
二进制、八进制、十六进制之间的转换:可以通过特定的算法进行转换,以便于计算机处理和存储数据。
数制转换
十进制转二进制:除2取余法
01
二进制转十进制:按位权展开求和
光盘:用于存储和读取数据,如CD、DVD、蓝光光盘等
02
闪存:用于存储和读取数据,如U盘、SD卡等
云存储:通过网络存储和读取数据,如Dropbox、Google Drive等
04
计算机基础知识之数制与编码

1.2数制与编码
1.2.1 数制及其转换 1、各种进位计数制 (4)十六进制 ① 十六个数码:0~9,A~F ,基为16 ② 逢十六进一 ③ 权为16i(i为权位) 例如,(5A7)16 =5×162+10×161+7×160
= 1280+160+7
=(1447)10
1.2数制与编码
1.2.1 数制及其转换
机内码= 国标码+8080h
“编” → 3160h + 8080h=b1e0h
1.2 数制与编码
1.2.3 字符的编码 3、汉字编码
(3)字型码 ● 点阵码(字模):字型点阵 ● 矢量码:形状、笔画、字根用数学描述
(4)外码(输入法) ● 拼音码:ABC、紫光、搜狗 ● 字型码:五笔字型 ● 音型码:极点五笔
1.2 数制与编码
1.2.2 数值数据的编码 机器数与真值 真值:用“+”、“-”表示正负的二进制 例如,N1=+10111, N2=-10111 机器数:用“0”、“1”表示正负的二进制 (符号数字化,一般“0”表示正, “1”表示负) 例如,N1=010111, N2=110111
1.2 数制与编码
1.2.3 字符的编码 用0、1的组合(编码)表示字符
1、ASCII码 ASCII:美国标准信息交换码 用7位二进制数表示一个字b表符示,二共进2h制7表=示12十8六个进制 例如,‘A’→1000001b = 41h ‘a’→1100001b = 61h
1.2 数制与编码
1.2.3 字符的编码 3、汉字编码
1.2.2 数值数据的编码 小数点的位置:固定→定点数 浮动→浮点数
1、定点数表示 (1)定点整数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* 特点: 基本数码0~15 (16个):
0,1,2,3,4,5,6,7,8,9, 10(A),11(B),12(C),13(D),14(E),15(F)
逢十六进一 (FAB.C)16 =F×162+A×161+B×160+C×16-1=(4011.75)10
注:通常用( )下标来表示不同进制的数 Eg:
1.4 计算机各种进制的转换和编码
➢计算机系统中常用的数制有二进制、十进 制、八进制和十六进制;
➢计算机中使用二进制,运算简单,易于通 过物理器件实现0,1状态;
➢十进制是人们最熟悉的数制,但要转换为 二进制才能存入存储器;
➢八进制、十六进制是二进制的简短表示, 也要转换为二进制才能存入存储器。
1.4.1 常用数制及其相互转换 1.4.2 计算机中的数据表示方法 1.4.3 数值数据编码
的10被称为基数,它是相邻数位的权之比。各数位的权是基数 10的整数次幂。
2. 二进制数
* 特点:
只有两个数字0和1 逢二进一,各位权为2k
* 二进制权的展开式 (101101.101)2=1×25 + 0×24 + 1×23 + 1× 22 +
0×21 +1×20 + 1×2-1 + 0×2-2 + 1×2-3 = (45.625)10 公式: (an an-1 an-2… a0 a-1… a-m )2
⑵ 八进制转换为二进制:
八进制数转换成二进制数时,只要将八进制数的 每一位改成等值的三位二进数即“一位变三位”。
(6237.431)8=( )2 6 2 3 7.4 3 1
110 010 011 111 100 011 001 (6237.431)8=(110010011111.100011001)2
1.4.1 常用数制及其相互转换
1. 十进制数
* 特点: 有10个不同的数字(0,1,2,3,4,5,6,7,8,9); 234, 978.5 逢十进一
* 权的概念: 在数位上,每个数位被赋予一定的位值 例如: 在十进制数中,个、十、百、千……各位的权分别为 100 , 101 , 102 , 103 ……
如果一个十进制数既有整数部分,又有小数部分, 则可将整数部分和小数部分分别进行转换,然后再把两 部分结果合并起来。
4.二进制与八进制之间的转换
由于二进制数的特点,计算机中采用了二进制数。但 是,一个数值用二进制表示,所需位数较多,造成读 写不便。为此,在有关计算机的讨论中,人们还经常 使用八进制数和十六进制数。八进制数的基数为8, 有8个数字:0,1…,7,并且是“逢八进一”。 由于八进制数的基数8是二进制数的基数2的3次幂 ,所以一位八进制数相当于三位二进制数。这样使得 八进制数与二进制数的相互转换十分方便。
“除2取余”法(对于要转化的十进制数的整数部 分):
即将一个十进制整数进行除以2和保留余数 的操作,若商不为0,则将商继续除以2和保留余 数,直到商为0时为止。 ➢ 注:先得到的余数为等值二进制数的低位
后得到的余数为等值二进制数的高位
Eg: 把117转换成二进制数
2 117
1
2 58
0
2 29
1
2 14
1)二进制数转换成十进制数
把一个二进制数转换成十进制数,只需将二 进制数按权展开求和即可,称为“乘权求和”法 。 例1.1 把(1101.011)转换成十进制数。
解:根据“乘权求和”法可得: (1101.011)
123 122 021 120 021 122 123 13.375
2)十进制整数转换成二进制整数
= an×2n + an-1×2n-1 +an-2×2n-2 + …+a0×20 + a-1×2-1 + …+a-m×2-m
八进制数
(同上)
* 特点: 基本数码0~7 (8个) 逢八进一
(175.63)8 =1×82+7×81+5×80+6×8-1+3×8-2=(125.979)10
十六进制数
(同上)
注:八进制数与十进制数互相转换的 方法和二进制数与十进制数互相转换的 方法相仿。
“乘2取整”法: 0.8125D=0.1101B
0.8125×2=1.625
1
0.625×2=1.25
1
0.一个有限的十进制小数并非一定能够转换 成一个有限的二进制小数,即上述过程中乘积的小数部分 可能永远不等于0,这时,我们可按要求进行到某一精确 度为止。
0
27
1
23
1
1
低位 高位
所以,117D=1110101B
“乘2取整”法(对于要转化的十进制数的小数部分):
一个十进制纯小数转换成二进制纯小数, 采用“乘2取整”法,其方法如下:先用2 乘这个十进制纯小数,然后去掉乘积的整数 部分;用2乘剩下的小数部分,然后再去掉 乘积中的整数部分,如此重复,直到乘积的 小数部分为0或者已得到所要求的精确度为 止。把上面每次乘积的整数部分依次排列起 来,就是所要求的二进制小数。
⑴二进制转换为八进制:
××××××××. ×××××
➢整数部分从右向左每3位为一组 ➢小数部分从左向右每3位为一组 ➢不足3位者用0补足,将三位二进制数用 一位相应的八进制数取代
Eg: (10110101110.11011)2=( )8
0 10110101110.11011 0
2 656
66
(10110101110.11011)2=( 2656.66)8
* 权的展开式 (978.3)10 =9×102 +7×101 +8×100 +3×10-1
公式: (an an-1 an-2… a0 a-1… a-m )10 = an×10n + an-1×10n-1 +an-2×10n-2 + …+a0×100 + a-1×10-1 + …+a-m×10-m
a i 是0~9这10个数字中的任意一个,m,n为正整数,这里
( )10 表示十进制数 ( )2 表示二进制数 此外,在微机中,一般在数字的后面,用特定 的字母表示该数的进制
D(Decimal)---十进制数(D可省略) B(Binary)---二进制数 O(Octal)---八进制数 H(Hexadecimal)---十六进制数
3. 二进制数与十进制数的相互转换