第1章 电磁场与电磁波

合集下载

西工大电磁场与电磁波课件

西工大电磁场与电磁波课件
h BC
A
含义: 标量三重积结果为三矢量构成 的平行六面体的体积 。

C

B
电磁场与电磁波
第1章 矢量分析
V A (B C) C ( A B) B (C A)
h BC
注意:先后轮换次序。
dS RdRd a
体元:
dV R 2 sin dRd d
电磁场与电磁波
第1章 矢量分析
注意:
a. 在直角坐标系中,x,y,z 均为长度量,其拉梅系数均为1, 即:
h1 h2 h3 1
b. 在柱坐标系中,坐标变量为(r,, z), 其中 为角度,
其对应的线元 rd a ,可见拉梅系数为:
dl
dS
F dl , B dS ,
1. 直角坐标系 在直角坐标系中,坐标变量为(x,y,z),如图,做一微分体元。 ˆx 线元: dlx dxa 面元: dS x dydza ˆx ˆy dS y dxdza ˆy dl y dya ˆz dS z dxdya ˆz dlz dza 体元: dV dxdydz ˆ x dya ˆ y dza ˆz dl dxa
ˆx ( Az Bx Ax Bz )a ˆ y ( Ax By Ay Bx )a ˆz ( Ay Bz Az By )a
两矢量的叉积又可表示为:
A B Ax Bx
ˆx a
ˆy a Ay By
ˆz a Az Bz
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:
h1 1, h2 r , h3 1

电动力学电磁场与电磁波课件第1章矢量分析

电动力学电磁场与电磁波课件第1章矢量分析
分析和处理电磁场问题的方法 —— 数学处理过程
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az

《电磁场与电磁波》第一章 矢量分析

《电磁场与电磁波》第一章 矢量分析

ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。

S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。


二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey

Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos

矢量分析【电磁场与波+电子科技大学】

矢量分析【电磁场与波+电子科技大学】

面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为

,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记



说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明

电磁场与电磁波课后答案第1章

电磁场与电磁波课后答案第1章

第一章习题解答给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。

解(1)(2)(3)-11(4)由,得(5)在上的分量(6)(7)由于所以(8)三角形的三个顶点为、和。

(1)判断是否为一直角三角形;(2)求三角形的面积。

解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。

(2)三角形的面积求点到点的距离矢量及的方向。

解,,则且与、、轴的夹角分别为给定两矢量和,求它们之间的夹角和在上的分量。

解与之间的夹角为在上的分量为给定两矢量和,求在上的分量。

解所以在上的分量为证明:如果和,则;解由,则有,即由于,于是得到故如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。

设为一已知矢量,而,和已知,试求。

解由,有故得在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。

解(1)在直角坐标系中、、故该点的直角坐标为。

(2)在球坐标系中、、故该点的球坐标为用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。

解(1)在直角坐标中点处,,故(2)在直角坐标中点处,,所以故与构成的夹角为球坐标中两个点和定出两个位置矢量和。

证明和间夹角的余弦为解由得到一球面的半径为,球心在原点上,计算:的值。

解在由、和围成的圆柱形区域,对矢量验证散度定理。

解在圆柱坐标系中所以又故有求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。

解(1)(2)对中心在原点的一个单位立方体的积分为(3)对此立方体表面的积分故有计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。

解又在球坐标系中,,所以求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。

再求对此回路所包围的曲面积分,验证斯托克斯定理。

电磁场与电磁波

电磁场与电磁波

CH8 电磁场与电磁波本章主要内容1、掌握位移电流的定义及意义。

2、正确理解电场和磁场的互相激发。

3、知道平面电磁波的性质、表示方法。

引言19世纪以前,人们曾认为电和磁是互不相关联的两种东西。

自从发现了电流的磁效应,人们开始注意到电流(运动电荷)与磁场之间的相互关系,可是很长时间只能看到电流产生磁场,而不能做到磁场产生电流,更谈不上揭示电场与磁场之间的关系。

法拉第发现的电磁感应定律,不仅实现了磁生电,还进一步揭示了变化磁通与感应电动势的关系。

麦克斯韦在前人实践和理论的基础上,对整个电磁现象做了系统的研究,提出了感生电动势来源于变化磁场所产生的涡旋电场,指出了“变化磁场产生电场”的磁场与电场之间的联系。

在研究安培环路定律用于时变电流电路的矛盾之后,他又提出了位移电流的假说,不仅将安培环路定律推广到时变电路中,还进一步指出了“时变电场也产生磁场”的电场与磁场之间的联系。

在此基础上,麦克斯韦总结出将电磁场统为一体的一组方程式,即所称的麦克斯韦方程组,该方程组不仅可以描述时变的电磁场,而且覆盖了静态的电磁场。

麦克斯韦方程组表明,不仅电荷会产生电场,而且变化的磁场也会产生电场;不仅电流会产生磁场,而变化电场也同样会产生磁场。

由此麦克斯韦推断,一个电荷或电流的扰动就会形成在空间传播并相互激发的电场、磁场的波动即电磁波。

麦克斯韦不仅预言了电磁波的存在(1865年)而且还计算出电磁波的传播速度等于光速。

由此,麦克斯韦将光和电磁波统一在一个理论框架下。

1888年赫芝首次用实验证实了电磁波的发生与存在。

以后的大量实验充分证明了麦克斯韦理论的正确性。

麦克斯韦(MAXWELL)方程是宏观电动力学的理论基础。

§1 位移电流1.位移电流麦克斯韦将安培环路定理运用于含电容的交变电路中(如图9-1)发现矛盾所在。

a 穿过S1、S2的稳恒电流相同b 穿过S1、S2的传导电流不同图9-1稳恒电流磁场的安培环路定理具有如下形式:⎰⎰=⋅=⋅S L I S d j d H (9-1)式中j 为传导电流密度,I 是穿过以闭合曲线L 为边线的任意曲面的传导电流强度(电流密度通量)。

电磁场与电磁波1均匀平面波对分界平面的垂直入射

媒质1: 1 , 1 , 1 0
x
Ei
媒质2: 2
Hi
kr
ki
Hr Er
媒质1中的反射波:
Er ( z ) ex Eim e j 1z Eim j 1z H r ( z ) ey e 1
y
z
z=0
1 1 / 1
媒质 1
o
y
kt Ht
z
导电媒质
媒质 2
分析方法: 入射波(已知)+反射波(未知)
均匀平面波垂直入射到两种不同媒质的 分界平面
边界条件
透射波(未知)
一、均匀平面波对分界平面的垂直入射
1、 对导电媒质分界面的垂直入射
z < 0中,导电媒质1的参数为
x
媒质1: 媒质2:
1 jk1c j 1 1c
1
c之间任意两点的电场同相。同一波节点两侧的
电场反相
坡印廷矢量的平均值为零,不发生能量传输过程,仅在两
个波节间进行电场能量和磁场能的交换。
一、均匀平面波对分界平面的垂直入射
E1 ( z, t ) ex 2 Eim sin 1 z sin tH1 ( z , t ) e y 2 Eim
ki
Ht
kt
z
媒质1中的反射波:
Er ( z ) ex Erme 1z Erm 1z H r ( z ) e y e
Hr
Er
y
1c
一、均匀平面波对分界平面的垂直入射
1、 对导电媒质分界面的垂直入射
媒质1中的合成波:
E1 ( z ) Ei ( z ) Er ( z ) 1 z ex Eime ex Erm e 1z H1 ( z ) H i ( z ) H r ( z ) Eim 1z Erm 1z ey e ey e

电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

《电磁场与电磁波》课后习题解答第一章


n(x2
y2
z2)
(x2 y2 z2)2 (x2 y2 z2)
(n 3)rn
【习题 1.20 解】
1
已知 r (x2 y2 z2 )2
r xex yey zez
所以
(1)
r
(ex
x
ey
y
ez
z
)
(
xex
yey
zez )
ex ey ez
xyz
Bx ex By ey Bz ez
取一线元: dl exdx eydy ezdz
则有
B dl
ex ey ez Bx By Bz 0 dx dy dz
则矢量线所满足的微分方程为
dx dy dz Bx By Bz
或写成
dx dy dz =k(常数) a2 z a3 y a3x a1z a1 y a2x
对(3)(4)分别求和
(4)
d (a1x) d (a2 y) d (a3 z) 0 xdx ydy zdz 0
d (a1x a2 y a3 z) 0 d(x2 y2 z2) 0
所以矢量线方程为
a1x a2 y a3 z k1
x2 y2 z2 k2
【习题 1.6 解】
ex ey ez A B (ex 9ey ez ) (2ex 4ey 3ez ) 1 9 1
2 4 3
31ex 5ey 14ez
【习题 1.3 解】
已知 A ex bey cez , B ex 3ey 8ez ,
(1)要使 A B ,则须散度 A B 0
所以从 A B 1 3b 8c 0 可得: 3b 8c 1
即 12ex 9ey ez • aex bey 12a 9b 0 ⑴

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。

它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。

1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。

1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。

它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。

第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。

2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。

2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。

2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。

第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。

3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。

3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。

3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。

第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。

4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l M 3 3 3 4 3
第一章 矢量分析
1.2.2 标量场的梯度
标量场φ(x, y, z)在l方向上的方向导数为
cos cos cos
l x
y
z
在直角坐标系中,令
l cosex cosey cosez
G x ex)
第一章 矢量分析
1.1.2 标量场和矢量场
如果在某一空间区域内的每一点,都对应着某个物理量的 一个确定的值,则称在此区域内确定了该物理量的一个场。换 句话说, 在某一空间区域中,物理量的无穷集合表示一种场。 如在教室中温度的分布确定了一个温度场,在空间电位的分布 确定了一个电位场。场的一个重要的属性是它占有一定空间, 而且在该空间域内, 除有限个点和表面外,其物理量应是处处 连续的。若该物理量与时间无关,则该场称为静态场; 若该物 理量与时间有关,则该场称为动态场或称为时变场。
x2 y2 c2
c1和c2是积分常数。
第一章 矢量分析
1.2 标量场的方向导数和梯度
1.2.1
图 1-2 方向导数的定义
第一章 矢量分析
设M0是标量场φ=φ(M)中的一个已知点,从M0出发沿某一方 向引一条射线l, 在l上M0的邻近取一点M,MM0=ρ,如图1-2所示。 若当M趋于M0时(即ρ趋于零时),
当ρ趋于零时对上式取极限,可得
cos cos cos
l x
y
z
第一章 矢量分析
例1-3 求数量场 u x2 y2 在点M(1, 1, 2)处沿l=ex+2ey+2ez
方向的方向导数。
z
解:l方向的方向余弦为
cos
1
1
12 22 22 3
cos
2
2
12 22 22 3
第一章 矢量分析
若某一矢量的模和方向都保持不变, 此矢量称为常矢,如 某物体所受到的重力。而在实际问题中遇到的更多的是模和方 向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如 沿着某一曲线物体运动的速度v等。
设t是一数性变量,A为变矢,对于某一区间G[a, b]内的 每一个数值t, A都有一个确定的矢量A (t)与之对应,则称A为数 性变量t的矢性函数。记为
l
第一章 矢量分析
矢量l°是l方向的单位矢量,矢量G是在给定点处的一常矢 量。 由上式显然可见,当l与G的方向一致时,即cos(G, l°)=1 时, 标量场在点M处的方向导数最大,也就是说沿矢量G方向的方向 导数最大,此最大值为
cos
2
2
12 22 22 3
第一章 矢量分析

u x
2x z
,
u y
2y z
, u z
(x2 z2
y2)
数量场在l方向的方向导数为
u u cos u cos u cos
l x
y
z
1 2x 2 2y 2 x2 y2 3 z 3 z 3 z2
在点M处沿l方向的方向导数
1 1 2 1 2 2 2
cos cos cos
l M0 x
y
z
证明:M点的坐标为M(x0+Δx, y0+Δy, z0+Δz),由于函数φ在 M0处可微,故
(M
)
(M0)
x
x
y
y
z
z
第一章 矢量分析
两边除以ρ,可得
x y z x y z
cos cos cos
x
y
z
(M ) (M0)
的极限存在,则称此极限为函数φ(M)在点M0处沿l方向的方向导 数,记为
lim (M ) (M0)
l M0
M M0
第一章 矢量分析
若函数φ=φ(x, y, z)在点M0(x0, y0, z0)处可微,cosα、cosβ、 cosγ为l方向的方向余弦,则函数φ在点M0处沿l方向的方向导数 必定存在,且为
第一章 矢量分析
第一章 矢量分析
1.1 场的概念 1.2 标量场的方向导数和梯度 1.3 矢量场的通量和散度 1.4 1.5 圆柱坐标系与球坐标系 1.6 亥姆霍兹定理 1.7 格林定理
第一章 矢量分析
1.1 场的概念
1.1.1 矢性函数
在二维空间或三维空间内的任一点P, 它是一个既存在大小 (或称为模)又有方向特性的量,故称为实数矢量,用黑体A表示, 而白体A表示A的大小(即A的模)。若用几何图形表示,它是从该 点出发画一条带有箭头的直线段,直线段的长度表示矢量A的模, 箭头的指向表示该矢量A的方向。矢量一旦被赋予物理单位,便 成为具有物理意义的矢量, 如电场强度E、磁场强度H、速度v等 等。
第一章 矢量分析
标量场()和矢量场(A)
y
y
x
x
以浓度表示的标量场
以箭头表示的矢量场A
第一章 矢量分析
标量场φ(x, y, z)的等值面方程为
(x, y, z) const.
dx d y dz Ax Ay Az
图 1-1 矢量场的矢量线
第一章 矢量分析
例1-1 求数量场φ =(x+y)2-z通过点M(1, 0, 1)的等值面方程。 解:点M的坐标是x0=1, y0=0, z0=1,则该点的数量场值为 φ=(x0+y0)2-z0=0。其等值面方程为
第一章 矢量分析
在研究物理系统中温度、 压力、 密度等在一定空间的分布 状态时,数学上只需用一个代数变量来描述, 这些代数变量(即 标量函数)所确定的场称为标量场, 如温度场T(x, y, z)、电位场 φ(x, y, z)等。然而在许多物理系统中, 其状态不仅需要确定其 大小,同时还需确定它们的方向,这就需要用一个矢量来描述, 因此称为矢量场,例如电场、磁场、流速场等等。
A A(t)
第一章 矢量分析
而G为A的定义域。矢性函数A(t)在直角坐标系中的三个坐 标分量都是变量t的函数,分别为Ax(t)、Ay(t)、Az(t),则矢性函 数A (t)也可用其坐标表示为
A Ax (t)ex Ay (t)ey Az (t)ez
其中ex、ey、ez为x轴、y轴、z轴正向单位矢量。
(x y)2 z 0

z (x y)2
第一章 矢量分析
例1-2 求矢量场A=xy2ex+x2yey+zy2ez的矢量线方程。 解: 矢量线应满足的微分方程为
dx xy 2
dy x2 y
dz y2z
从而有
dx
xy
2
dy x2 y
z c1x 解之即得矢量方程
dx xy2
dz y2z
相关文档
最新文档