3-3 测试系统的特性-动态特性2 02

合集下载

3 测试系统的基本特性 (动态识别、不失真)

3    测试系统的基本特性 (动态识别、不失真)

ξ
ζ = ζ = ζ = ζ = ζ = ζ =
0 .0 5 0 .1 0 0 .1 5 0 .2 5 0 .5 0 1 .0 0
3
η = ω /ω
n
位移共 振频率
ω r = ω n 1 − 2ζ
2
精确求法:
A(ω r ) 1 = 2 A(0) 2ζ 1 − 2ζ
ωn ζ
测 试 系 统 动 态 特 性 的 识 别
利用半功率法求
ζ
ω 2-ω1 ζ= 2ω n
适合阻尼比较小。
测 (二)阶跃响应法 试 系 统 阶跃响应法是以阶跃信号作为测试 动 态 系统的输入,通过对系统输出响应的测 特 试,从中计算出系统的动态特性参数。 性 的 这种方法实质上是一种瞬态响应法。即 识 别 通过研究瞬态阶段输出与输入之间的关
系找到系统的动态特性参数。
u (t )
t
y u (t ) = 1 − e
动 态 传 递 特 性 的 时 域 描 述
结论:一阶系统在单位阶跃激励下稳态输出 的理论误差为零,并且,进入稳态的时间
t→∞。但是,当t =4τ时,y(4τ)=0.982;误
差小于2%;当t =5τ时,y(5τ)=0.993,误差小 于1%。所以对于一阶系统来说,时间常数τ越小 越好。
3.3.3 测试系统动态特性参数的识别
频率响应法是以一组频率可调的标准正弦信号作为 系统的输入,通过对系统输出幅值和相位的测试,获得 系统的动态特性参数。
测 试 系 统 动 态 特 性 的 识 别
系统特性识别试验原理框图
测 试 系 统 动 态 特 性 的 识 别
一阶系统
A(ω ) =
A( ϖ) 1.0 0.8 0.6 0.4 0.2 0 0.707

测试系统的动态特性

测试系统的动态特性

y(t)=A0x(t)
y(t)=A0x(t- t0)
时域条件
y(t)=A0x(t-t0) Y(ω)=A0e-jωt0X(ω)
不失真测试系统条件的幅频特性和相频特性应分别满足 : A(ω)=A0=常数 φ(ω)=-t0.ω
做傅立叶变换
频域定义
A(ω)φ(ω) ω
一阶测试系统的典型输入下的响应,灵敏度为1 在单位阶跃输入下的响应 单位阶跃输入的定义为
一阶测试系统的典型输入下的响应,灵敏度为1 在单位正弦输入下的响应 设系统的输入为
THANKS
感谢观看
(四) 测试系统动态特性的测定 常用的动态标定方法有阶跃响应法和频率响应法。 阶跃响应法是以阶跃信号作为测试系统的输入,通过对系统输出响应的测试,从中计算出系统的动态特性参数。这种方法实质上是一种瞬态响应法,即通过对输出响应的过渡过程来标定系统的动态特性。 1.一阶系统动态特性参数的求取
漂移:是指测试系统在输入不变的条件下,输出随时间而变化的趋势 。
第3章、测试系统特性
测试系统的动态特性是指输入量随时间变化时,其输出随输入而变化的关系。
x(t)
h(t)
y(t)
输入量
系统特性
输出
(三)测试系统的动态特性
无论复杂度如何,把测量装置作为一个系统来看待。问题简化为处理输入量x(t)、系统传输特性h(t)和输出y(t)三者之间的关系。
相对真值:是指计量器具按精度不同分为若干等级,上一等级的指示值即为下一等级的指示值,次真值成为相对真值。
在一定条件下被测物理量客观存在的实际值,称为真值。真值是一个理想的概念。在实际测量时,由于实验方法和实验设备的不完善、周围环境的影响以及人们认识能力所限等因素,使得测量值与其真值之间不可避免地存在着差异。

第二章 测试系统的基本特性-动态特性

第二章 测试系统的基本特性-动态特性

练习
0
( t ) 0 . 5 cos 10 t 0 . 2 cos( 100 t 45 ) 求周期信号 x
通过传递函数为
1 H (s ) 0 .005 s 1
的装置后得到的稳态响应?
一阶系统在典型输入下的响应
• 脉冲响应
x(t) (t) 其拉氏变换:X(s) 1 1 t / 一阶系统的响应: y(t) e
2 2 4 2
a r c t a n ( ) a r c t a5 . 2 3 1 0 ) 9 1 9 5 0
4 o
练习
一温度传感器为一阶系统,其时 间常数τ=0.001s,求当测量频率 f=100Hz信号时的幅值误差和相位误差。
1
1 () 1
2
≤0.05
1 ( ) ≤ 2 1 0 . 1 0 8 0 . 9 5
0 .00052
1 1 1 1 1 1 1 0 . 9 8 6 8 1 . 3 2 % ( )1 ( 2 f )1 ( 2 5 0 5 . 2 3 1 0 )1
n
n 2
1 4
22 2 n n
1
2
2 n ( ) arctg 2 1 n
二阶系统的幅相频特性
1) 、ω/ω A(ω) 近似水平直线, φ(ω) =-180º 4)、当 ω=ω 时, A(ω)=1/(2ξ) , φ(ω) =-90º , 。 n>2 n, 幅值剧增,共振。
m m 1
频率响应函数是传递函数的特例。
Y ( j ) X ( j ) H ( j )
传递函数H(s)是在复数域中描述和考察系统的 特性;频率响应函数H(ω)是在频域中描述和 考察系统特性。

3.测试系统的动态特性

3.测试系统的动态特性

2
e
n t
1 2
④ >1时,系统退化为两个一阶系统的串联,此时输 出无振荡,但需较长时间才能到达稳态。 ⑤ =0.6~0.8时,系统可以以较短时间(大约(5~7)/n )进入偏离稳态不到2% ~5%的范围内,且系统超调量 小于 10%。因此,二阶测试系统的阻尼比通常选择为 : =0.6~0.8。 = 0.707为最佳阻尼比。
20 L()(dB) 0
-20dB/dec
一 阶 系 统
()()
-20 -40 0.11
0
-45 -90º
0.2 1
1/
10 1

1 0.1
1/
10
1

一阶系统的时间常数越小越好。 不失真测试的频率上限fmax是由 A( ) A0 1 100% 1 100% 2 A0 误差要求决定的。 1 2fmax
2 1.8 1.6 1.4 1.2
y(t) 1
=0.2 =0.4 =0.6 =0.8
0.8 0.6 0.4 0.2 0 tp 5 10 15 t
欠阻尼二阶系统单位阶跃响应曲线
=1
y( t ) 1
e n t 1 2
sin( d t )
0 1
② 二阶系统(0< ξ <1)瞬态输出分量为振幅等于
k 0

系统的响应y(t)即为这些脉冲依次作用的结果。
若系统脉冲响应函数h(t)已知,则在上述一系列脉冲作 用下,系统在 t 时刻的响应可表示为:
y( t ) x( k ) h( t k ) x ( k ) h( t k )
k 0 k 0

第2章 测试系统的动态特性

第2章 测试系统的动态特性
(4)传递函数与系统的结构无关,不同的测试系统可 能具有相同的传递函数。
(5)H(s)的分母由系统的结构决定,分子则与输入点 的位置等外界因素有关。按n 的大小定义系统的阶次。
7
§2.3 测试系统的动态特性
传递函数:直观的反映了测试系统对不同频率成分 输入信号的扭曲情况。
A

§2.3 测试系统的动态特性
§2.3 测试系统的动态特性
案例:镗杆固有频率测量
§2.3 测试系统的动态特性
实验:悬臂梁固有频率测量
§2.3 测试系统的动态特性
案例:桥梁固频测量
原理:在桥中设置一三角形障碍物,利用汽车碍时的冲击 对桥梁进行激励,再通过应变片测量桥梁动态变形,得到桥 梁固有频率。
§2.3 测试系统的动态特性 5) 阶跃响应函数
第二章第二章测试系统的特性测试系统的特性机械工程测试技术基础机械工程测试技术基础第二章第二章测试系统的特性测试系统的特性机械工程测试技术基础机械工程测试技术基础23测试系统的动态特性输入系统特性输出无论复杂度如何把测量装置作为一个系统来看待无论复杂度如何把测量装置作为一个系统来看待
第二章 测试系统的特性
则线性系统的频响函数为:
H(
j)

Y () X ()

bm ( an (
j)m j)n
bm1( j)m1 b1( j) b0 an1( j)n1 a1( j) a0
以 s j 代入(1)式,也可以得到频响函 数,说明频率响应函数是传递函数的特例。
Y () X ()H ()
物理意义是频率响应函数是在正弦信号的激励下, 测量装置达到稳态后输出和输入之间的关系。
H(j)一般为复数,写成实部和虚部的形式:

第三章测试系统特性3-动态特性

第三章测试系统特性3-动态特性

2)传递函数
3)频率响应函数 4)阶跃响应函数等
航海学院
传感器与测试技术
第3章 测试系统的特性
1、动态特性的数学描述
1)线性微分方程 微分方程是最基本的数学模型,求解微分方程, 就可得到系统的动态特性。
对于一个复杂的测试系统和复杂的测试信号,
求解微分方程比较困难,甚至成为不可能。为此, 根据数学理论,不求解微分方程,而应用拉普拉斯 变换求出传递函数、频率响应函数等来描述动态特 性。
dy(t ) y (t ) Sx(t ) dt
取S=1
1 H ( s) s 1
H ( j ) 1 j 1
A( )
1 1 ( )
2
() arctg( )
航海学院
传感器与测试技术
第3章 测试系统的特性
幅 频 和 相 频 曲 线
伯 德 图
H ( j) Y ( j) / X ( j) 或 H () Y () / X ()
当系统的初始条件为零时,对微分方程进行傅 立叶变换,可得频率响应函数为
Y ( j ) bm ( j ) m bm1 ( j ) m1 b1 ( j ) b0 H ( j ) X ( j ) an ( j ) n an 1 ( j ) n 1 a1 ( j ) a0
频率响应特性
模A()反映了线性时不变系统在正弦信号激励 下,其稳态输出与输入的幅值比随频率的变化, 称为系统的幅频特性; 幅角()反映了稳态输出与输入的相位差随频 率的变化,称为系统的相频特性。
航海学院
传感器与测试技术
第3章 测试系统的特性
频率响应特性的图形描述: 直观地反映了测试系统对不同频率成分输入信号 的扭曲情况——输出与输入的差异。

第第三章 测试系统的基本特性

第第三章 测试系统的基本特性

第三章 测试系统的基本特性
线性 y
线性 y
非线性y
x
x
x
不失真
在 x(t)基本不随时间变化的静态测量中,测试系统的线性关系
总是希望的,但不是必需的,因为静态非线性校正较容易。在 动态测试中,则力求测试系统是线性系统。一是因为目前对线 性系统能够做比较完善的数学处理与分析,二是因为动态测试 中的非线性校正非常困难。
当测试装置的输入信号有一增量△x,引起输出信号发 生相应变化△y时,定义 S=△y/△x
y
△y △x
x
第三章 测试系统的基本特性
★ 对于理想的定常线性系统 S y y b0
x x a0
★ 灵敏度的量纲取决于输入输出量的单位。当二者相 同时,常用“放大倍数”或“增益”代表灵敏度。
★ 鉴别力阈:又称为死区,即对器具的 响应而言,被测量的最小变化值。
第三章 测试系统的基本特性
二、线性系统及其主要性质 在实际测试工作中,把测试系统在一定条件下,看 成为一个线性系统,具有重要的现实意义。 如果测试装置的输入量x(t)和输出量y(t)之间的关系 可用线性常微分方程来描述,即:
d an bm
n y(t) dt n d m x(t)
dt m
an1
d
a0
这是理想状态下定常线性系统输入输出关系,即单 调的线性比例关系。然而,实际的测量装置并不是理 想的线性系统,定度曲线不是直线。通常是采用“最小 二乘法”拟合的直线来确定线性关系。用实验方法,确 定出定度曲线,由定度曲线的特征指标,即可描述测 量系统的静态特性。
第三章 测试系统的基本特性
静态特性主要有线性度、灵敏度、回程误差三项。
★ 分辨力:即能够肯定区分的指示器示值 的最邻近值。一般规定: 数字装置:最后一位变化一个字的大小 模拟装置:指示标尺分度值的一半。

测试系统动态特性

测试系统动态特性

高效数据处理
采用高效的数据处理算法和架构,确保测试数据的准确性和实时性。
提高测试系统的稳定性
冗余设计
关键部件采用冗余设计,提高系统的可靠性和稳定性。
自适应调整
根据测试过程中的实际情况,自动调整系统的参数和性能, 确保测试结果的准确性。
故障诊断与恢复
具备故障诊断和恢复功能,能够在系统出现故障时快速定位 并恢复。
降低测试系统的噪声
噪声抑制技术
采用先进的噪声抑制技术,降低测试系统内部和外部噪声的影响。
滤波算法
应用合适的滤波算法对测试数据进行处理,去除噪声干扰,提高测 试结果的准确性。
环境控制
对测试环境进行严格的控制,减少环境因素对测试结果的干扰。
06 结论
研究成果总结
测试系统的动态特性对于确 保其稳定性和可靠性至关重
激振试验的优点在于可以人为控制激励信号的频率、幅值和波形等参数, 以便于对系统的不同动态特性进深入研究。
激振试验的局限性在于它只能模拟特定条件下的动态特性,无法完全模拟 实际运行中的复杂情况。
振动台试验
01
振动台试验是一种利用振动台 模拟实际运行中的振动环境, 对测试对象进行振动试验的方 法。
02
测试系统动态特性
目 录
• 引言 • 测试系统动态特性概述 • 测试系统动态特性分析方法 • 测试系统动态特性测试技术 • 测试系统动态特性优化与改进 • 结论
01 引言
目的和背景
确定测试系统的性能指标
通过对测试系统的动态特性进行评估,可以了解测试系统的性能指标,如响应时间、稳定性、可 靠性等。
动态特性对于故障诊断和预测具有重要意义
通过对测试系统的动态特性进行分析,可以及时发现系统潜在的问题和故障,并对其进行诊断和预测。 这对于预防故障发生、减少系统维护成本和提高系统可靠性具有重要意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档