神经网络动态系统辨识与控制
神经网络在系统辨识中的应用研究

4 监视系统运行 状态 , ) 进行 故障诊 断 。由系统 运行 的 状态信息 , 推测系统动态特性的变化 , 断其运 行是否正 常 。 判
若有 故障 , 判断故障位置 、 状况等 。
2 人 工神 经网络
人工 神经 网络是 由许多 处理单 元 。 称 神经元 。 图 1 又 如
所示 , 照一定 的拓扑结构相互连接 而成 的一 种具 有并行计 按 算能力的网络系统。这种 网络系统 具有非 线性 、 规模 、 大 自 适应 的动力学 特征。它 是在现 代神经 科学研究 成 功的 基础 上提 出来 的, 试图通 过模拟 人脑神 经处理信 息 的方式 , 另 从
个研究 角度来获 得人 脑那 样的信 息处理 能力 。 目前人 工
神经 网络在系统辨识 、 模式 识别、 号处 理 、 信 图象 处理 、 障 故
诊断 以及智能控制等许多领域得到 了广泛 的应用 。 控制系统的非线性 问题 是传统控 制理 论遇到 的最 大难 题之一 , 神经 网络逼近非线性函数的能力为控制理论 的发展 提供了生机 。用 于逼 近非线 性 函数的 神经 网络模 型 。 B 以 P 网络模 型的应用最 为广泛 , 近年来 提 出的径 向基 函数 网络、 正交 函数 网络 、 条函数 网络等模型也显示了 良好的应用 前 样
络具有快速和高容错 性 的优点 ;)神经 网络 自身的结构 和 3
其 多人 多出的特点 , 使其易用 于多变 量系统 的辨识和 控制 , 且 与其 他逼近方法相 比更经 济 ; )神 经网 络具 有 自学习和 4 自适应 的特性 , 它主要 是根据所 提供 的数 据 , 过学 习和训 通 练 , 出输入和输 出之间的 内在联系 , 而求得 问题的解答 , 找 从 而不是依靠对 问题 的先验 知识和规则 , 因而它具 有很 好的适 应性 。神经 网络 的实现 目前最常用 的方法是软件模拟 。 由于
神经网络控制

人工神经网络控制摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。
本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。
关键词: 神经网络控制;控制系统;人工神经网络人工神经网络的发展过程神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。
它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。
是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。
它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。
在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。
神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。
神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。
如神经预测控制、神经逆系统控制等。
生物神经元模型神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。
每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。
图1生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两种类型,兴奋性突触和抑制性突触。
神经网络非线性系统辨识与模型参考自适应控制器设计

试论述神经网络系统建模的几种基本方法。
利用BP 网络对以下非线性系统进行辨识。
非线性系统22()(2(1)1)(1)()1()(1)y k y k y k u k y k y k -++=+++-1)首先利用u(k)=sin(2*pi*k/3)+1/3*sin(2*pi*k/6),产生样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;2)网络测试,利用u(k)=sin(2*pi*k/4)+1/5*sin(2*pi*k/7), 产生测试点200,输入到上述系统,产生y(k), 检验BP/RBF 网络建模效果。
3)利用模型参考自适应方法,设计NNMARC 控制器,并对周期为50,幅值为+/- 的方波给定,进行闭环系统跟踪控制仿真,检验控制效果(要求超调<5%)。
要求给出源程序和神经网络结构示意图,计算结果(权值矩阵),动态过程仿真图。
1、系统辨识题目中的非线性系统可以写成下式:22()(2(1)1)(1)()();()1()(1)y k y k y k f u k f y k y k -++=•+•=++- 使用BP 网络对非线性部分()f •进行辨识,网络结构如图所示,各层神经元个数分别为2-8-1,输入数据为y(k-1)和y(k-2),输出数据为y(k)。
图 辨识非线性系统的BP 网络结构使用500组样本进行训练,最终达到设定的的误差,训练过程如图所示图网络训练过程使用200个新的测试点进行测试,得到测试网络输出和误差结果分别如下图,所示。
从图中可以看出,相对训练数据而言,测试数据的辨识误差稍微变大,在±0.06范围内,拟合效果还算不错。
图使用BP网络辨识的测试结果图使用BP网络辨识的测试误差情况clear all;close all;%% 产生训练数据和测试数据U=0; Y=0; T=0;u_1(1)=0; y_1(1)=0; y_2(1)=0;for k=1:1:500 %使用500个样本点训练数据U(k)=sin(2*pi/3*k) + 1/3*sin(2*pi/6*k);T(k)= y_1(k) * (2*y_2(k) + 1) / (1+ y_1(k)^2 + y_2(k)^2); %对应目标值Y(k) = u_1(k) + T(k); %非线性系统输出,用于更新y_1if k<500u_1(k+1) = U(k); y_2(k+1) = y_1(k); y_1(k+1) = Y(k); endendy_1(1)=; y_1(2)=0;y_2(1)=0; y_2(2)=; y_2(3)=0; %为避免组合后出现零向量,加上一个很小的数X=[y_1;y_2];save('traindata','X','T');clearvars -except X T ; %清除其余变量U=0; Y=0; Tc=0;u_1(1)=0; y_1(1)=0; y_2(1)=0;for k=1:1:200 %使用500个样本点训练数据U(k)=sin(2*pi/4*k) + 1/5*sin(2*pi/7*k); %新的测试函数Y(k) = u_1(k) + y_1(k) * (2*y_2(k) + 1) / (1+ y_1(k)^2 + y_2(k)^2); if k<200u_1(k+1) = U(k); y_2(k+1) = y_1(k); y_1(k+1) = Y(k); endendTc=Y; Uc=u_1;y_1(1)=; y_1(2)=0;y_2(1)=0; y_2(2)=; y_2(3)=0; %为避免组合后出现零向量,加上一个很小的数Xc=[y_1;y_2];save('testdata','Xc','Tc','Uc'); %保存测试数据clearvars -except Xc Tc Uc ; %清除其余变量,load traindata; load testdata; %加载训练数据和测试数据%% 网络建立与训练[R,Q]= size(X); [S,~]= size(T); [Sc,Qc]= size(Tc);Hid_num = 8; %隐含层选取8个神经元较合适val_iw =rands(Hid_num,R); %隐含层神经元的初始权值val_b1 =rands(Hid_num,1); %隐含层神经元的初始偏置val_lw =rands(S,Hid_num); %输出层神经元的初始权值val_b2 =rands(S,1); %输出层神经元的初始偏置net=newff(X,T,Hid_num); %建立BP神经网络,使用默认参数 %设置训练次数= 50;%设置mean square error,均方误差,%设置学习速率{1,1}=val_iw; %初始权值和偏置{2,1}=val_lw;{1}=val_b1;{2}=val_b2;[net,tr]=train(net,X,T); %训练网络save('aaa', 'net'); %将训练好的网络保存下来%% 网络测试A=sim(net,X); %测试网络E=T-A; %测试误差error = sumsqr(E)/(S*Q) %测试结果的的MSEA1=sim(net,Xc); %测试网络Yc= A1 + Uc;E1=Tc-Yc; %测试误差error_c = sumsqr(E1)/(Sc*Qc) %测试结果的的MSEfigure(1);plot(Tc,'r');hold on;plot(Yc,'b'); legend('exp','act'); xlabel('test smaple'); ylabel('output') figure(2); plot(E1);xlabel('test sample'); ylabel('error')2、MRAC 控制器被控对象为非线性系统:22()(2(1)1)(1)()();()1()(1)y k y k y k f u k f y k y k -++=•+•=++- 由第一部分对()f •的辨识结果,可知该非线性系统的辨识模型为:(1)[(),(1)]()I p y k N y k y k u k +=-+可知u(k)可以表示为(1)p y k +和(),(1)y k y k -的函数,因此可使用系统的逆模型进行控制器设计。
现代控制工程第13章神经网络控制

13.3.2 BP学习算法
▪ 两个问题:
(1)是否存在一个BP神经网络能够逼近给定的样本或者函数。
( 2)如何调整BP神经网络的连接权,使网络的输入与输出与 给定的样本相同。
1986年,鲁梅尔哈特(D. Rumelhart)等提出BP学习算法。
13.3.2 BP学习算法
1. 基本思想
目标函数:
x1
y1m
x2
y2m
x p1
y
m pm
13.3.2 BP学习算法
2. 学习算法
d y wikj1
k i
k 1 j
d y y u m ( i
m
i
)
si
fm
(
m)
i
——输出层连接权调整公式
d u d k i
fk (
k)
i
w k 1 k
l
li
l
——隐层连接权调整公式
13.3.2 BP学习算法
2. 学习算法
13.2 神经元与神经网络
13.2.1 生物神经元的结构
人脑由一千多亿(1011亿- 1014 亿)个神经细胞(神经元)交织 在一起的网状结构组成,其中大 脑皮层约140亿个神经元,小脑皮 层约1000亿个神经元。
神经元约有1000种类型,每个神经元大约与103- 104个其他 神经元相连接,形成极为错综复杂而又灵活多变的神经网络。 人的智能行为就是由如此高度复杂的组织产生的。浩瀚的宇 宙中,也许只有包含数千忆颗星球的银河系的复杂性能够与大 脑相比。
13.2.1 生物神经元的结构
神经网络(neural networks,NN)
▪ 生物神经网络( natural neural network, NNN): 由中枢神经系 统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所 构成的错综复杂的神经网络,其中最重要的是脑神经系统。 ▪人工神经网络(artificial neural networks, ANN): 模拟人脑神经 系统的结构和功能,运用大量简单处理单元经广泛连接而组成 的人工网络系统。
智能控制理论及应用

摘要:介绍了智能控制理论的发展概况、研究对象与工具、功能特点,简要列举了智能控制的集中应用。
关键词:智能控制;神经网络;应用0前言自从美国数学家维纳在20世纪49年代创立控制论以来,智能控制理论与智能化系统发展十分迅速。
智能控制理论被誉为最新一代的控制理论,代表性的理论有模糊控制、神经网络控制、基因控制即遗传算法、混沌控制、小波理论、分层递阶控制、拟人化智能控制、博弈论等。
应用智能控制理论解决工程控制系统问题,这样一类系统称为智能化系统。
他广泛应用于复杂的工业过程控制、机器人与机械手控制、航天航空控制、交通运输控制等。
他尤其适用于被控对象模型包含有不确定性、时变、非线性、时滞、耦合等难以控制的因素。
采用其它控制理论难以设计出合适与符合要求的系统时,都有可能期望应用智能化理论获得满意的解决。
科学技术高度发展导致了被控对象在结构上的复杂化和大型化。
在许多系统中,复杂性不仅仅表现在高维性上,更多则是表现在系统信息的模糊性、不确定性、偶然性和不完全性上。
此时,人工智能得益于计算机技术的飞速发展,已逐渐成为一门学科,并在实际应用中显示出很强的生命力。
同时,国际学术界对智能控制的研究也十分活跃,到了20世纪90年代,各种智能控制的国际学术会议日益频繁。
国内也在20世纪80年代初开始进行智能控制研究。
1智能控制理论的发展阶段虽然智能控制理论只有几十年的历史,尚未形成较完整的理论体系,蛋其已有的应用成果和理论发展表明它已成为自动控制的前沿学科之一。
智能控制主要经历了以下几个发展阶段:1.1 自动控制的发展与挫折上世纪40~50年代,以频率法为代表的单变量系统控制理论逐步发展起来,并且成功地用在雷达及火力控制系统上,形成了“古典控制理论”。
上世纪60~70年代,数学家们在控制理论发展中占据了主导地位,形成了以状态空间法为代表的“现代控制理论”。
他们引入了能控、能观、满秩等概念,使得控制理论建立在严密精确的数学模型之上,从而造成了理论与实践之间巨大的分歧。
神经网络控制

从而使神经网络控制器逐渐在控制作用中占据主
导地位,最终取消反馈控制器的作用;
✓
一旦系统出现干扰,反馈控制器重新起作用。
✓
可确保控制系统的稳定性和鲁棒性,有效提高系
统的精度和自适应能力。
神经网络
控制器
期望输出
()
−1
()
+
-
()
传统控
网络实现;可进行离线辨识,也可进行在线辨识。
+
-
逆向建模
一般而言,建立逆模型对神经网络控制意义重大。
直接逆建模简化结构图:
可用于离线辨识,也可
用于在线辨识。
对 象
+
神经网络
逆模型
缺点:不是目标导向的,系统输入也不可能预先定义。
实际常采用正-逆建模结构。
正-逆建模
神经网络
逆模型
对 象
第3章 神经网络控制
第2部分 控制基础
3.5 神经网络控制基础
3.5.1 神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过
程或系统。
神经网络采用并行分布式信息处理,具有很强的容
错性。
神经网络是本质非线性系统,可实现任意非线性映
射。
神经网络具有很强的信息综合能力,能同时处理大
期望输出
()
稳定的参
考模型
参考模
型输入
()
+
()
()
+
-
神经网络
控制器
()
对象
()
人工神经网络系统辨识综述

人工神经网络系统辨识综述摘要:当今社会,系统辨识技术的发展逐渐成熟,人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。
首先对神经网络系统辨识方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。
关键词:神经网络;系统辨识;系统建模0引言随着社会的进步,越来越多的实际系统变成了具有不确定性的复杂系统,经典的系统辨识方法在这些系统中应用,体现出以下的不足:(1)在某些动态系统中,系统的输入常常无法保证,但是最小二乘法的系统辨识法一般要求输入信号已知,且变化较丰富。
(2)在线性系统中,传统的系统辨识方法比在非线性系统辨识效果要好。
(3)不能同时确定系统的结构与参数和往往得不到全局最优解,是传统辨识方法普遍存在的两个缺点。
随着科技的继续发展,基于神经网络的辨识与传统的辨识方法相比较具有以下几个特点:第一,可以省去系统机构建模这一步,不需要建立实际系统的辨识格式;其次,辨识的收敛速度仅依赖于与神经网络本身及其所采用的学习算法,所以可以对本质非线性系统进行辨识;最后可以通过调节神经网络连接权值达到让网络输出逼近系统输出的目的;作为实际系统的辨识模型,神经网络还可用于在线控制。
1神经网络系统辨识法1.1神经网络人工神经网络迅速发展于20世纪末,并广泛地应用于各个领域,尤其是在模式识别、信号处理、工程、专家系统、优化组合、机器人控制等方面。
随着神经网络理论本身以及相关理论和相关技术的不断发展,神经网络的应用定将更加深入。
神经网络,包括前向网络和递归动态网络,将确定某一非线性映射的问题转化为求解优化问题,有一种改进的系统辨识方法就是通过调整网络的权值矩阵来实现这一优化过程。
1.2辨识原理选择一种适合的神经网络模型来逼近实际系统是神经网络用于系统辨识的实质。
其辨识有模型、数据和误差准则三大要素。
系统辨识实际上是一个最优化问题,由辨识的目的与辨识算法的复杂性等因素决定其优化准则。
系统辨识与控制

神经网络控制是一种基于人工神经网络的智能控制策略,通过训练神经网络来逼近复杂的 非线性映射关系,实现对系统的控制。
强化学习
强化学习是一种基于试错的智能控制策略,通过与环境进行交互并学习最优策略来实现对 系统的控制。
06 系统辨识与控制的应用案 例
工业控制系统
自动化生产线控制
通过系统辨识技术,对生产线上的设备进行建模,实现自动化控 制,提高生产效率。
对系统的控制。
02
反步控制
反步控制是一种基于递归设计的非线性控制策略,通过将系统分解为多
个子系统并分别设计控制器来实现对系统的控制。
03
自适应控制
自适应控制是一种处理参数不确定性和外界干扰影响的控制策略,通过
在线调整控制器参数来适应系统参数的变化和外界干扰的影响。
智能控制技术
模糊控制
模糊控制是一种基于模糊逻辑和模糊集合论的控制策略,通过将专家的经验转化为模糊规 则来实现对系统的控制。
系统辨识与控制
目录
• 系统辨识简介 • 系统数学模型 • 系统辨识方法 • 系统控制简介 • 控制策略与技术 • 系统辨识与控制的应用案例
01 系统辨识简介
定义与目的
定义
系统辨识是根据系统的输入和输出数 据来估计系统动态特性的过程。
目的
通过系统辨识,可以建立系统的数学 模型,为控制、预测、优化等提供基 础。
卫星姿态控制
通过系统辨识技术对卫星 的姿态进行建模和控制, 确保卫星的稳定运行和数 据的准确传输。
火箭推进系统控制
利用系统辨识技术对火箭 推进系统的动态特性进行 建模,实现精确的推进控 制和自主发射。
机器人控制系统
工业机器人控制
通过系统辨识技术对工业机器人的动态特性进行建模,实现精确 的运动控制和自主作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络动态系统的辨识与控制摘要:本论文表明神经网络对非线性动态系统进行有效的辨识与控制。
本论文的侧重点是辨识与控制模型,并论述了动态反向传播以及静态反向传播方法在参数调节中的作用。
在所介绍的模型中,加法器与重复网络结构的内部相连很独特,所以很有必要将他们统一起来进行研究。
由仿真结果可知辨识与自适应控制方案的提出是可行的。
整篇论文中都介绍到基本的概念和定义,也涉及了必须提出的学术性问题,简介用数学系统理论处理动态系统的分析与合成在过去的五十年里已经被列为应用广泛的权威科学原理了。
权威系统理论最先进的地方定义于基于线性代数以及复合变量理论的先进技术线性操作器以及线性常微分方程。
由于动态系统的设计技术与它们的稳定特性密切相关,线性时间不变系统的充分必要条件在上世纪已经产生了,所以已经建立了动态系统的著名设计方法。
相反,只要在系统对系统基础上就可以基本上建立非线性系统的稳定性,因此对于大部分系统没有同时满足稳定性、鲁棒性以及良好动态响应的设计程序并不希奇。
过去三十年来,对线性、非时变和具有不确定参数的对象进行辨识与自适应控制的研究已取得了很大的进展。
但是在这些研究中辨识器和控制器的结构选取和保证整个系统全局稳定性的自适应调参规律的构成等,都是建立在线性系统理论基础上的[1]。
在本论文中,我们感兴趣的是神经网络非线性动态系统的控制与辨识。
由于很少有可以直接应用的非线性系统理论结果存在,所以必须密切关注这个问题以及辨识器和控制器结构的选择和调整参数适应性规则的通用性问题。
在人工神经网络领域里,有两类网络今年来最引人注目:它们是(1)多层神经网络(2)回归神经网络。
多层神经网络被证实在解决模式辨识问题[2]-[5]上非常成功。
而回归神经网络则经常用于联想记忆以及制约优化问题的解决[[6]-[9]。
从系统理论的观点来看,多层网络呈现静态非线性映射,而回归网络则通过非线性动态反馈系统显现。
尽管两种网络存在外观上的不同外,但是很有必要将他们用统一成更一般化的网络。
事实上,笔者确信将来会越来越多的用到动态因素以及反馈,这导致包括两种网络的复杂系统的产生。
这样,将两个网络统一起来就成为必要。
在本文的第三章,这个观点会得到进一步的阐述。
本文用了三个主要目标。
第一个也是最重要的一个目标是在未知非线性动态系统中为自适应控制利用神经网络提出辨识以及控制器结构。
当未知参数线性系统的自适应控制器设计有了主要的提高,这种控制器就不能用于非线性系统的整体控制。
因此所提出的这个模型在表现这个方向的第一步。
第二个目标是为基于反向传播的参数动态调整提出规定的方法这项反相传播算法将在这节中加以介绍。
第三个最后的目标是明确规定必须假定的方法论设想以提出问题。
在整个论文中运用了经常用于系统理论的系统方框图、电脑仿真来对不同概念进行阐述。
本文的结构如下:第二章讲述的是贯穿全文的基本概念和标记性细节。
第三章多层网络和回归网络的统一。
第四章讲述的是神经网络参数调整的静态和动态方法。
第五章讲述辨识模型,第六章讲述自适应控制问题。
最后在第七章指明未来工作的方向。
第二章栏目基本概念标记这章集中讲述与辨识和控制问题相关的概念供参考。
尽管只有部分概念直接在第四和第六章讨论的过程中应用到,但是所有这些概念都与广泛认识神经网络动态系统的作用密切相关。
A 系统辨识与特征化系统辨识与特征化是系统理论最基本的问题。
对系统进行特征化是指对系统进行数学表示:即以一个算子P:U—>Y作为系统的模型,并确定P所属的算子群,其中和分别是输入空间和输出空间。
而系统的辨识则可描述为在已知和的前提下,确定一个子群和一个元素,以使在某个要求(精确指标)意义下逼进。
于静态系统,U和Y分别是和的子集。
而对于动态系统,它们通常被假定为区间[0,T]或[0,∞]上的有界勒贝格可积函数空间。
算子P则以输入-输出对的形式加以定义。
如果选取以及的形式(即辨识模型)则需要依据精度要求并综合考虑数学处理的简易性及对象被辨识的简易性,而且与离线辨识或在线辨识等因素有关。
1.静态系统和动态系统的辨识:模式识别问题是静态系统识别的一个典型例子,在这里,紧集通过决策函数P映射到输入空间其中表示与类别对应的模式矢量。
在动态系统中,算子P则以定义一个给定对象,该对象用输入-输出函数对U(t),Y(t),t∈[0,T]隐含定义。
无论哪种识别,其目的都是定义Pˆ使其满足:其中ε是一个理想的小正数,是某种适当的范数。
为辨识模型输出,因此是与对象输出观测值Y之间的误差。
动态系统的辨识问题将在Ⅱ-C章节中得到更详细的阐述。
2.Weierstrass定理与Stone-Weierstrass定理:让C([a, b])定义在闭区间[a, b]的实值函数连续函数空间,对于f∈C([a, b])具有范数定义为:著名的Weierstrass近似定理表明,当满足条件时,C([a, b])中的任何函数均可被多项式任意逼近。
自然的,它在多项式估计连续函数的问题中(例如模式识别问题)得到广泛的应用。
基于Stone的Weierstrass定理的推广称为 Stone-Weierstrass 定理,在动态系统的近似过程中具有重要的理论价值。
Stone-Weierstrass 定理:设U是一个紧密度量空间,若是的子函数,它包含常值函数和U中的分离点,那么在中是稠密的。
使我们感兴趣的使可以假定P定义在有界、连续、非时变随机算子空间范围内。
根据Stone-Weierstrass 定理,当满足该定理条件时,可以选择近似于任何特定算子的并递属于的模型。
非线性函数的推论在很多文献中得到了广泛的应用,包括一系列著作如:维他里、威纳、Barret、Urysohn。
运用Stone-Weierstrass 定理,可以知道在某个条件下的给定非线性函数可以用维他里级数和威纳级数等一系列相应的级数来表述。
虽然理论上这种表述给人印象深刻,但是在大部分实际动态系统的辨识中还没有得到广泛的应用。
本文的重点在于论述有限空间非线性差分(或积分)方程条件下动态系统的在线辨识与控制。
这样的线性模型在系统文献中是众所周知的,在以下章节中也将讨论到这种模型。
B系统的描述和问题的提出在系统理论中,相当一部分系统可以用矢量微分方程或矢量差分方程来描述,例如可以用微分方程表示为:其中为状态矢量,为控制输入矢量,为输出矢量,和为静态非线性映射:,矢量x(t)在时间t上表示系统状态,并在t0<t状态下定义,而输入U定义于闭区间。
输出y(t)完全由t时间的系统状态决定。
在本文中,对于离散时间系统,可以用和方程(2)不同的以下形式的差分方程描述:其中u(.),x(.),y(.)是离散时间序列。
大部分结果也可以扩展成连续时间系统来表示。
如果假定方程(3)所描述的系统为线性、非时变系统,可以用下式进行描述:其中A,B,C分别为阶矩阵。
系统由三元组参数化。
在过去三十年里,已知C,A和B的线性非时变系统理论已经得到很大的发展,线性非时变系统的可控性、稳定性以及可观性的研究也比较成熟。
不同问题的简易性最终使得线性方程由n个未知数解出n个解。
与之相反的是,对于包括非线性方程(3)的问题,和已知时,没有类似的手段对非线性代数方程的结果进行逼近。
因此,正如以下所述那样,为了使问题更容易分析,必须作一些假设。
C 辨识与控制1.辨识:方程(3)中的函数和或者(4)中的矩阵A、B、C是未知时,就出现了未知系统(也就是以下章节中所指的对象)的辨识问题。
具体表述如下[1]:非时变、时间离散动态系统的输入和输出分别为和。
其中是时间有界函数。
假设系统在参数化已知而参数值未知时是稳定的,目的是建立一个稳定的辨识模型(图 1(a))。
其中当输入同时为u(k)时,得到如时,得到如(1)所述的近似值输出。
图.1(a)系统辨识图.2(b)参数自适应控制模型2.控制:在控制理论的动态系统分析与综合问题中,或多或少的变量都必须保持在一定的限制内。
如果方程(3)中的和已知,控制的问题就是设计一个控制器使之在常值k的所有信息基础上产生理想的控制输入u(k)。
而对于如(4)所述的线性系统,A,B,C已知的控制器综合问题,已经存在大量的频率和时域技术,而对于已经规定和的非线性系统,并没有类似的方法。
在过去三十年里,人们就对存在不定性的动态系统(1)的控制系统产生了很大的兴趣。
为了更具数学简易性,人们将更多的努力花在对线性、非时变和具有不确定参数的对象进行自适应控制上。
本文的重点主要是不确定参数非线性动态系统的辨识与控制。
直接使用控模型的自适应系统得到很广泛的研究。
这种系统通常被称为参考模型自适应控制(MRAC)体统. MRAC问题的格式化隐性假设是设计者对所讨论的对象足够熟悉,他可以根据参考模型的输出确定对象的理想行为。
MRAC问题实质上可以如下(图.1(b))所示:(a)参考模型自适应控制:控制对象P,给定输入-输出对,稳定参考模型M的确定输入-输出对为,其中是有界函数,输出是系统的理想输出。
目的是对于确定控制输入使得在常数下有:和上面所述的一样,辨识模型的选择(如参数化)以及基于辨识误差的参数调整方法是辨识问题的两个主要部分。
决定控制器结构,调整参数使得系统输出与理想输出间的误差最小代表着控制问题的相应部分。
章讲述的是为线性系统建立辨识模型和控制器结构以及辨识与控制参数调整的一些著名方法。
紧跟着在章中简单阐述非线性动态系统辨识与控制中遇到的问题。
3.线性系统:对于线性、非时变不确定参数对象,辨识模型的产生目前已经众所周知。
对于一个单输入单输出可控可观系统,方程(4)中的矩阵A和向量B和C可以用以下方程方式表示:其中和是不确定参数。
多输入多输出可控可观系统也可以用相似的方法表示。
这意味着在时间k+1时的输出是输入和输出过去值的线性组合。
公式(5)激励以下辨识模型的选择:并行模型串行模型其中决定阶数的大小。
在以下的论述中,系统参数的常向量由P表示,而辨识模型由表示。
对于可控可观线性、非时变系统可以通过线性稳定反馈显示其稳定性。
这一事实可以用于设计系统的自适应控制器。
例如,当已知系统阶数上限时,控制输出可以通过输入和输出各自的线性组合产生。
如果表示控制的参数矢量,那么存在一个常值矢量,当时,控制器以及系统于参考模型具有相同的输入-输出特性。
调整使其保持在稳定状态的自适应算法已是众所周知,其总的格式如(8)所示。
4.非线性系统:从的讨论中可以知道,可控性和可观性在线性系统辨识与控制问题的格式化上是很重要的。
线性系统的其他著名的结果也要求选择一个参考模型和合适的系统参数化以保证理想控制器的存在。
尽管近年来有很多学者提出诸如非线性系统的可控性、可观性、反馈稳定化以及观测器设计等问题。
,但是没有得出像线性系统那样有效的结论。