实验讲义-半导体材料吸收光谱测试分析2015
半导体材料实验讲义

6
3)热场的调整 热场的调整是一项重要而细致的工作。一个合理的热场是晶体正常生长,降 低缺陷,提高单晶成品合格率的保证和关键。在单晶炉中影响热场的因素很多, 下面介绍几种调整热场的方法: ⑴ 纵向温度梯度的调整: a. 在有保温盖的系统中,保温盖孔径的大小影响纵向温度梯度大小,加大 保温盖孔径会增大纵向温度梯度。 b. 在有保温盖板的系统中,第一层石墨保温罩降低数十毫米,一般也可以 增加纵向温度梯度。 c. 去掉盖板或降低保温罩的高度,可以增大纵向温度梯度。 d. 在有保温盖的系统中,提高整个保温罩的高度,可明显降低纵向温度梯 度; e. 在无保温盖板的系统中,降低保温罩的高度能增加纵向温度梯度;减少 保温罩的层数亦可增加纵向温度梯度。 f. 改变拉晶过程中的坩埚位置, 可以提高或降低纵向温度梯度, 具体的是升 高埚位提高纵向温度梯度,还是降低埚位提高纵向温度梯度,这要看每个系统而 定,一般的说,升高埚位使纵向温度梯度增加。 在无坩埚随动的单晶炉中,坩埚位置的确定,应注意以下两点: A) 坩埚的最高位置是埚内最高液面必须低于加热器的上开槽处,因为在加
半 导 体 材 料 实 验
目
录
实验一 实验二 实验三 实验四 实验五
直拉法硅单晶制备实验………………………………………1 单色 X 射线衍射法晶体定向………………………………18 金相观察……………………………………………………25 暗室技术……………………………………………………28 付立叶变换红外吸收光谱法测定硅单晶中的氧、碳含量 ………………………………………………………………32
3
少挥发物在籽晶杆上附着。此外还能接住由炉壁顶部脱落下来的挥发物,以保持 熔硅的清洁。但是在开始拉晶时,由于接渣盘距离熔体表面很近,它的表面热反 射会对液面的温度分布有一定的影响。 石墨坩埚:它支持石英坩埚,其结构形状对拉晶时热场分布有重要的影响。
半导体光电器件实验指导书

半导体光电器件实验指导书实验一半导体光电探测材料的吸收系数和光学禁带宽度的计算1.实验目的1)通过对半导体材料透射光谱的测试,理解半导体材料对入射光子的吸收特性,计算半导体材料的光吸收系数随波长的变化;2)理解如何通过调整材料的组分实现在特定波段对光子的探测,计算半导体材料的光学禁带宽度。
2.实验内容1)测试半导体光电探测材料的透射光谱;2)根据测试数据计算材料的光吸收系数随入射波长的变化,并由此推算材料的光学禁带宽度。
3.实验器材(设备、元器件)1)紫外—可见光分光光度计一台;2)实验样品3个;3)空白基片1个。
4.基于透射光谱的光吸收系数及光学禁带宽度计算原理当物体受到外来光波的照射时,光子会和物体中的微粒发生相互作用。
由于组成物体的分子和分子间的结构不同,使入射光分成几个部分:一部分被物体吸收(吸收),一部分被物体反射(反射),还有一部分穿透物体而继续传播(透射)。
透射是入射光经过折射穿过物体后的出射现象。
被透射的物体为透明体或半透明体,若透明体是无色的,除少数光被反射外,大多数光均透过物体。
为了表示透明体透过光的程度,通常用入射光通量与透过后的光通量之比T来表征物体的透光性质,T称为光透射率。
常用的分光光度计能精确测量材料的透射率,测试方法具有简单、操作方便、精度高等突出优点,是研究半导体能带结构及其它性质的最基本、最普遍的光学方法之一。
当一定波长的光照射半导体材料时,电子吸收能量后会从低能级跃迁到能量较高的能级。
对于本征吸收,电子吸收足够能量后将从价带直接跃迁入导带。
发生本征吸收的条件是:光子的能量必须等于或大于材料的禁带宽度E g ,即0g h v h v E ≥= (1)而当光子的频率低于0ν,或波长大于本征吸收的长波限时,不可能发生本证吸收,半导体的光吸收系数迅速下降,这在透射光谱上表现为透射率的迅速增大。
光波透过厚度为d 的样品时,吸收系数同透射率的关系如式(2):2(1)d T R e α-=- (2) 即:21(1)ln R d Tα-= (3) 其中d 为样品厚度,R 是对应波长的反射率,T 是对应波长的透射率。
实验讲义-半导体材料吸收光谱测试分析2015

半导体材料吸收光谱测试分析一、实验目的1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。
2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。
二、实验仪器及材料紫外可见分光光度计及其消耗品如氘灯、钨灯,玻璃基ZnO薄膜。
三、实验原理1.紫外可见分光光度计的构造、光吸收定律(1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。
a.光源:钨灯或卤钨灯——可见光源,350~1000nm;氢灯或氘灯——紫外光源,200~360nm。
b.单色器:包括狭缝、准直镜、色散元件色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距;光栅——衍射和干涉分出光波长等距。
c.吸收池:玻璃——能吸收UV光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。
要求:匹配性(对光的吸收和反射应一致)d.检测器:将光信号转变为电信号的装置。
如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。
紫外可见分光光度计的工作流程如下:0.575光源单色器吸收池检测器显示双光束紫外可见分光光度计则为:双光束紫外可见分光光度计的光路图如下:(2)光吸收定律单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律:xxeII⋅-=αdteII⋅-=α0(1)I0:入射光强;I x:透过厚度x的光强;I t:透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。
透射率T为:deIIT⋅-==αt(2)则deT d⋅==⋅ααln)/1ln(透射光I t即半导体薄膜对不同波长λi 单色光的吸收系数为:dT i i )/1ln(=α (3)2.吸收光谱、半导体材料的能带结构和半导体材料禁带宽度的测量 (1) 吸收光谱以不同波长λi 单色光入射半导体ZnO 薄膜(膜厚d 为593 nm ),测量透射率T i ,由式(3)计算吸收系数αi ;由i i hc h E λν/== 计算光子能量E i ,其中,ν是频率,c 是光速(c =3.0×1017nm/s),λi 是波长(nm),h 是普朗克常数= 4.136×10-15s eV ⋅。
吸收光谱测量基本原理

吸收光谱简介纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。
许多宝石显示出在可见光谱中吸收带或线的特征样式,其完整的样式被称为"吸收光谱"。
吸收光谱处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。
吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸汽或气体后产生的,如让高温光源发出的白光,通过温度较低的钠的蒸汽就能生成钠的吸收光谱。
这个光谱背景是明亮的连续光谱。
而在钠的标识谱线的位置上出现了暗线。
通过大量实验观察总结出一条规律,即每一种元素的吸收光谱里暗线的位置跟他们明线光谱的位置是互相重合的。
也就是每种元素所发射的光的频率跟它所吸收的光频率是相同的。
太阳光谱是一种吸收光谱,是因为太阳发出的光穿过温度比太阳本身低得多的太阳大气层,而在这大气层里存在着从太阳里蒸发出来的许多元素的气体,太阳光穿过它们的时候跟这些元素的标识谱线相同的光都被这些气体吸收掉了。
因此我们看到的太阳光谱是在连续光谱的背景上分布着许多条暗线。
这些暗线是德国物理学家夫琅和费首先发现的称为夫琅和费线。
吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少光谱分析光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析.在历史上,光谱分析还帮助人们发现了许多新元素.例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的.光谱分析对于研究天体的化学组成也很有用.十九世纪初,在研究太阳光谱时,发现它的连续光谱中有许多暗线(参看彩图9,其中只有一些主要暗线).最初不知道这些暗线是怎样形成的,后来人们了解了吸收光谱的成因,才知道这是太阳内部发出的强光经过温度比较低的太阳大气层时产生的吸收光谱.仔细分析这些暗线,把它跟各种原子的特征谱线对照,人们就知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素.吸收光谱分类原子吸收光谱技术参数波长范围: 189-900nm主要特点1. 狭缝:狭缝的宽度自动选择,狭缝的高度自动选择。
半导体激光器光学特性测量实验报告

半导体激光器光学特性测量实验学号:姓名:班级:日期:【摘要】激光器的三个基本组成部分是:增益介质、谐振腔、激励能源。
本实验通过测量半导体激光器的输出特性、偏振度和光谱特性,进一步了解半导体激光器的发光原理,并掌握半导体激光器性能的测试方法。
【关键词】半导体激光器、偏振度、阈值、光谱特性一、实验背景激光是在有理论准备和实际需要的背景下应运而生的。
光电子器件和技术是当今和未来高技术的基础之一。
受激辐射的概念是爱因斯坦于1916年在推导普朗克的黑体辐射公式时提出来的, 从理论上预言了原子发生受激辐射的可能性,这是激光的理论基础。
直到1960年激光才被首次成功制造(红宝石激光器)。
半导体激光(Semiconductor laser)在1962年被成功发明,在1970年实现室温下连续输出。
半导体激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE) 等多种工艺。
由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制及价格低廉等优点, 使得它目前在各个领域中应用非常广泛。
半导体激光器已经成功地用于光通讯和光学唱片系统,还可以作为红外高分辨率光谱仪光源,用于大气检测和同位素分离等;同时半导体激光器成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。
半导体激光器与调频器、放大器集成在一起的集成光路将进一步促进光通讯和光计算机的发展。
半导体激光器主要发展方向有两类,一类是以传递信息为目的的信息型激光器,另一类是以提高光功率为目的的功率型激光器。
本实验旨在使学生掌握半导体激光器的基本原理和光学特性,利用光功率探测仪和CCD光学多道分析器,测量可见光半导体激光器输出特性、不同方向的发散角、偏振度,以及光谱特性,并熟悉光路的耦合调节及CCD光学多道分析器等现代光学分析仪器的使用,同时进一步了解半导体激光器在光电子领域的广泛应用。
[讲解]实验一半导体激光器P-I特性曲线测量
![[讲解]实验一半导体激光器P-I特性曲线测量](https://img.taocdn.com/s3/m/eed9502266ec102de2bd960590c69ec3d5bbdbcd.png)
实验一半导体激光器P-I特性曲线测量一、实验目的:1.了解半导体光源和光电探测器的物理基础;2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性;3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性;4.掌握有源光电子器件特性参数的测量方法;二、实验原理:光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。
1.发光二极管(LED)和半导体激光二极管(LD):LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。
LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。
LD通过受激辐射发光,是一种阈值器件。
LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。
使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。
在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。
当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。
如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。
(1) LED和LD的P-I特性与发光效率:图1是LED和LD的P-I特性曲线。
LED是自发辐射光,所以P-I曲线的线性范围较大。
半导体材料测试与分析
光致发光光谱测量装置示意图
-
测试步骤:
1. 放置样品(晶片,粉体,薄膜) 2. 抽真空 3. 降温 4. 激光器使用 5. 光谱仪自检 6. 校准 7. 样品发光光谱测量 8. 变温测量 9. 变功率测量 10.关机
-
三、PL谱的应用
• 由于PL谱与晶体的电子结构(能带结 构)、缺陷状态、和杂质等密切相关 ,因此,光致发光被广泛用来研究半 导体晶体的物理特性。
• 光致发光光谱的测试以其简单、可靠 ,测试过程中对样品无损伤等优点而 得到广泛的应用。
-
PL可以应用于:
(1)带隙检测、(2)缺陷检测、(3)复合机 制以及材料品质鉴定、(4)对少子寿命的研究、( 5)测定半导体固溶体的组分、(6)测定半导体中 浅杂质的浓度、(7)半导体中杂质补偿度的测定、 (8)对半导体理论问题的研究等。
• 基本原理:设系统 的能级结果如图所 E2 示,E0是基态, E1-E6是激发态, 受到激发后,系统 从低能级被激发到 高能级,再从高能 E0 级跃迁到低能级, 其中,E2 到E1或 E0有可能发光
-
束
缚
浅
自
激
由 载 流
e-h 自 e-h 由 声子参与
子 复 e-A 合
能 级 与 本 征 带
子激 复子
应用领域举例:
LED外延片,太阳能电池材料,半导体晶 片,半导体薄膜材料等检测与研究。
-
在IIK温度下,用很弱的激光激发GaN所测量 光致发光的光谱图示如。通过高斯型分峰拟 合得到A、B、C、D四个谱峰。
用MOCVD技术在Al2O3衬底上外延GaN的光致发光研究 中国科学院长春物理研究所 高瑛、缪国庆-等人
-
• 光致发光光谱(Photoluminescence,简称 PL),指物质吸收光子(或电磁波)后重新 辐射出光子(或电磁波)的过程。从量子 力学理论上,这一过程可以描述为物质吸 收光子跃迁到较高能级的激发态后返回低 能态,同时放出光子的过程。光致发光是 多种形式的荧光(Fluorescence)中的一 种。
半导体材料的紫外-可见漫反射光谱测定
半导体材料的紫外-可见漫反射光谱测定一、实验目的:1、配合半导体材料测试分析的教学,进一步理解紫外/可见分光光度计的基本原理、基本构造、特点和应用范围,掌握仪器的常用操作方法;2、掌握半导体材料的光学特性,特别是在紫外光区和可见光区的光学特性的检测方法,了解紫外-可见漫反射原理及积分球原理。
二、实验原理紫外-可见漫反射光谱与紫外-可见吸收光谱相比,所测样品的局限性要小很多。
后者符合朗伯-比尔定律,溶液必须是稀溶液才能测量,否则将破坏吸光度与浓度之间的线性关系。
而前者,紫外-可见漫反射光谱可以测浑浊溶液、悬浊溶液、固体及固体粉末等,试样产生的漫反射满足Kublka-Munk方程式:(1-R∞)2/2R∞其中,K为吸收系数,S为散射系数,R =K/S∞为无限厚样品反射系数R的极限值,其数值为一个常数。
积分球的示意图漫反射光是指从光源发出的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。
这些光在积分球内经过多次漫反射后到达检测器。
漫反射光是分析与样品内部分子发生作用以后的光,携带有丰富的样品结构和组织信息。
与漫透射光相比,虽然透射光中也负载有样品的结构和组织信息,但是透射光的强度受样品的厚度及透射过程光路的不规则性影响,因此,漫反射测量在提取样品组成和结构信息方面更为直接可靠。
积分球是漫反射测量中的常用附件之一,其内表面的漫反射物质的反射系数高达98%,使得光在积分球内部的损失接近零。
由于信号光从散射层面发出后,经过了积分球的空间积分,所以可以克服漫反射测量中随机因素的影响,提高数据稳定性和重复性。
紫外-可见漫反射吸收曲线作为一种重要的手段,可以很好的表征半导体材料的能级结构及光吸收性能。
对于半导体材料而言,其带隙可以用下面的公式近似计算:E=h*C/λ其中:E 为禁带能h 为普朗克常数 = 6.626×10-34 C 为光速=3×10 J ●s8 λ为截止波长,待测m/s三、实验仪器和样品1. 岛津 UV-3101紫外分光光度计;2. 半导体测试样品:BiVO 4粉末,Bi 4V 2O 11粉末,Bi 2MoO 6粉末,TiO 2粉末(商用P25)。
半导体物理试验
《半导体物理实验》教学大纲课程编号:MI4221016课程名称:半导体物理实验英文名称:Experiments ofSemiconductor Physics学时:8 学分:0.5课程类别:限选课程性质:专业课适用专业:集成电路与系统集成先修课程:半导体物理和半导体器件电子学开课学期:4 开课院系:微电子学院一、课程的教学目标与任务目标:培养学生独立完成半导体材料特性测试、分析的实践动手能力,巩固和强化半导体物理知识,提升学生在微电子技术领域的竞争力,培养学生灵活运用理论知识解决实际问题的能力,锻炼学生分析、探讨和总结实验结果的能力。
任务:在理论课程的学习基础上,通过大量实验,熟练掌握现代微电子技术中半导体材料特性相关的实验手段和测试技术。
课程以教师讲解,学生实际动手操作以及师生讨论的形式实施。
二、本课程与其它课程的联系和分工本实验要求学生掌握半导体物理效应的测试技术和分析手段,共设置9个实验,要求学生选择完成其中4个实验。
(一)高频光电导衰退法测量非平衡少子寿命(2学时)具体内容:利用高频光电导衰退法分别测量具有高、中、低电阻率的半导体单晶硅样品的少子寿命,并对测试结果进行分析和探讨。
1.基本要求(1)掌握高频光电导衰退法测量少子寿命的测试原理和方法;(2)掌握半导体材料中少子、少子寿命和电阻率等相关概念。
2.重点、难点重点:高频光电导衰退法测试实验样品的少子寿命;难点:概念理解和测试结果分析和探讨。
3.说明:学习和掌握非平衡少子寿命的测试原理和测试方法。
(二)恒定表面光电压法测量硅中少子的扩散长度(2学时)具体内容:利用恒定表面光电压法测试硅样品中少子的扩散长度。
1.基本要求(1)了解恒定表面光电压法测试硅材料中少子扩散长度的测试原理;(2)掌握半导体中少子扩散长度的测试方法。
2.重点、难点重点:对实验样品进行少子扩散长度的测试;难点:实验仪器的使用和少子扩散长度的准确测量。
3.说明:掌握半导体中少子扩散长度的测试方法。
材料分析测试第十章紫外可见吸收光谱法
能级分裂,最大吸收波长max就会减小。
常见配位体按配位体场强度增加的顺序排列为: I-<Br-<Cl-<F-<OH-<C2H42-~H2O<SCN-<NH3<乙二 胺<邻二氮杂菲<NO2-<CN-。
配位体对d-d跃迁最大吸收波长的影响
[Co(NH3)5X] n+的吸收光谱 X=NH3时,n=3;X=F,Cl,Br,I时,n=2
称性强。
多生色团对吸收的影响
共扼效应产生
红移
芳香族的紫外光谱特征
芳香族碳氢化合物的紫外光谱有3组特征吸收峰,都是由-*跃迁引起
的。
例如,苯分子, E1带:184nm (max=60000),一般仪器无法观察 E2带:204nm (max=7900) B带:256nm (max=200)
实线-苯
外区,材料成为光电导性的。
第五周期元素是4d轨道
由 - *跃迁产生的弱吸收峰向长波方向移动40nm左右, max在270~300nm, <100,称做R带,呈平滑带形,对称性强。
3nm(开机自动校准)
3、 波长重复性:0.
Transmittance透过率,透光率,透射率,透射比, T%
假设各组分间不存在相互作用,则多组分吸收系统总吸光度可表达为
一、电子光谱的类型
主要介绍有机化合物、无机化合物的电子光谱类型、常 见基本概念,简介无机固体的电子光谱类型。
1.有机、无机化合物的电子光谱 主要类型有:
(1)含、和n电子的吸收谱带
(2)含d和f电子的吸收谱带 (3)电荷转移吸收谱带
(1)含、和n电子的吸收谱带
有机化合物在紫外和可见光区域内电子跃迁的方式一般
材料分析测试第十章紫外可见吸收光谱法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体材料吸收光谱测试分析
一、实验目的
1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。
2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。
二、实验仪器及材料
紫外可见分光光度计及其消耗品如氘灯、钨灯,玻璃基ZnO薄膜。
三、实验原理
1.紫外可见分光光度计的构造、光吸收定律
(1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。
a.光源:钨灯或卤钨灯——可见光源,350~1000nm;氢灯或氘灯——紫外光源,200~360nm。
b.单色器:包括狭缝、准直镜、色散元件
色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距;
光栅——衍射和干涉分出光波长等距。
c.吸收池:玻璃——能吸收UV光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。
要求:匹配性(对光的吸收和反射应一致)
d.检测器:将光信号转变为电信号的装置。
如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。
紫外可见分光光度计的工作流程如下:
0.575
光源单色器吸收池检测器显示双光束紫外可见分光光度计则为:
双光束紫外可见分光光度计的光路图如下:
(2)光吸收定律
单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律:
x
x
e
I
I⋅-
=α
d
t
e
I
I⋅-
=α
0(1)
I0:入射光强;I x:透过厚度x的光强;I t:透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。
透射率T为:
d
e
I
I
T⋅-
=
=α
t
(2)
则
d
e
T d⋅
=
=⋅α
α
ln
)
/1
ln(
透射光I t。