电大《工程数学》(本)期末考试真题10套

合集下载

《工程数学》电大历年期末试题及答案 (2)

《工程数学》电大历年期末试题及答案 (2)

工程数学电大历年期末试题及答案第一章:复数及其运算1.1 复数的定义和性质试题:1.请简要叙述复数的定义和性质。

2.复数的共轭运算是指什么?给出其定义和性质。

3.试证明虚数单位i满足i2=−1。

答案:1.复数是由实数和虚数部分构成的数,通常表示为a+bi的形式,其中a是实数部分,b是虚数部分,i是虚数单位。

复数的性质有:–复数可以相加:(a+bi) + (c+di) = (a+c) + (b+d)i–复数可以相乘:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i–复数的加法和乘法满足交换律和结合律。

2.复数的共轭运算是指改变虚数部分的符号,即将a+bi变为a-bi。

共轭运算的定义和性质如下:–定义:对于任意复数z=a+bi,其共轭复数为z* = a-bi。

–性质:(a+bi) * (a-bi) = a^2 + b^2,即一个复数与其共轭的乘积等于实数部分的平方加虚数部分的平方。

3.可以通过计算i2来证明虚数单位i满足i2=−1:–i2=(0+1i)∗(0+1i)=−1。

1.2 复数的指数表示和三角函数形式试题:1.请简要叙述复数的指数表示形式和三角函数形式。

2.试证明对于任意复数z,有$e^{i\\theta} =\\cos\\theta + i\\sin\\theta$。

答案:1.复数的指数表示形式是通过欧拉公式来表达,即$z= r \\cdot e^{i\\theta}$,其中r是复数的模,$\\theta$是复数的辐角。

复数的三角函数形式是通过复数的实部和虚部来表示,即$z = a + bi = r\\cos\\theta + r\\sin\\theta i$,其中r是复数的模,$\\theta$是复数的辐角。

2.可以通过欧拉公式来证明对于任意复数z,有$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$:–欧拉公式表示为$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$。

电大 工程数学试卷及答案汇总(完整版)

电大 工程数学试卷及答案汇总(完整版)

当1 x 2 时, F(x) P(X 1) 1 ; 6
当 2 x 3时, F(x) P( X 1) P( X 2) 2 ; 3
当 x 3 时, F(x) 1;
(2)EX=1 x 1/6+2 x 3/6+3 x 2/6= 13/6
(3 分) (1 分) (1 分) (1 分)
(1 分) (1 分) (1 分)
1 )n) N
15.解答: (1)随机变量 X 的取值为 1,2,3。
(2 分) (1 分)
《工程数学》试题
第 7 页 共6 页
依题意有: P{X 1} 1 ; P{X 2} 3 ; P( X 3) 2
6
6
6
X 的分布函数 F(x) P{X x} 由条件知:当 x 1时, F(x) 0;
《工程数学》试题
第 3 页 共6 页
15.设一口袋中依此标有 1,2,2,2,3,3 数字的六个球。从中任取一球,记随机 变量 X 为取得的球上标有的数字,求 (1)X 的概率分布律和分布函数。(2)EX
得分 评卷人
四、证明题(共 10 分)
16.设 a=(a1,a2,…,an)T,a1≠0,其长度为║a║,又 A=aaT, (1)证明 A2=║a║2A; (2) 证明 a 是 A 的一个特征向量,而 0 是 A 的 n-1 重特征值; (3) A 能相似于对角阵Λ吗?若能,写出对角阵Λ.
=0.8x0.6+0.1 x0.4=0.52
(2)由贝叶斯公式

P(A1|A)=P(A|A1)P(A1)/ P(A)
=0.8x0.6/0.52=12/13
(2 分) (1 分) (2 分) (1 分) (1 分) (2 分) (1 分)

电大 工程数学试卷及答案汇总(完整版)

电大 工程数学试卷及答案汇总(完整版)

F(w)= [e|t| ] e|t|e jt dt e( j )t dt e( j )t dt
0
0
(3 分)
= 1 1 2 j j 2 2
(2 分)
由付氏积分公式有
f(t)= 1[ F(w)]=
1
F ( )e jt d
2
(2 分)
= 1 2 (cost j sint)d
dx f (x, y)dy 1
即 从而
dx ce(2x4y)dy 1
00
c=8
(2) P(X Y )
f
(x,
y)dxdy
x
dx
8e(2x4 y) dy
2
x y
00
3
(3) 当 x>0 时, f X (x) f (x, y)dy 8e(2x4y)dy 2e2x
0
=–( y2 –7000y + 4•106 ) /1000 求极值得 y=3500 (吨)
(3 分) (1 分)
工程数学(本)10 秋模拟试题(一) 一、单项选择题(每小题 3 分,共 15 分)
1.设 A, B 都是 n 阶方阵,则下列命题正确的是( AB A B ).
《工程数学》试题
第 8 页 共6 页
12.求线性方程组
x1 3x2 x3 x4 1 x12x14x27x23x32x32x4x41 2







2x1 4x2 8x3 2x4 2
将方程组的增广矩阵化为阶梯形
1 3 1 1 1 1 3 1 1 1
2 7 2 1 2 0 1 0 1 0 1 4 3 2 1 0 1 2 3 0
13.设二维随机变量 (X ,Y ) 的联合概率函数是

电大《工程数学》(本)期末考试真题10套

电大《工程数学》(本)期末考试真题10套
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数
学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( )。 A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n

2. D
3. A
5. C
6. A
7. B
二、填空题【每小题 3分,本题共 15分)
2003年 1月
4. B
2.r n又 5
3. U.8
2p - t-1
无偏估计
三、计算题 (每小题 10分 ,本题共 :30分)
解:X=(]一A)-'13
得 分 评卷人
五、证明题(本题 4分)
设 A,B为 n阶对称矩阵,则 AB是对称矩阵的充分必要条件是AI3= B A.
748
试卷代号 :1080
中央广播电视大学 2002-2003学年度第一学期“开放本科”期末考试
土木工程专业工程数学试题答案及评分标准
(供 参 考 )
一、单项选择题 (每小题 3分 ,本题共 21分 )
1
D. D. 秩(A)<n 或秩(B)<n 三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C
二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)

2019年电大本科《工程数学》期末考试题库及答案

2019年电大本科《工程数学》期末考试题库及答案

2019年电大本科《工程数学》期末考试题库及答案一、单项选择题1.若10010020*******=aa ,则=a (12).⒊乘积矩阵⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡1253014211中元素=23c (10). ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是()AB BA --=11).⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ).D. -=-kA k A n () ⒍下列结论正确的是(A. 若A 是正交矩阵则A -1也是正交矩阵).⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C. 5321--⎡⎣⎢⎤⎦⎥ ). ⒏方阵A 可逆的充分必要条件是(A ≠0)⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ). D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).A. ()A B A AB B +=++2222⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C. [,,]--'1122 ).⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( 有唯一解).⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( 3). ⒋设向量组为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111,0101,1100,00114321αααα,则(ααα123,, )是极大无关组.⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 ⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( A )成立. A.λ是AB 的特征值10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1 ⒈A B ,为两个事件,则( B )成立. B.()A B B A +-⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件.C. AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为( D. 307032⨯⨯..). 4. 对于事件A B ,,命题(C )是正确的.C. 如果A B ,对立,则A B ,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D.)1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(6, 0.8).7.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a PD.f x x ab()d ⎰).10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01.C. σμ-=X Y1.A 是34⨯矩阵,B 是52⨯矩阵,当C 为( B 24⨯)矩阵时,乘积AC B ''有意义。

2019年电大工程数学(本科)期末考试试题及答案

2019年电大工程数学(本科)期末考试试题及答案

2019年电⼤⼯程数学(本科)期末考试试题及答案电⼤⼯程数学(本科)期末考试试题及答案⼀、单项选择题1.设B A ,都是n 阶⽅阵,则下列命题正确的是(AB A B= ). 2.设B A ,均为n 阶可逆矩阵,则下列等式成⽴的是( ()BAAB 11=- ). 3. 设B A ,为n 阶矩阵,则下列等式成⽴的是(B A B A '+'='+)( ).4.设B A ,为n 阶矩阵,则下列等式成⽴的是( BAAB = ).5.设A ,B 是两事件,则下列等式中( )()()(B P A P AB P =,其中A ,B 互不相容)是不正确的. 6.设A 是n m ?矩阵,B 是t s ?矩阵,且B C A '有意义,则C 是( n s ? )矩阵. 7.设是矩阵,B 是矩阵,则下列运算中有意义的是()8.设矩阵?--=1111A 的特征值为0,2,则3A 的特征值为 ( 0,6 ) . 9. 设矩阵--=211102113A ,则A 的对应于特征值2=λ的⼀个特征向量α=( ??011 ) . 10.设是来⾃正态总体的样本,则(321535151x x x ++ )是µ⽆偏估计.11.设n x x x ,,,21Λ是来⾃正态总体)1,5(N 的样本,则检验假设5:0=µH 采⽤统计量U =(nx /15-).12.设2321321321=c c c b b b a a a ,则=---321332211321333c c c b a b a b a a a a (2-). 13.设??~X ,则=<)2(X P (0.4 ). 14.设n x x x ,,,21Λ是来⾃正态总体22,)(,(σµσµN 均未知)的样本,则( 1x )是统计量. 15.若是对称矩阵,则等式(A A =')成⽴. 16.若()成⽴,则元线性⽅程组AX O =有唯⼀解.17. 若条件( ?=AB 且A B U += )成⽴,则随机事件,互为对⽴事件. 18.若随机变量X 与Y 相互独⽴,则⽅差)32(Y X D -=( )(9)(4Y D X D + ).19若X 1、X 2是线性⽅程组AX =B 的解⽽21ηη、是⽅程组AX = O 的解则(213231X X +)是AX =B 的解.20.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( )3,2(2-N ). 21.若事件与互斥,则下列等式中正确的是().22. 若0351021011=---x ,则=x (3 ).30. 若)4,2(~N X ,(22-X ),则. 23. 若满⾜()()()(B P A P AB P = ),则与是相互独⽴.24. 若随机变量X 的期望和⽅差分别为)(X E 和)(X D 则等式(22)]([)()(X E X E X D -= )成⽴.25. 若线性⽅程组只有零解,则线性⽅程组(可能⽆解).26. 若元线性⽅程组有⾮零解,则()成⽴.27. 若随机事件,满⾜,则结论(与互不相容)成⽴.28. 若?=4321432143214321A ,则秩=)(A (1 ).29. 若??=5321A ,则=*A ( --1325 ).30.向量组--732,320,011,001的秩是( 3 ).31.向量组的秩是(4).32. 向量组]532[,]211[,]422[,]321[4321'='='='=αααα的⼀个极⼤⽆关组可取为(21,αα).33. 向量组[][][]1,2,1,5,3,2,2,0,1321==-=ααα,则=-+32132ααα([]2,3,1--).34.对给定的正态总体),(2σµN 的⼀个样本),,,(21n x x x Λ,2σ未知,求µ的置信区间,选⽤的样本函数服从(t 分布). 35.对来⾃正态总体,记∑==3131i i X X ,则下列各式中(∑=-312)(31i i X µ )不是统计量.)3,2,1(=i .36. 对于随机事件,下列运算公式()()()()(AB P B P A P B A P -+=+)成⽴.37. 下列事件运算关系正确的是( A B BA B += ).38.下列命题中不正确的是( A 的特征向量的线性组合仍为A 的特征向量).39. 下列数组中,(1631614121)中的数组可以作为离散型随机变量的概率分布.40. 已知2维向量组4321,,,αααα,则),,,(4321ααααr ⾄多是( 2).41. 已知=??-=21101210,20101B a A ,若??=1311AB ,则=a ( 1- ). 42. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么(1,21-==b a ).43. ⽅程组=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( 0321=-+a a a ),其中0≠i a ,44. 线性⽅程组=+=+013221x x x x 解的情况是(有⽆穷多解).45. n 元线性⽅程组有解的充分必要条件是()()(b A r A r M= ) 46.袋中有3个红球,2个⽩球,第⼀次取出⼀球后放回,第⼆次再取⼀球,则两球都是红球的概率是(25) 47. 随机变量)21,3(~B X ,则=≤)2(X P (87).48.=-15473( 7543--??)⼆、填空题1.设B A ,均为3阶⽅阵,6,3A B =-=,则13()A B -'-= 8.2.设B A ,均为3阶⽅阵,2,3A B ==,则13A B -'-= -18 . 3. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB —8 . 4. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12 . 5.设互不相容,且,则0 .6. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-.7. 设A ,B 为两个事件,若)()()(B P A P AB P =,则称A 与B 相互独⽴.8.设A 为n 阶⽅阵,若存在数λ和⾮零n 维向量X ,使得AX X λ=,则称λ为A 的特征值. 9.设A 为n 阶⽅阵,若存在数λ和⾮零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值λ的特征向量. 10. 设是三个事件,那么A 发⽣,但C B ,⾄少有⼀个不发⽣的事件表⽰为)(C B A +. 11. 设A 为43?矩阵,B 为25?矩阵,当C 为(42? )矩阵时,乘积B C A ''有意义.12. 设D C B A ,,,均为n 阶矩阵,其中C B ,可逆,则矩阵⽅程D BXC A =+的解=X 11)(---C A D B .13.设随机变量012~0.20.5X a ?? ???,则a14.设随机变量X ~ B (n ,p ),则E (X 15. 设随机变量)15.0,100(~B X ,则=)(X E 15 .16.设随机变量的概率密度函数为≤≤+=其它,010,1)(2x x kx f ,则常数k = π4 .17. 设随机变量??-25.03.0101~a X ,则45.0 . 18. 设随机变量?5.02.03.0210~X ,则=≠)1(X P 8.0. 19. 设随机变量X 的概率密度函数为≤≤=其它0103)(2x x x f ,则=<)21(X P 81.20. 设随机变量的期望存在,则0. 21. 设随机变量,若5)(,2)(2==X E X D ,则=)(X E 3.22.设为随机变量,已知3)(=X D ,此时23.设θ是未知参数θ的⼀个估计,且满⾜θθ=)?(E ,则θ?称为θ的⽆偏估计. 24.设θ是未知参数θ的⼀个⽆偏估计量,则有?()E θθ=. 25.设三阶矩阵A 的⾏列式21=A ,则1-A = 2 . 26.设向量β可由向量组n ααα,,,21Λ线性表⽰,则表⽰⽅法唯⼀的充分必要条件是n ααα,,,21Λ线性⽆关. 27.设4元线性⽅程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次⽅程组的基础解系含有 3 个解向量.28. 设1021,,,x x x Λ是来⾃正态总体)4,(µN 的⼀个样本,则~101101∑=i i x )104,(µN .29. 设n x x x ,,,21Λ是来⾃正态总体的⼀个样本,∑==ni i x n x 11,则=)(x D n2σ30.设412211211)(22+-=x x x f ,则0)(=x f 的根是 2,2,1,1-- . 31.设22112112214A x x =-+,则0A =的根是 1,-1,2,-2 . 32.设??=070040111A ,则_________________)(=A r .2 33.若5.0)(,8.0)(==B A P A P ,则=)(AB P 0.3 .34.若样本n x x x ,,,21Λ来⾃总体)1,0(~N X ,且∑==ni i x n x 11,则~x )1,0(nN35.若向量组:-=2121α,=1302α,-=2003k α,能构成R 3⼀个基,则数k 2≠ . 36.若随机变量X ~ ]2,0[U ,则=)(X D 3137. 若线性⽅程组的增⼴矩阵为=41221λA ,则当λ=( 21)时线性⽅程组有⽆穷多解. 38. 若元线性⽅程组0=AX 满⾜,则该线性⽅程组有⾮零解. 39. 若5.0)(,1.0)(,9.0)(===+B A PB A P B A P ,则=)(AB P 0.3 .40. 若参数θ的两个⽆偏估计量1θ和2?θ满⾜)?()?(21θθD D >,则称2?θ⽐1θ更有效. 41.若事件A ,B 满⾜B A ?,则 P (A - B )= )()(B P A P - . 42. 若⽅阵满⾜A A '=,则是对称矩阵.43.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 44.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20 . 45. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则k=1- 46. 向量组的极⼤线性⽆关组是().47.不含未知参数的样本函数称为统计量. 48.含有零向量的向量组⼀定是线性相关的.49. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 0.6 .50. 已知随机变量?-5.01.01.03.05201~X ,那么=)(X E 2.4 . 51. 已知随机变量??-5.05.05.05.05201~X ,那么=)(X E 3. 52.⾏列式701215683的元素21a 的代数余⼦式21A 的值为= -56 .53. 掷两颗均匀的骰⼦,事件“点数之和为4”的概率是( 121). 54. 在对单正态总体的假设检验问题中,T 检验法解决的问题是(未知⽅差,检验均值).55. 1111111---x x 是关于x 的⼀个多项式,该式中⼀次项x 系数是 2 .56. =-1--451231. 57. 线性⽅程组b AX =中的⼀般解的⾃由元的个数是2,其中A 是54?矩阵,则⽅程组增⼴矩阵)(b A r M = 3 . 58. 齐次线性⽅程组0=AX 的系数矩阵经初等⾏变换化为--→→000020103211ΛA59. 当λ= 1 时,⽅程组-=--=+112121x x x x λ有⽆穷多解.1.设矩阵,且有,求X .解:利⽤初等⾏变换得即由矩阵乘法和转置运算得2.设矩阵??=--=500050002,322121011B A ,求B A 1-.解:利⽤初等⾏变换得--→--102340011110001011100322010121001011----→----→14610013501000111146100011110001011 ??-----→146100135010134001 即 ??-----=-1461351341A 由矩阵乘法得-----=-----=-52012515105158500050002146135 1341B A 3.设矩阵=--=210211321,100110132B A ,求:(1)AB ;(2)1-A .解:(1)因为2100110132-=--=A 12111210211110210211321-=-===B 所以 2==B A AB .(2)因为 []--=100100010110001132I A--→--→10010011001012/32/1001100100110010101032 所以 ??--=-10011012/32/11A . 4.设矩阵100111101A ??=--,求1()AA -'.解:由矩阵乘法和转置运算得100111111111010132101011122AA --'=-=----- 利⽤初等⾏变换得100201001111→-??100201011101001112??→---即 1201()011112AA -'=??5.设矩阵??---=423532211A ,求(1)A ,(2)1-A .解:(1)1100110211210110211423532211=---=---=---=A(2)利⽤初等⾏变换得-----→---1032100121100012 11100423010532001211即6.已知矩阵⽅程B AX X +=,其中--=301111010A ,?? --=350211B ,求X .解:因为B X A I =-)(,且-----→---=-1012100111100010111002010101010010----→-----→11010012101012000111010011110010101即 ??----=--110121120)(1A I 所以 ??---=------=-=-334231350211110121120)(1B A I X .7.已知B AX =,其中??==108532,1085753321B A ,求X .解:利⽤初等⾏变换得------→1055200132100013211001085010753001321----→---→12110025*********1121100013210001321 ??-----→121100255010146001 即 ??-----=-1212551461A 由矩阵乘法运算得--=????-----==-1282315138 1085321212551461B A X8.求线性⽅程组=++-=++--=+-+-=-+-234321432143214321x x x x x x x x x x x x x x x x 的全部解.解:将⽅程组的增⼴矩阵化为阶梯形 ----→-------0462003210010101113122842123412127211131?---→---→0000002200010101113106600022000101011131 ⽅程组的⼀般解为:(其中为⾃由未知量)令=0,得到⽅程的⼀个特解)0001(0'=X .⽅程组相应的齐⽅程的⼀般解为:-===4342415xx x x x x (其中为⾃由未知量)令=1,得到⽅程的⼀个基础解系)1115(1'-=X .于是,⽅程组的全部解为:10kX X X +=(其中k 为任意常数)9.求齐次线性⽅程组=++--=++++=++++0233035962023353215432154321x x x x x x x x x x x x x x 的通解.解: A =??→--326001130012331203313596212331 →100001130012331??→100000130001031 ⼀般解为 ??=-=--=0313543421x x x x x x ,其中x 2,x 4 是⾃由元令x 2 = 1,x 4 = 0,得X 1 =)0,0,0,1,3('-; x 2 = 0,x 4 = 3,得X 2 =)0,3,1,0,3('--所以原⽅程组的⼀个基础解系为 { X 1,X 2 }.原⽅程组的通解为: 2211X k X k +,其中k 1,k 2 是任意常数.10.设齐次线性⽅程组=+-=+-=+-0830352023321321321x x x x x x x x x λ,λ为何值时⽅程组有⾮零解?在有⾮零解时,求出通解.解:因为A =---λ83352231---→610110231λ??---→500110101λ 505==-λλ即当时,3)(⽅程组的⼀般解为: ==3231x x x x ,其中3x 为⾃由元.令3x =1得X 1=)1,1,1(',则⽅程组的基础解系为{X 1}.通解为k 1X 1,其中k 1为任意常数.27.罐中有12颗围棋⼦,其中8颗⽩⼦,4颗⿊⼦.若从中任取3颗,求:(1)取到3颗棋⼦中⾄少有⼀颗⿊⼦的概率;(2)取到3颗棋⼦颜⾊相同的概率.解:设1A =“取到3颗棋⼦中⾄少有⼀颗⿊⼦”,2A =“取到的都是⽩⼦”,3A =“取到的都是⿊⼦”,B =“取到3颗棋⼦颜⾊相同”,则(1))(1)(1)(211A P A P A P -=-=745.0255.01131238=-=-=C C .(2))()()()(3232A P A P A A P B P +=+==273.0018.0255.0255.031234=+=+C C .11.求下列线性⽅程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=??-++=??-++=? 解利⽤初等⾏变换,将⽅程组的增⼴矩阵化成⾏简化阶梯形矩阵,即245353652548151115-?? ?- ? ?-??→245351201000555-?? ?-- ? →120100055500555--?? ? ? ???→120100011100000--?? ? ? ???⽅程组的⼀般解为:1243421x x x x x =+??=-+?,其中2x ,4x 是⾃由未知量.令042==x x ,得⽅程组的⼀个特解0(0010)X '=,,,.⽅程组的导出组的⼀般解为:124342x x x x x =+??=-?,其中2x ,4x 是⾃由未知量.令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,;令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,.所以⽅程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数.12. 当取何值时,线性⽅程组+=++-=++-=+-2532342243214321421λx x x x x x x x x x x 有解,在有解的情况下求⽅程组的全部解.解:将⽅程组的增⼴矩阵化为阶梯形由此可知当时,⽅程组⽆解。

《工程数学》广播电视大学历年期末试题及答案

《工程数学》广播电视大学历年期末试题及答案

试卷代号:1080工程数学(本) 试题2012年1月 一、单项选择题1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.B .AB A B '= 2. 设A 是n 阶方阵,当条件( A )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。

B .0,6 4.若随机变量(0,1)X N :,则随机变量32Y X =-: ( D ).5. 对正态总体方差的检验用( C ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA B O ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B .9.若随机变量[0,2]X U :,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。

三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13. 设随机变量(8,4)X N :,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4, 10.6, 10.1, 10.4问:该机工作是否正常(0.9750.05, 1.96u α==)?四、证明题(本题6分)15. 设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。

电大《工程数学》期末复习题

电大《工程数学》期末复习题

《工程数学》期末复习题库工程数学(本)模拟试题一、单项选择题(每小题3分,共15分)1.设B A ,为n 阶矩阵,则下列等式成立的是( ). A .BA AB = B .B A B A +=+ C .111)(---+=+B A B A D .111)(---=B A AB2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是( ),其中0≠i a ,)3,2,1(=i .A .0321=++a a aB .0321=-+a a aC .0321=+-a a aD .0321=++-a a a3.下列命题中不正确的是( ). A .A 与A '有相同的特征多项式B .若λ是A 的特征值,则O X A I =-)(λ的非零解向量必是A 对应于λ的特征向量 C .若λ=0是A 的一个特征值,则O AX =必有非零解 D .A 的特征向量的线性组合仍为A 的特征向量4.若事件与互斥,则下列等式中正确的是( ). A . B . C . D .5.设n x x x ,,,21 是来自正态总体)1,5(N 的样本,则检验假设5:0=μH 采用统计量U =( ).A .55-xB .5/15-xC .nx /15- D .15-x二、填空题(每小题3分,共15分)1.设22112112214A x x =-+,则0A =的根是 . 2.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 个解向量. 3.设互不相容,且,则 . 4.设随机变量X ~ B (n ,p ),则E (X )= .5.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x n x 11,则~x .三、计算题(每小题16分,共64分)1.设矩阵100111101A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,求1()AA -'. 2.求下列线性方程组的通解.123412341234245353652548151115x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩ 3.设随机变量X ~ N (3,4).求:(1)P (1< X < 7);(2)使P (X < a )=0.9成立的常数a . (已知8413.0)0.1(=Φ,9.0)28.1(=Φ,9773.0)0.2(=Φ).4.从正态总体N (μ,4)中抽取容量为625的样本,计算样本均值得x = 2.5,求μ的置信度为99%的置信区间.(已知 576.2995.0=u )四、证明题(本题6分)4.设n 阶矩阵A 满足0))((=+-I A I A ,则A 为可逆矩阵.工程数学(本)11春模拟试卷参考解答一、单项选择题(每小题3分,共15分) 1.A 2.B 3.D 4.A 5.C 二、填空题(每小题3分,共15分)1.1,-1,2,-2 2.3 3.0 4.np 5.)1,0(nN三、(每小题16分,共64分) 1.解:由矩阵乘法和转置运算得10011111111010132101011122AA --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ ………6分 利用初等行变换得10020001112011101⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦1002001110101112⎡⎤⎢⎥→---⎢⎥⎢⎥⎣⎦即 1201()011112AA -⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦………16分 7-2.解 利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即 245353652548151115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭→245351201000555-⎛⎫ ⎪-- ⎪ ⎪⎝⎭→120100055500555--⎛⎫ ⎪ ⎪ ⎪⎝⎭→120100011100000--⎛⎫ ⎪ ⎪ ⎪⎝⎭ 方程组的一般解为:1243421x x x x x =+⎧⎨=-+⎩,其中2x ,4x 是自由未知量. ……8分令042==x x ,得方程组的一个特解0(0010)X '=,,,.方程组的导出组的一般解为: 124342x x x x x =+⎧⎨=-⎩,其中2x ,4x 是自由未知量. 令12=x ,04=x ,得导出组的解向量1(2100)X '=,,,;令02=x ,14=x ,得导出组的解向量2(1011)X '=-,,,. ……13分所以方程组的通解为:22110X k X k X X ++=12(0010)(2100)(1011)k k '''=++-,,,,,,,,,,其中1k ,2k 是任意实数. ……16分3.解:(1)P (1< X < 7)=)23723231(-<-<-X P =)2231(<-<-X P =)1()2(-Φ-Φ= 0.9773 + 0.8413 – 1 = 0.8186 ……8分(2)因为 P (X < a )=)2323(-<-a X P =)23(-Φa = 0.9 所以 28.123=-a ,a = 3 + 28.12⨯ = 5.56 ……16分 4.解:已知2=σ,n = 625,且nx u σμ-= ~ )1,0(N ……5分因为 x = 2.5,01.0=α,995.021=-α,576.221=-αu206.06252576.221=⨯=-nuσα……10分所以置信度为99%的μ的置信区间为:]706.2,294.2[],[2121=+---nux nux σσαα. ……16分四、(本题6分)证明: 因为 0))((2=-=+-I A I A I A ,即I A =2.所以,A 为可逆矩阵. ……6分《工程数学》综合练习一、单项选择题1.设B A ,都是n 阶方阵,则下列命题正确的是( ). A .AB A B = B .222()2A B A AB B -=-+ C .AB BA = D .若AB O =,则A O =或B O = 正确答案:A2.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,001的秩是( ). A . 1 B . 3 C . 2 D . 4正确答案: B3.n 元线性方程组有解的充分必要条件是( ).A . )()(b A r A r =B . 不是行满秩矩阵C .D . 正确答案:A4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是( ).A . 256B . 103 C . 203 D . 259正确答案:D 5.设是来自正态总体的样本,则( )是μ无偏估计.A . 321515151x x x ++ B . 321x x x ++C . 321535151x x x ++D . 321525252x x x ++正确答案: C6.若是对称矩阵,则等式( )成立. A . I AA =-1 B . A A =' C . 1-='A A D . A A =-1正确答案:B7.=⎥⎦⎤⎢⎣⎡-15473( ). A . ⎥⎦⎤⎢⎣⎡--3547 B . 7453-⎡⎤⎢⎥-⎣⎦ C . 7543-⎡⎤⎢⎥-⎣⎦ D . 7543-⎡⎤⎢⎥-⎣⎦ 正确答案:D8.若( )成立,则元线性方程组AX O =有唯一解.A .B . A O ≠C .D . A 的行向量线性相关 正确答案:A9. 若条件( )成立,则随机事件,互为对立事件.A . ∅=AB 或A B U += B . 0)(=AB P 或()1P A B +=C . ∅=AB 且A B U +=D . 0)(=AB P 且1)(=+B A P正确答案:C10.对来自正态总体(未知)的一个样本,记∑==3131i i X X ,则下列各式中( )不是统计量.A . XB .∑=31i iXC . ∑=-312)(31i i X μ D . ∑=-312)(31i i X X正确答案: C二、填空题1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-= .应该填写:-182.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称λ为A 的特征值.应该填写:AX X λ=3.设随机变量012~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = .应该填写:0.34.设为随机变量,已知3)(=X D ,此时.应该填写:275.设θˆ是未知参数θ的一个无偏估计量,则有 .应该填写:ˆ()E θθ=6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-= . 应该填写:87.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得 ,则称X 为A 相应于特征值λ的特征向量. 应该填写:AX X λ=8.若5.0)(,8.0)(==B A P A P ,则=)(AB P . 应该填写:0.39.如果随机变量的期望2)(=X E ,9)(2=X E ,那么=)2(X D .应该填写:2010.不含未知参数的样本函数称为 . 应该填写:统计量三、计算题1.设矩阵,且有,求X .解:利用初等行变换得即由矩阵乘法和转置运算得2.求线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=++--=+-+-=-+-2284212342272134321432143214321x x x x x x x x x x x x x x x x的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131 方程组的一般解为: (其中为自由未知量)令=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为: ⎪⎩⎪⎨⎧-===4342415xx x x x x (其中为自由未知量)令=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为:10kX X X +=(其中k 为任意常数)3.设)4,3(~N X ,试求: (1))95(<<X P ;(2))7(>X P . (已知,8413.0)1(=Φ9987.0)3(,9772.0)2(=Φ=Φ)解:(1))3231()23923235()95(<-<=-<-<-=<<X P X P X P 1574.08413.09987.0)1()3(=-=Φ-Φ=(2))23723()7(->-=>X P X P )223(1)223(≤--=>-=X P X P 0228.09772.01)2(1=-=Φ-=4.据资料分析,某厂生产的一批砖,其抗断强度)21.1,5.32(~N X ,今从这批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.12,问这批砖的抗断强度是否合格().解: 零假设.由于已知,故选取样本函数已知,经计算得,由已知条件,故拒绝零假设,即这批砖的抗断强度不合格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 ] ‘ 的秩和向量组的一个极大线性无关组.
x 1 一3 x z +2 x 3 =0
求出一个基础解系及通解. 得 分 评卷人
3 . “ 次 一{
2 x , -5 x z +3 x 3 =0 , a 为何值时方程组有非零解?在有非零解时,
3 x , 一8 x z +a x 3 =0
四、 计算题( 每小题 1 0分, 共3 0分)
( 1 ) P< 2 <Y <5 ) ;
( 2 ) 求使 P< Y }c ) =0 . 0 2 2 7的 。 值. ( 已知 c } ( 0 . 5 ) =0 . 6 9 1 5 , x( 1 ) =0 . 8 4 1 3 , x( 2 ) =0 . 9 7 7 3 )
0 0 0 2
已知 4阶矩阵 A=
3 0
, 则{ A} 今(
0 0
A . 2 4
1 3 . 一 2 4
C.0
U . 1 2
’,口“ z + " + a . } , 若有 O a , 十O a z - } - . . . 0 a . = 0 , 则向量组 a } , a z ・, 对 于向量组 a ' ,a
中央广播电视大学 2001—2002 学年度第一 学期“开放本科”期末考试土木专业工程数 学(本)试题
2002 年 1 月
一、单项选择题(每小题 3 分,本题共 21 分)
4.设 A,B 均为 n 阶方阵,若 AB=0,是一定有( A. A. A=0 或 B=0 B. B. 秩(A)=0 或秩(B)=0 C. C. 秩(A)=n 或秩(B)=n
阶矩阵.
3 . 若事件 A, B互斥, 且已知 P ( A) =0 . 5 , P ( B ) =0 . 3 则P ( A- } B ) = 4 .已知随机变量 X服从两点分布 P( X=1 ) =p , P< X=0 ) =1 一P , 则 E( 2 X十1 ) =
5 . 设 样 本X 的 分 布 依 赖 于 一 个 参数。 , 咨 是 基于 样本x x z , . . . , x , 的 一 个 统 计量 , 若 E c e ) 一 。 , 则 称e 是。 的
C .至少一件不合格 D . 两件都合格
6 .对于随机变量 X, 函数 F ( x ) =P< X簇x ) 称为 X的( ) .
A . 分布函数 C . 概率分布
B . 概率 D . 概率密布
) .
7 .设 X是随机变量, D( X) -a Z , 设 Y=u X- i - b , 则 D< Y) =< A.“ 扩- { - b B .矿尹
C . u a Z D . a 2 尹 十b


评卷人
பைடு நூலகம்
二、 填空题( 每小题 3分, 共1 5分)
1 . 设 A是 4 阶方阵, 若{ A} =2 , 则{ 2 A - ' } =_

2 . 若A是, i X r n 矩阵, B是, X : 矩阵, 则A ' B是_
1 . 2 0 件产品中有 3件次品, 进行抽样检验, ( 1 ) 从中任取 2 件, 求其中至少有一件次品的概率; ( 2 ) 不放回地抽取两次, 求第二次才取到次品的概率. 2 . 设随机变量Y服从正态分布Y ^ - N( 3 , 2 Z ) , 求
7 4 6
D . 解不能确定 ) , 则 A是可逆矩阵. } 3 . 存在矩阵B, 使AB =I D . 秩( A ) Gn
5 . 从一批产品中随机抽取两件, 用 A, B两个事件分别表示两件产品是合格品, 则兀十百
表示( ) .
A . 两件都不合格
B .至少一件合格
1
) 。
D. D. 秩(A)<n 或秩(B)<n
三、计算题(每小题 10 分,共 30 分)
2
一、单项选择题(每小题 3 分,本题共 21 分) 1. 1. B 2. 2. D 3. 3. B 4. 4. D 5. 5. C 6. 6. A 7. 7. C 二、填空题(每小题 3 分,共 15 分) 1. 1. 相等 2. 2. t,s(答对一个给 2 分) 3. 3. P(A)P(B) 4. 4. p(1-p)
3
5. 5. 无偏估计 三、计算题(每小题 10 分,共 30 分)
4
试卷代号: 1 0 8 0
座位号 巨 二 口
中 央广播电视大学2 0 0 2 -2 0 0 3 学年度 第一学期“ 开 放本 科” 期末考试
土木工程专业工程数学试题
2 0 0 3年 I月 题 分 号 数
四 五




评卷人
一、 单项选择题 ( 每小题 3分, 本题共 2 1分)
得 分 评卷人 三、 计算题( 每小题 1 0分 , 共3 0分)
1 .已知 X=AX+B, 其中
门 口 卜 陇‘ |防L 一 一
一 1
「 l es eses l eewe es、 es eses J 「 一
厂. 1月 11‘ esl esesesL
X. 求

一 - A
1 1 1
0 3
十 」
一 -
一 3
7 4 7
2 .求向量组 a l =[ 1 a s =[ 1
0 0 2 0
4 ] ' , a z =[ 0 1 2 3 ] ' , a 3 =[ 1 2 3 4 ] ' , a a =[ 1 2 3 0 ]
是(
) 的向量组.
A . 全为零向量
C 。线性无关
B . 线性相关
D .任意向量
3 , 若线性方程组AX=6 有唯一解, 则方程组 A X=O t
A. 有唯一解 B .有非零解

C , 无解 4 . 设矩阵 A是、阶方阵, 若( A . } A} “。 C . 矩阵A没有零行
相关文档
最新文档