碱性磷酸酶的分离纯化及比活性与米氏常数测定

合集下载

碱性磷酸酶米氏常数的测定实验报告

碱性磷酸酶米氏常数的测定实验报告

碱性磷酸酶米氏常数的测定实验报告实验目的:1、学习和掌握米氏常数(Km)及最大反应速度(Vm)的测定原理。

2、测定牡蛎碱性磷酸酶水解对硝基苯磷酸钠盐时的Km和Vm值u。

实验原理:1、米氏方程:V=Vm[S]/Km+[S]其中[S]为底物浓度;v为初速度;Vm为最大反应速度;Km为米氏常数.Vm/2=Vm[S]/Km+[S]Km=[S]Km值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是浓度单位。

米氏常数K是酶的一个基本特征常数。

2、动力学参数的测定:测定Km和Vm,可通过作图法求得。

最常用的Lineweaver-Burk双倒数作图法米氏方程转化为倒数形式,即:1/v=Km/Vm*1/[S]+1/Vm3、本实验测定碱性磷酸酶催化对硝基苯磷酸钠盐(pNPP)水解的Km和Vm反应式:产物对硝基苯酚pNP在405nm波长有吸收可通过分光光度法测定产物pNP的含量测定并制作产物pNP的标准曲线根据催化反应产生的产物OD值从标准曲线求出产物浓度,换算成反应速度v。

实验试剂与器材:试剂:0.5μmol/mL pNP 溶液、10 mmol/L pNPP溶液、20 mmol/L MgCl2,溶液、0.1 mol/L 碳酸钠-碳酸氢钠 pH 10.1缓冲液、0.1 mol/L NaOH、碱性磷酸酶。

器材:恒温水浴锅、722分光光度计实验操作流程:1.对硝基苯酚标准曲线的制作取15支试管编号,0号一支,1-7号各二支,按下表操作:以对硝基苯酚的绝对量(μmol数)为横坐标,OD405nnm值为纵坐标,绘制标准曲线。

求出PNP的摩尔消光系数(s)值。

2.反应速度测定15支试管,1-5做两组平行测定管,01-05作为空白对照分别以01-05调零点,测定对应样品管ODq0s。

3.数据处理各管在722分光光度计测定波长405nm的OD值(OD405nm)。

从对硝基苯酚标准曲线上查出OD405nm。

相当于产物对硝基苯酚的μmol数。

碱性磷酸酶km值测定实验报告

碱性磷酸酶km值测定实验报告

竭诚为您提供优质文档/双击可除碱性磷酸酶km值测定实验报告篇一:酶促反应动力学实验报告酶促反应动力学实验报告14301050154杨恩原实验目的:1.观察底物浓度对酶促反应速度的影响2.观察抑制剂对酶促反应速度的影响3.掌握用双倒数作图法测定碱性磷酸酶的Km值实验原理:一、底物浓度对酶促反应速度的影响在温度、ph及酶浓度恒定的条件下,底物浓度对酶的催化作用有很大的影响。

在一般情况下,当底物浓度很低时,酶促反应的速度(v)随底物浓度[s]的增加而迅速增加,但当底物浓度继续增加时,反应速度的增加率就比较小,当底物浓度增加到某种程度时反应速度达到一个极限值(即最大速度Vmax)。

底物浓度和反应速度的这种关系可用米氏方程式来表示(michaelis-menten方程)即:式中Vmax为最大反应速度,Km为米氏常数,[s]为底物浓度当v=Vmax/2时,则Km=[s],Km是酶的特征性常数,测定Km是研究酶的一种重要方法。

但是在一般情况下,根据实验结果绘制成的是直角双曲线,难以准确求得Km和Vmax。

若将米氏方程变形为双倒数方程(Lineweaver-burk方程),则此方程为直角方程,即:以1/V和1/[s]分别为横坐标和纵坐标。

将各点连线,在横轴截距为-1/Km,据此可算出Km值。

本实验以碱性磷酸酶为例,测定不同浓度底物时的酶活性,再根据1/v和1/[s]的倒数作图,计算出其Km值。

二、抑制剂对酶促反映的影响凡能降低酶的活性,甚至使酶完全丧失活性的物质,成为酶的抑制剂。

酶的特异性抑制剂大致上分为可逆性和不可逆性两类。

可逆性抑制又可分为竞争性抑制和非竞争性抑制等。

竞争性抑制剂的作用特点是使该酶的Km值增大,但对酶促反映的最大速度Vmax值无影响。

非竞争性抑制剂的作用特点是不影响[s]与酶的结合,故其Km值不变,然而却能降低其最大速度Vmax。

本实验选取na2hpo4作为碱性磷酸酶的抑制物,确定其抑制作用属于哪种类型。

实验五碱磷酶的纯化和比活性的测定

实验五碱磷酶的纯化和比活性的测定

管号
不同酶液
O -
S -
1(AE) 2(BE) 3(CE) 4(DE) 0.1 0.1 0.1 0.1
0.1mg/ml标准酚液
0.1 3
0.1
3
3
3
3
3
0.01mol/LpH8.8Tris
预温37℃复合基质液
考马斯亮蓝法测定蛋白含量
游离状态的考马斯亮蓝G-250在酸性溶液中 呈红褐色,与蛋白质结合后呈蓝色,蛋白质 含量与颜色深浅成正比 595nm测定吸光度,做标准曲线,求出蛋白 质浓度
实验结果
分离阶段 蛋白质 (mg/ml) 酶活性 (U/ml) 比活性 (U/mg) 纯化倍数 得率
Summary of porcine platelet-derived growth factor purification protocol
Step Total protein (mg/ml) 39 800 237.32 45.83 6.25 4.35 0.17 Total activity (z/U) 1.8×106 9.2×105 6.1×105 8.4×104 6.9×104 5.8×104 Specific Fold activity Recovery purificat (%) [(z/B)/U*mgion 1] 45 3 876 13 310 13 440 15 862 341 176 1 86 296 299 352 7 582 100 51 34 5 4 3
取D液0.1mL置于编号为DE的试管中,供测酶活性 取D液0.1mL置于编号为Dp的试管中,供测蛋白 质含量

磷酸苯二钠法测定碱性磷酸酶活性
根据产物红色的深浅测定酚的含量
酶活性单位:37℃下15 min生成1mg酚为1个酶活性单位 每mL样品中 = 酶活性单位

实验名称-碱性磷酸酶的分离纯化实验报告

实验名称-碱性磷酸酶的分离纯化实验报告

实验名称-碱性磷酸酶的分离纯化实验报告实验名称碱性磷酸酶的分离纯化、比活性测定与动力学分析实验日期2011年10月25号实验地点生化实验室合作者指导老师总分教师签名批改日期碱性磷酸酶(AKP或ALP)是一种底物特异性较低,在碱性条件下能水解多重磷酸单脂化合物的酶,需要镁和锰离子为激活剂。

AKP具有磷酸基团转移活性,能将底物中的磷酸基团转移到另一个含有羟基的接受体上,如磷酸基团的接受体是水,则其作用就是水解。

AKP最适PH范围为8.6-10,动物中AKP主要存在于小肠粘膜、肾、骨骼、肝脏和胎盘等组织的细胞膜上。

血清AKP主要来自肝,小部分来自骨骼。

AKP可从组织中分离纯化,也可以采用基因工程表达的方式获得:将碱性磷酸酶基因克隆到重组载体,转入宿主菌中进行重组表达,并从表达菌提取,并进行酶动力学分析。

一实验原理1、碱性磷酸酶的分离纯化AKP分离纯化的方法与一般蛋白质的分离纯化方法相似,常用中性盐盐析法、电泳法、色谱法、有机溶剂沉淀法等方法分离纯化。

有时需要多种方法配合使用,才能得到高纯度的酶蛋白。

本实验采用有机溶剂沉淀法从兔肝匀浆液中提取分离AKP。

正丁醇能使部分杂蛋白变性,过滤除去杂蛋白即为含有AKP的滤液,AKP能溶于终浓度为33%的丙酮或30%的乙醇中,而不溶于终浓度为50%的丙酮或60%的乙醇中,通过离心即可得到初步纯化的AKP。

2、碱性磷酸酶的比活性测定根据国际酶学委员会规定,酶的比活性用每毫克蛋白质具有的酶活性来表示,单位(U/mg •pr)来表示。

因此,测定样品的比活性必须测定:a每毫升样品中的蛋白质毫克数;b每毫升样品中的酶活性单位数。

酶的纯浓度越高酶的比活性也就越高。

本实验以磷酸苯二钠为底物,由碱性磷酸酶催化水解,生成游离酚和磷酸盐。

酚在碱性条件下与4-氨基安替比作用,经铁氰化钾氧化,生成红色的醌衍生物,颜色深浅和酚的含量成正比。

于510nm处比色,即可求出反应过程中产生的酚含量,而碱性磷酸酶的活性单位可定义为:在37摄氏度保温15min每产生1mg的酚为一个酶活性单位。

碱性磷酸酶分离纯化及比活性测定1

碱性磷酸酶分离纯化及比活性测定1

试剂(ml)
生理盐水 标准蛋白溶液 样品 考马斯亮蓝试剂
空白管
0.1标Biblioteka 管ABC0.1 A2液0.1 5.0 5.0 5.0 B2液0.1 5.0 C2液0.1 5.0
室温5min,各管进行A595测定 计算:样品中蛋白质的含量=A样品/A标准×C标准×稀释倍数
目录
3. 结果处理与分析
结果处理表
酶活性计算 体积 (ml) A 值
目录
检测酶提取纯化的指标
1. 酶的纯度: 用比活性代表(单位重量蛋白质样品中 的活性单位) 2. 酶的回收效率 所含酶
※在保证纯度的前提下,应尽可能提高酶的回收率
目录
实验内容

酶的提取及比活性测定
目录
碱性磷酸酶(alkaline phosphatase, AKP) 的分离纯化及比活性测定
[目的] 1.掌握AKP分离纯化的实验原理、方法 及注 意事项 2.了解检测AKP活性测定的原理和方法。
25g肝组织剪碎 +0.01M醋酸镁-醋酸钠溶液75ml,匀浆机中匀浆 取肝匀浆4ml(A液)
A1:取0.1mlA液+1.9mlpH8.8Tris缓冲液,待测活性
A2:取0.1mlA液+4.9ml生理盐水,待测蛋白浓度
+2ml正丁醇,混匀2min,室温置30min,离心 (3000rpm)5min 下清液(吸取) 沉淀(弃)
蛋白含量计算 酶的总 活性 ( U) A 值
稀 释 倍 数
酶活性 (U/ml)
稀 释 倍 数
比活 酶的 性 蛋白浓度 得率 (U/mg) (mg/ml)
A 液 B液
4 2.2
100%
C液
2
目录

碱性磷酸酶的分离纯化实验报告

碱性磷酸酶的分离纯化实验报告

碱性磷酸酶的分离纯化实验报告实验报告:碱性磷酸酶的分离纯化引言:碱性磷酸酶是一种常见的酶类,在生物化学和生物工程领域有着重要的应用价值。

分离纯化碱性磷酸酶可以有效地提高其催化活性,从而更好地满足利用需求。

本实验旨在通过分离纯化的方法获得高纯度的碱性磷酸酶。

材料与方法:材料:1. 含有碱性磷酸酶的混合酶液;2. DEAE-纤维素离子交换柱;3. 带有荧光物质的酶学百科试剂盒;4. 透析膜。

方法:1. 将50 mL含有碱性磷酸酶的混合酶液,通过DEAE-纤维素离子交换柱进行分离纯化;2. 用PBS缓冲液洗涤纤维素柱,收集洗脱液以及洗脱后的洗脱液,测定酶活力;3. 分别将洗脱后的洗脱液和洗脱液透析入PBS缓冲液中;4. 用带有荧光物质的酶学百科试剂盒测定样品的酶活力。

结果:样品中碱性磷酸酶的活性经过分离纯化后得到了提高,相对活性提高了3倍以上。

同时,样品纯度也有了显著的提高。

分析和讨论:本实验通过离子交换柱和透析膜的方法,成功地分离和纯化了碱性磷酸酶。

实验中使用的DEAE-纤维素离子交换柱是一种较为成熟且常见的方法,具有操作简单、精度高等特点。

透析膜则可以更为彻底地去除不需要的杂质,进一步提高受体的纯度。

在实验结果中,我们发现酶的相对活性得以提高,这说明经过纯化后酶的质量得到了提高,可以进行更好地应用。

但同时,这样的分离纯化也存在一定的局限性,如纯度并没有达到100%,仍存在需进一步提高的空间。

结论:本实验成功地纯化和分离了碱性磷酸酶,提高了其相对活性,获得了具有实际应用需求的高纯度酶样品。

同时,在实际应用过程中,需要根据需求进行更为严格的纯化和分离,以满足更加精细化的需求。

碱性磷酸酶的分离纯化与酶学性质

碱性磷酸酶的分离纯化与酶学性质
碱性磷酸酶的应用
在生物工程中的应用
生产生物催化剂
碱性磷酸酶可以作为生物催化剂,在生物工程中用于 合成磷酸酯、脱氧核糖核酸等物质。
蛋白质剪切
碱性磷酸酶可以催化蛋白质剪切,对蛋白质的结构和 功能进行修饰。
生产药物
碱性磷酸酶可以用于制备药物,如抗癌药物、抗生素 等。
在医学诊断中的应用
肝功能检查
碱性磷酸酶是肝功能检查的重要指标之一,可 以反映肝细胞的损伤程度。
碱性磷酸酶可以作为营养补充剂,用于补充 人体所需的矿物质和维生素。
05
CATALOGUE
碱性磷酸酶的研究展望
研究现状与挑战
研究现状
目前对碱性磷酸酶的研究已经涉及多个领域 ,包括生物学、医学、化学等。在生物体内 ,碱性磷酸酶的作用是参与磷酸基转移反应 ,具有重要的作用。然而,对于碱性磷酸酶 的精确调控机制,仍需进一步研究。
琼脂糖凝胶电泳
利用琼脂糖凝胶作为支持物,根据蛋 白质分子大小和形状的不同进行分离 。
03
CATALOGUE
碱性磷酸酶的酶学性质
酶的磷酸酶的米氏方程可以表示为V=Vmax\*[S]/( Km+[S]),其中V是反应速率,Vmax是最大反应速率, [S]是底物浓度,Km是米氏常数。
挑战
尽管已经对碱性磷酸酶进行了广泛的研究, 但仍存在许多挑战。例如,如何提高碱性磷 酸酶的分离纯化效率,以及如何精确调控碱 性磷酸酶的酶学性质等。此外,对于碱性磷 酸酶在生物体内的具体作用机制,也需要进
一步深入研究。
未来研究方向
研究方向1
进一步探究碱性磷酸酶的调控机制。 通过对碱性磷酸酶的基因表达、后转 录修饰以及与其他分子的相互作用等 方面的研究,可以更深入地了解其调 控机制,为相关疾病的治疗提供理论 依据。

碱性磷酸酶实验报告

碱性磷酸酶实验报告

实验日期:2023年10月25日实验地点:生化实验室实验目的:1. 了解碱性磷酸酶(AKP)的分离纯化原理和方法。

2. 掌握碱性磷酸酶活性测定的原理和方法。

3. 通过实验验证碱性磷酸酶的动力学特性,计算其米氏常数(Km)和最大反应速度(Vmax)。

实验原理:碱性磷酸酶(AKP)是一种非特异性磷酸单酯酶,主要存在于动物和微生物体内,具有磷酸基团转移活性。

在碱性条件下,AKP能水解多种磷酸单酯化合物,生成相应的醇和磷酸盐。

本实验采用有机溶剂沉淀法从兔肝匀浆液中提取分离AKP,并通过比色法测定其活性。

实验材料:1. 兔肝匀浆液2. 丙酮3. 0.1 mol/L Tris-HCl缓冲液(pH 8.0)4. 磷酸苯二钠5. 4-氨基安替比林6. 铁氰化钾7. 移液管、移液枪、试管、试管架、恒温水浴箱、分光光度计实验步骤:1. 碱性磷酸酶提取:- 将兔肝匀浆液与丙酮以体积比1:1混合,室温下静置过夜。

- 4,000 rpm离心10分钟,弃去上清液。

- 将沉淀用0.1 mol/L Tris-HCl缓冲液(pH 8.0)溶解,得到碱性磷酸酶粗提液。

2. 碱性磷酸酶活性测定:- 取6支试管,分别加入0.02 mol/L磷酸苯二钠溶液、0.1 mol/L Tris-HCl 缓冲液(pH 8.0)、4-氨基安替比林溶液和铁氰化钾溶液。

- 在上述溶液中加入不同浓度的碱性磷酸酶粗提液,混匀后置于恒温水浴箱中反应10分钟。

- 在510 nm波长下测定吸光度,以酶活力单位(U)表示。

3. 米氏常数(Km)和最大反应速度(Vmax)计算:- 以酶活力单位(U)为纵坐标,底物浓度(mol/L)为横坐标,绘制酶活力曲线。

- 利用双倒数法(Lineweaver-Burk plot)计算米氏常数(Km)和最大反应速度(Vmax)。

实验结果:1. 碱性磷酸酶活性曲线:- 随着底物浓度的增加,酶活力逐渐增加,但在一定浓度后趋于稳定。

2. 米氏常数(Km)和最大反应速度(Vmax):- 米氏常数(Km)为0.05 mol/L,最大反应速度(Vmax)为150 U/min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碱性磷酸酶的分离纯化及比活性与米氏常
数测定
一、实验原理
(1).碱性磷酸酶的分离纯化
1. 机械破碎法制备肝匀浆
低浓度乙酸钠:低渗破膜
低浓度乙酸镁:保护和稳定AKP
2.有机溶剂沉淀法分离纯化AKP
加入不同有机溶剂重复离心
正丁醇:沉淀部分除AKP的蛋白质
33%丙酮、30%乙醇:溶解AKP
50%丙酮、60%乙醇:沉淀AKP
(2).比活性测定
1.比活性的定义
*单位重量的蛋白质样品中所含的酶活性单位。

*通常用每毫克蛋白质具有的酶活性单位来表示。

*用以鉴定酶的纯化程度,是酶分离提纯完成的评价指标之一。

2.测定样品的比活性必须测定:
*每毫升样品中的酶活性单位数。

*每毫升样品中的蛋白质毫克数。

3.磷酸苯二钠法测定碱性磷酸酶活性反应原理
(3).米氏常数测定
K m 即为米氏常数,V max为最大反应速度
*如上式表示,米氏常数是反应速度为最大值的一半时的底物浓度,因此,
米氏常数的单位为mol/L。

当反应速度等于最大速度一半时,即V = 1/2 V max, K m = [S]*吸光度表示不同底物浓度时的酶反应速度。

以吸光度的倒数作纵坐标,
以底物浓度的倒数作横坐标,按Lineweaver-Burk作图法可求出Km 值。

二. 器材
721分光光度计台式离心机恒温水浴锅微量移液器
托盘天平匀浆器试管
三. 试剂
1. 0.5mol/L醋酸镁溶液称取醋酸镁 5.3625g溶于蒸馏水中,
稀释至50ml.
2. 0.1mol/L醋酸钠溶液称取醋酸钠0.0820g溶于蒸馏水
中,
稀释至10ml.
3. 0.01mol/L醋酸镁---醋酸钠溶液取0.5mol/L醋酸镁溶液2ml
及0.1mol/L醋酸钠溶溶液10ml,混合均匀后加蒸馏水稀释至100ml.
4. 丙酮(分析纯).
5. 95%乙醇(分析纯).
6. Tris缓冲液(Ph8.8) 称取Tris 6.05g,用蒸馏水溶解成50ml,为0.1mol/L Tris液,取0.1mol/L Tris液10ml,加0.5mol/L 醋酸镁2ml,加蒸馏水80ml,再用1%醋酸调pH至8.8,然后用蒸馏水稀释至100ml.
7. 0.01mol/L基质液称取磷酸苯二钠(C6H5PO4Na2.2H2o) 0.3g,
4-氨基安替比林0.15g,分别溶于煮沸冷却后的蒸馏水中;两液混合并蒸馏水稀释至50ml,加0.2ml氯仿防腐,盛于棕色瓶中,冰箱内保存,可用一星期; 临用时与等量0.1mol/L pH10的碳酸盐缓冲液混合即可.
8. 0.1mol/L pH10的碳酸盐缓冲液称取无水碳酸钠0.318g 及碳酸氢钠0.168g溶于蒸馏水,稀释至50ml.
9. 碱性溶液量取0.5mol/L氢氧化钠溶液与0.5mol/L碳酸氢钠溶液各20ml,混合后加蒸馏水至100ml.
10. 0.5%铁氰化钾溶液称取铁氰化钾0.25g和硼酸0.75g,各
溶于20ml蒸馏水中,溶解后两液混合均匀,再加蒸馏水至50ml,置棕色瓶中暗处保存.
11. 0.1mol/L醋酸镁溶液称取醋酸镁0.2145g溶于蒸馏水中,
稀释至10ml.
12. 酚标准液(0.1mg/ml).
四.实验步骤
(1). “碱性磷酸酶分离纯化”实验操作。

相关文档
最新文档