直角坐标系中的图形
直角坐标系中的形平移

直角坐标系中的形平移平移是指将图形沿着指定的方向和距离移动的操作。
在直角坐标系中,平移可以通过增加或减少图形的坐标值来实现。
本文将介绍直角坐标系中的形平移,并讨论与坐标变化相关的数学概念。
一、平移的定义和特点平移是指将一个图形在平面上沿着指定的方向和距离不改变其形状和大小地移动。
在直角坐标系中,平移可以通过改变图形的坐标值来实现。
平移的特点如下:1. 形状保持不变:平移不改变图形的形状,只是将图形整体移动到新的位置。
2. 大小保持不变:平移不改变图形的大小,只是改变图形的位置。
3. 方向和距离确定:平移的方向由指定的向量决定,平移的距离由向量的模长决定。
二、平移的数学表示在直角坐标系中,平移可以通过改变图形的坐标值来实现。
设图形的原始坐标为(x, y),平移向量为(a, b),则平移后图形的新坐标为(x + a, y + b)。
三、平移的示例为了更好地理解平移的概念,我们来看一个简单的示例。
假设有一个三角形,其顶点坐标分别为A(2, 3),B(4, 5),C(6, 3),现在需要将这个三角形向右平移3个单位,向上平移2个单位。
根据平移的数学表示,我们可以计算得到新的顶点坐标为:A' = (2 + 3, 3 - 2) = (5, 1)B' = (4 + 3, 5 - 2) = (7, 3)C' = (6 + 3, 3 - 2) = (9, 1)通过计算可知,原始的三角形ABC经过平移变为新的三角形A'B'C',其各顶点的坐标分别为A'(5, 1),B'(7, 3),C'(9, 1)。
可以看出,新的三角形与原始三角形相比,保持了相同的形状和大小,只是整体移动到了新的位置。
四、形平移与坐标变化形平移是指将图形沿着指定的方向和距离平移的操作。
在直角坐标系中,形平移可以通过修改图形的坐标值来实现。
形平移的步骤如下:1. 确定平移向量:根据平移的指定方向和距离,确定平移向量的值。
平面直角坐标系下的图形变换

平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
平面直角坐标系中的等腰三角形问题

平面直角坐标系中的等腰三角形问题一、解答题(本大题共5小题,共40.0分)1.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=√a−21+√21−a+16.动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发,在线段OC上以每秒1个单位长度的速度向点C运动,点P,Q分别从点A,O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒).(1)求B,C两点的坐标;(2)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P,Q两点的坐标.2.如图(1),像∠G=∠HMN=∠Q=∠α这样,由△GHM和△MNQ组合成的封闭图形,我们称之为K型GHMNQ.在平面直角坐标系中,A(0,6),B(6,0),点C,D,E分别在线段AB,AO,BO上运动,且ADCEB为K型.(1)如图(2),若点D运动到点O时,过点O作OF⊥CO,交CE的延长线为F,连接BF,①求证:△ACO≌△BFO;②若AC=2√2,求OC的长;(2)如图(3),若C是AB中点,当△DCE为等腰三角形时,请直接写出AD的长.3.如图,平面直角坐标系中,点A的坐标为(4,0),以OA为一边,在第四象限作等边△OAB,点C是y轴上一动点,连接AC,以AC为一边,在直线AC的下方作等边△ACD.(1)随着点C的运动,∠ABD的大小是否会发生变化?请说明理由.(2)是否存在点C,使得△ABD是等腰三角形?如果有可能,若存在,求此时C点坐标;若不存在,请说明理由.4.长方形OABC在平面直角坐标系内位置如图所示,点A,C分别在y轴,x轴上,点D(4,3)在AB上,点E在OC上,沿DE折叠,使点B与点O重合,点C与点C1重合.(1)求点C1坐标;(2)若点P在坐标轴上,且ΔAPC1面积是9,请直接写出点P坐标.5.如图,在平面直角坐标系中,已知A(7,0),B(0,−7),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠BCD+∠BAD的度数;(2)如图①,若点C的坐标为(−3,0),求点D的坐标;(3)如图②,在(2)的条件下,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n−3),使△EMN为等腰直角三角形,请求出所有符合条件的N点坐标.6.直角坐标系中,A(6,0),B(0,8),连结AB,点C为AB的中点,点P为y轴正半轴上的一个动点,连结PC,如图,如图,作CQ⊥CP,且CQ=CP.(1)OC=________;点C的坐标为________;(2)当点Q恰好落在线段OC上时,求OP的长;(3)当△OAQ为等腰三角形时,求所有满足条件的点Q的坐标.7.如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt△ABC或Rt△DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(−7,5),E(4,−3).所以DF=|5−(−3)|=8,EF=|4−(−7)|= 11,所以由勾股定理可得:DE=√82+112=√185.下面请你参与:(1)在图①中:AC=______,BC=______,AB=______.(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示AC=______,BC=______,AB=______.(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标.8.如图①,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(−4,2)、(1,−4),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)如图②,一动点P从A出发(不与A点重合),以1个单位/秒的速度沿AB向B点运2动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的1若存在,求t的值3并求此时点P的坐标;若不存在请说明理由.9.等腰Rt△ACB,,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO;(2)如图2,若OA=5,OC=2,求B点的坐标;(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=24.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,则OP=______.。
平面直角坐标系中三角形面积的求法

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
平面直角坐标系中的位似图形

课题:平面直角坐标系中的位似图形【学习目标】1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换. 【学习重点】用图形的坐标的变化来表示图形的位似变换. 【学习难点】把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律。
情景导入 生成问题回顾:如图,△ABC 三个顶点坐标分别为A (2,3),B (2,1),C (6,2).(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标; 答:A 1(-1,3)、B 1(-1,1)、C 1(3,2).(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标; 答:A 2(2,-3)、B 2(2,-1)、C 2(6,-2).(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标. 答:A 3(-2,-3)、B 3(-2,-1)、C 3(-6,-2).自学互研 生成能力知识模块一 用图形的坐标的变化来表示图形的位似变换 阅读教材P98“动脑筋”,完成下面的内容:在平面直角坐标系中有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为1∶3,把线段AB 缩小.方法一: 方法二:探究:(1)在方法一中,A ′的坐标是(2,1),B ′的坐标是(2,0),对应点坐标之比是13;(2)在方法二中,A ″的坐标是(-2,-1),B ″的坐标是(-2,0),对应点坐标之比是-13.师生合作探究、共同归纳坐标系中的位似变换规律归纳:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【变例】如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的位似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;特别注意:仿照上面探究所示,用两种方法中的任何一种即可画出位似比为1∶2的位似图形,但此题的要求是在y轴的左侧作图,故只能是一种.(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标。
14.3.1平面直角坐标系中的图形

课本习题11.3 第1、2、3题
学习目标
1:对给定的简单图形(三角形、长方形)会 选择合适的直角坐标系,写出它的顶点坐 标,体会可以用坐标刻画一个简单图形。 2:在具体情境中,能建立适当的平面直角坐 标系,描述物体的位置。 3:通过图形的建立与坐标之间的联系,体会 “数”与“形”之间的相互依存、相互决 定的关系。
1.你会建立平面直角坐标系? 2.两条坐标轴如何称呼,方向如何确定? 3.坐标轴分平面为四个部分,分别叫做什么? 4.各个象限内的点的坐标有何特点? 坐标轴上的点的坐标有何特点? 5.坐标轴上的点属于各象限吗?
交流与发现
1)在直角坐标系中分别描出下列个点: A(3,4),B(5,2),C(4,2),D(4,0),E(2,0),F(2,2) y G(1,2) 2)顺次连接点A,B,C,D,E F,G,A。 你得到一个怎样的图形?
x
例1
如图:在直角坐标系中,正方形ABCD的各边 都分别平行于坐标轴。 已知点A的坐标是(3,1), 正方形的边长是5,写出 B点的坐标。 你能写出C,D点的坐标吗? 试一试。
例2
如图在直角坐标系中
1)写出△ABC各顶点的坐标。 2)求△ABC的面积。 解:
拓展提高
已知ABC在平面直角坐标系中的位置如图所示,将 ABC向右平移6个单位,则平移后A点的坐标是( B )
A.(-2,1) B.(2,1) C.(2-1) D.(-2,-1)
y 6 5 4
Байду номын сангаас
C
3
2 A -5 -4 -3 B 1 -2 -1
o
1
2
3
4
5
x
我收获· 我快乐 · 我自信
1.本节课我们经历了如何建立直角坐标 本节课我们学习了平面直角坐标系内的图形。 学习本节我们要掌握以下三方面的内容: 系的过程,感受到直角坐标系的变化 对平面内同一个点的坐标的影响 1、能够感受直角坐标系的变化 对平面内同一 2.在同一直角坐标系中,感受图形上点 个点的坐 标的影响。 2、在同一直角坐标系中,感受图形上点的坐标 的坐标的变化与图形变换之间的相互 的变化与 图形之间的相互影响。 影响. 3、经历图形坐标变化与图形的平移、轴对称 3.经历图形坐标变化与图形的平移、轴 之间的变 化关系。 对称之间关系的探索过程.. 4.学习了数形结合思想. ,
高中数学学习中的直角坐标系与直角三角形求解

高中数学学习中的直角坐标系与直角三角形求解直角坐标系与直角三角形是高中数学学习中的重要内容,它们能够帮助学生更好地理解和应用数学知识。
直角坐标系是一种表示平面点位置的工具,而直角三角形则是一种特殊的三角形,具有特殊的性质。
接下来,我将详细介绍直角坐标系和直角三角形的求解方法。
首先,我们来了解直角坐标系。
直角坐标系由两条相互垂直的坐标轴组成:横轴为x轴,纵轴为y轴。
这两条坐标轴的交点被称为原点,表示为O。
根据坐标轴的方向,可以分为四个象限。
我们通常用一个有序数对(x, y)来表示坐标系上的点P。
其中,x表示点P在横轴上的位置,而y表示点P在纵轴上的位置。
利用直角坐标系,我们可以很方便地解决一些几何问题。
例如,给定两个点A和B的坐标(a, b)和(c, d),我们可以计算这两个点之间的距离。
利用勾股定理可以得出:AB的距离等于√((c-a)²+(d-b)²)。
此外,直角坐标系还可以用来表示直线、曲线等图形,有助于进一步研究函数。
接着,我们来讨论直角三角形的求解方法。
直角三角形是指其中一个角为90°的三角形。
在直角三角形中,我们通常用三条边的长度来表示它的特性。
三角形的两条边与直角的边(也就是斜边)之间存在特殊的关系,被称为勾股定理。
勾股定理表示:斜边的平方等于两直角边的平方和。
即:c²=a²+b²,其中c表示斜边的长度,a和b分别表示两直角边的长度。
通过勾股定理,我们可以应用直角三角形求解各种问题。
例如,已知一个直角三角形的两个直角边的长度,我们可以计算斜边的长度。
同样地,如果我们知道斜边和一个直角边的长度,也可以求解另一个直角边的长度。
另外,利用正弦定理、余弦定理等几何知识,我们还可以求解直角三角形中的角度。
总的来说,直角坐标系与直角三角形在高中数学学习中起着重要的作用。
直角坐标系可以帮助我们更直观地理解几何图形,并且很方便地进行计算。
而直角三角形的求解方法则是解决各种几何问题的关键。
平面直角坐标系中三角形面积的求法(例题及对应练习)

例析平面直角坐标系中面积的求法我们常常会遇到在平面直角坐标系中求三角形面积的问题.解题时我们要注意其中的解题方法和解题技巧.现举例说明如下.一、有一边在坐标轴上例1 如图1,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?分析:根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值3,然后根据三角形的面积公式求解.解:因为B(0,3),C(0,-1),所以BC=3-(-1)=4.因为A(-3,0),所以A点到y轴的距离,即BC边上的高为3,二、有一边与坐标轴平行例2 如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.分析:由A(4,1),B(4,5)两点的横坐标相同,可知边AB与y 轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A,B两点的横坐标相同,所以边AB∥y轴,所以AB=5-1=4. 作AB边上的高CD,则D点的横坐标为4,所以CD=4-(-1)=5,所以=.三、三边均不与坐标轴平行例3 如图2,平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x 轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以=(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.平面直角坐标系中的面积问题(提高篇)“割补法”的应用一、已知点的坐标,求图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 直角坐标系中的图形第一课时教学目标: 【知识目标】:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。
2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系。
【能力目标】:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。
2、通过图形的平移,轴对称等,培养学生的探索能力。
【情感目标】1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。
教学难点:由坐标的变化探索新旧图形之间的变化。
教学方法:导学法教学准备: 图5-15挂图一幅 教学过程设计:一、 创设问题情境,引入新课『师』 :在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。
我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。
坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。
『师』 :你们画出的图形和我这里的图形(挂图)是否相同?『生』 :相同。
『师』 :观察所得的图形,你们决定它像什么?『生』 :像“鱼”。
『师』 :鱼是营养价值极高的食物,大家肯定愿意吃鱼,但上面的这条鱼太小了,下面我们把坐标适当地作些变化,这条鱼就能变大或变胖,即变化的鱼。
(板书课题)二、 新课学习 1、【例1】将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做以下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的-2-1O 14321x y 23456图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?『师』:先根据题意把变化前后的坐标作一对比。
如下:(1)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)(0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0)(2)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)(3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2),(3,0)根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来。
你们画出的图形与下面的图形相同吗?『生』:相同。
『师』:这个图形与原来的图形相比有什么变化呢?『生』:比原来的鱼长了。
『师』:将各点用线段依次连接起来,所得图案与原图案相比,整条鱼横向拉长为原来的的2倍。
即鱼变长了。
(师选一生的第(2)题的图对比)『师』:大家的图形和他画的是否相同?『生』:相同。
『师』:这个图形和原来的图形相比是变长了还是变胖了?『生』:没变。
『师』:新的图案与原图案相比,鱼的形状、整条鱼向右平移了3个长度单位。
小结:从上面的两种变化情况来看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原来的2倍,纵坐标不变时,整条鱼被横向拉长为原来的2倍。
这两种情况都是横坐标变化,纵坐标不变,图形是被拉长或向右移动,当纵坐标发生变化,横坐标不变时,鱼会怎样变化呢?2、【例2】将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:(1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原来的图案相比有什么变化?(2)横、纵坐标分别变成原来的2倍,所得的图案与原来的图案相比有什么变化?(指导学生先做第(1)题:描述坐标的变化,再画图)『师』:图形应变成什么图形?『生』:图形和原来图形相比,好像鱼沿x轴翻了个身。
『师』:是的,所得的图案与原图案关于横轴成轴对称。
(指导学生做第(2)题,方法同上)『师』:图形应变成什么样了?『生』:所得的图案与原图案相比,形状不变、大小放大了一倍。
-4-3-2-1O14321x y2345657891011-4-3-2-1O14321x y2345657891011 -4-3-2-1O14321x y2345657891011-4-3-2-1O14321xy2345678910115678『师』 :即鱼长大长胖了。
3、 分小组讨论:当坐标如何变化时,鱼就长大了;什么情况下,鱼就向右移动了;什么情况下,鱼就翻身了;什么情况下,鱼既长长又长胖。
『生』 :(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。
(2)当横坐标变为原来的2倍,纵坐标不变时,鱼长长了,没胖。
(3)当横坐标不变,纵坐标分别乘以-1时,鱼翻身了,即后来的鱼和原来的鱼关于x 轴对称。
(4)当横、纵坐标分别变成原来的2倍时,鱼既长长又长胖了。
『师』 :当坐标如何变化时,鱼就长胖了?当坐标如何变化时,鱼就关于原点对称了?当坐标如何变化时,鱼就向上移动了?当坐标如何变化时,鱼就关于y 轴成轴对称?-4-3-2-1O 14321x y234567567-1-2-3-4-5-4-3-2-1O 14321xy234567567-1-2-3-4-5-4-3-2-1O 14321xy234567567-1-2-3-4-5『师』 :以上我们对不同的情况进行了探索整理,也找到了规律,在以后的学习中大家要多思考,找规律。
这样理解得深,学的知识比较牢固。
三、 随堂练习(1)将右图中的各个点的纵坐标不变,横坐标都乘-1,与原图案相比,所得的图案有什么变化? (2)将右图中的各个点的横坐标不变,纵坐标都乘-1,与原图案相比,所得的图案有什么变化? (3)将上图中各个点的横坐标都乘-2,纵坐标都乘-2,与原图形相比,所得的图案有什么变化?四、 本课小结本节课主要研究横坐标或纵坐标发生变化时,新图案与旧图案相比有什么变化。
五、 课后作业书P92 习题5.6-4-3-2-1O 14321xy234567567-1-2-3-4-55.3 直角坐标系中的图形第二课时教学目标: 【知识目标】:1、进一步巩固图形坐标变化与图形定的平移,轴对称,伸长,压缩之间的探索过程,发展学生的形象思维能力和数形结合意识。
2、根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
【能力目标】:1、通过对称轴左边的图形,观察得出右边的图形,训练学生的识图能力。
2、具有初步的创新精神和实践能力。
【情感目标】:通过研究有趣的图形,学生能进行探索和创造,把学到的知识灵活地运用现实生活中。
教学重点:作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
教学难点:作某一图形关于对称轴的对称图形。
教学方法:探究式学习 教学过程设计:一、 创设问题情境,导入新课 『师』:在日常生活中,你们见到过哪些轴对称图形?中心对称图形?『生』:…… 『师』:轴对称图形和中心对称图形随处可见。
古时我国很多的建筑就有对称的结构,既美观又大方。
上节课,我们已经知道,把一个图形的横坐标都乘以-1,纵坐标不变时,所得的图形与原图形关于y 轴对称;把一个图形的纵坐标都乘以-1,横坐标不变时,所得的图形与原图形关于x 轴对称。
把一个图形的横坐标、纵坐标都乘以-1时,所得的图形与原图形关于原点对称。
那么如果已知一个图形,你能否求出这个图形中的某些点关于x 轴或y 轴或原点对称的对称点的坐标呢?或者已知轴对称图形(或者中心对称图形)的一半,你能否画出另一半呢? 二、 新课学习1、 例题讲解如图中,左右两幅图案关于y 轴对称,右图中的左右眼睛的坐标分别是(2,3), (4,3)。
嘴角左右端点的坐标分别是 (2,1),(4,1)。
(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标。
(2)你是怎样得到的?与同伴交流。
(此题较为简单。
抽学生解答) 『师』:现从对称的角度来考虑,可以发现什么?『生』:左右两幅图案关于y 轴对称。
从而发现两幅图案上各个对应点的纵坐标相同,横坐标互为相反数。
『师』:上图中,我们可根据这个规律确定左图案的左右眼睛与左右嘴角端点的坐标。
2、 议一议(1)如果将上图中的右图案沿x 轴正方向平移1个单位长度,那么左右眼睛的坐标将发生什么变化?(2)如果作图中的右图案关于x 轴的轴对称图形,那么左右眼睛的坐标将发生什么变化? (3)如果图中的右图案沿y 轴正方向平移2个单位长度,那么左右眼睛的坐标将发生什么变化?(先独立思考,再小组交流,发表)『生』:(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,所以每一个点的横坐标都加1,纵坐标不变。
因此左右眼睛的坐标分别为(3,3),(5,3)。
(2)如果作图中的右图案关于x轴的轴对称图形,根据关于x轴对称的两图形对应点的特点可知,横坐标不变,纵坐标变为原纵坐标的相反数。
所以左右眼睛的坐标现变为(2,-3),(4,-3)。
(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么图案中的每一点的纵坐标都增加2,横坐标不变。
所以左右眼睛的坐标为(2,5),(4,5)。
『师』:如果再上面的问题中右图案不是沿x轴正方向或y轴正方向移动,而是沿x轴负方向或y轴负方向移动,那么左、右眼睛的坐标又该如何变化?『生』:和上面相反,沿x轴负方向移动几个单位长度,横坐标减去几,纵坐标不变;沿y轴负方向移动几个单位长度,纵坐标减去几,横坐标不变。
3、做一做如右图,正方形ABCD的顶点坐标分别为A(1,1),B(3,1),C(3,3),D(1,3)。
(1)再同一直角坐标系中,将正方形向左平移2个单位,画出你相应的图形,并写出各点的坐标。
(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标。
(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?解:(1)(2)略。