计算最短路径的Dijkstra算法的编程实现
Dijkstra算法原理详细讲解

Dijkstra算法原理详细讲解
Dijkstra算法是图论中的一种贪心算法,用于求解最短路径问题。
该算法的贪心策略是:每次选择当前距离起点最近的节点作为中间节点,并更新起点到其它节点的距离。
通过不断选择距离起点最近的节点,并逐步更新起点到各个节点的距离,最终得到起点到终点的最短路径。
Dijkstra算法的具体实现包括以下几个步骤:
1. 初始化:将起点到各个节点的距离记为无穷大或者一个较大的值,将起点到自己的距离记为0。
2. 选择当前距离起点最近的节点作为中间节点。
这个过程可以通过维护一个距离起点最近的节点集合来实现,初始时集合中只包含起点。
3. 更新起点到与中间节点相邻的节点的距离,即对于每个与中间节点相邻的节点,如果从起点到中间节点的距离加上中间节点到该节点的距离小于起点到该节点的距离,则更新起点到该节点的距离为从起点到中间节点的距离加上中间节点到该节点的距离。
4. 重复步骤2和步骤3,直到起点到终点的距离不再更新。
5. 最终得到起点到终点的最短路径。
Dijkstra算法的时间复杂度为O(N^2),其中N为节点的数目。
如果使用优先队列来维护距离起点最近的节点集合,则算法的时间复杂度可以降为O(NlogN),但是实际应用中优先队列的实现可能较为复杂。
Dijkstra算法可以用于有向图和无向图,但是不能处理带有负权边的图。
如果图中存在负权边,则可以使用Bellman-Ford算法来求解最短路径。
Dijkstra最短路径算法的实现及优化

Dijkstra最短路径算法的实现及优化 施培港 厦门信息港建设发展股份有限公司 厦门市槟榔路1号联谊广场五层 361004 Email:spg@xminfoport.com 摘要:最短路径算法种类繁多,比较有名的算法包括:Dijkstra算法、Ford算法、Floyd算法、Moore算法、A*算法、K值算法,而即使同一种算法也有多种不同的实现方式。
本文就Dijkstra算法的两种实现方式做一定的分析,并采用一种新的实现方法达到对算法优化的目的。
关键字:Dijkstra算法 最短路径 网络分析 地理信息系统(GIS) 1. 何谓最短路径 所谓最短路径就是网络中两点之间距离最短的路径,这里讲的距离可以是实际的距离,也可以引申为其它的度量,如时间、运费、流量等。
因此,从广义上讲,最短路径算法就是指从网络中找出两个点之间最小阻抗路径的算法。
2. Dijkstra算法介绍 Dijkstra算法本身是一种贪婪算法,它通过分步的方法来求最短路径。
首先,初始产生源点到它自身的路径,其长度为零,然后在贪婪算法的每一步中,产生一个到达新的目的顶点的最短路径。
其算法描述如下(算法中以有向图表示网络结构): 对于有向图G =(V,E),图中有n个顶点,有e条弧,其中V为顶点的集合,E为弧的集合,求源点VS到终点VT的最短路径。
(1) 用带权的邻接矩阵L来表示有向图,L(X,Y)表示弧<X,Y>的权值,若弧<X,Y>不存在,则设L(X,Y)=∞;用D(X)表示源点VS到顶点X的距离,除源点VS的值为0外,其余各点设为∞;用S表示已找到的从源点VS出发的最短路径的顶点的集合,其初始状态为空集;用V-S表示未找到最短路径的顶点的集合; (2) 选择源点VS做标记,令Y = VS,S = S ∪ {VS}; (3) 对于V-S中各顶点, 若D(X) > D(Y) + L(Y,X),则修改D(X)为 D(X) = D(Y) + L(Y,X) 其中Y是己确定作标记的点; (4) 选择Vj,使得D(j) = min{ D(i) | Vi ∈ V-S } 若D(j)为∞,则说明VS到V-S中各顶点都没有通路,算法终止;否则,Vj就是当前求得的一条从源点VS出发的最短路径的终点,对Vj做标记,令Y = Vj,并把Vj放入集合S中,即令S = S ∪ {Vj}; (5) 如果Y等于VT,则说明已经找到从VS到VT的最短路径,算法终止;否则,转到3继续执行。
dijkstra算法代码实现

dijkstra算法代码实现Dijkstra算法是用来求解单源最短路径问题的一种贪心算法。
下面是Dijkstra算法的代码实现:```import sys# 定义一个类来保存图的节点和边的信息class Node:def __init__(self, name): = nameself.visited = Falseself.distance = sys.maxsizeself.adjacent_nodes = []self.previous_node = None# Dijkstra算法的实现函数def dijkstra(start_node):start_node.distance = 0unvisited_nodes = [start_node]while unvisited_nodes:current_node = unvisited_nodes[0]for neighbor in current_node.adjacent_nodes:if not neighbor.visited:new_distance = current_node.distance +neighbor.distanceif new_distance < neighbor.distance:neighbor.distance = new_distanceneighbor.previous_node = current_nodecurrent_node.visited = Trueunvisited_nodes.remove(current_node)unvisited_nodes.sort(key=lambda node: node.distance)# 测试nodeA = Node("A")nodeB = Node("B")nodeC = Node("C")nodeD = Node("D")nodeE = Node("E")nodeF = Node("F")nodeA.adjacent_nodes = [(nodeB, 10), (nodeC, 15)]nodeB.adjacent_nodes = [(nodeD, 12), (nodeF, 15)]nodeC.adjacent_nodes = [(nodeE, 10)]nodeD.adjacent_nodes = [(nodeE, 2), (nodeF, 1)]nodeF.adjacent_nodes = [(nodeE, 5)]dijkstra(nodeA)print(nodeE.distance)```在上面的代码中,我们定义了一个`Node`类用来保存节点的信息,包括节点的名称、是否已访问、距离起始节点的距离、相邻节点和前置节点等。
c语言最短路径的迪杰斯特拉算法

c语言最短路径的迪杰斯特拉算法Dijkstra的算法是一种用于查找图中两个节点之间最短路径的算法。
这个算法可以应用于有向图和无向图,但是它假设所有的边都有正权值,并且不包含负权值的边。
以下是一个简单的C语言实现:c复制代码#include<stdio.h>#define INF 99999#define V 5 // 顶点的数量void printSolution(int dist[]);void dijkstra(int graph[V][V], int src);int main() {int graph[V][V] = { { 0, 4, 0, 0, 0 }, { 4, 0, 8, 11, 7 },{ 0, 8, 0, 10, 4 },{ 0, 11, 10, 0, 2 },{ 0, 7, 4, 2, 0 } };dijkstra(graph, 0);return0;}void dijkstra(int graph[V][V], int src) { int dist[V];int i, j;for (i = 0; i < V; i++) {dist[i] = INF;}dist[src] = 0;for (i = 0; i < V - 1; i++) {int u = -1;for (j = 0; j < V; j++) {if (dist[j] > INF) continue;if (u == -1 || dist[j] < dist[u]) u = j;}if (u == -1) return;for (j = 0; j < V; j++) {if (graph[u][j] && dist[u] != INF && dist[u] + graph[u][j] < dist[j]) {dist[j] = dist[u] + graph[u][j];}}}printSolution(dist);}void printSolution(int dist[]) {printf("Vertex Distance from Source\n"); for (int i = 0; i < V; i++) {printf("%d \t\t %d\n", i, dist[i]);}}这个代码实现了一个基本的Dijkstra算法。
单源最短路径dijkstra算法c语言

单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
最短路径算法dijkstra算法python

最短路径算法dijkstra算法python Dijkstra算法是一种用于求解图中两点之间最短路径的经典算法。
该算法由荷兰计算机科学家Edsger Dijkstra于1956年提出,至今仍然被广泛运用于各个领域,例如路由算法、网络优化、地图导航等。
本文将以Python 语言为基础,详细介绍Dijkstra算法的原理和实现过程。
一、Dijkstra算法的原理Dijkstra算法的核心思想是利用贪心策略逐步构建最短路径树。
该算法首先将起始节点的距离设置为0,将其他节点的距离设置为无穷大。
然后在每一轮选择距离起始节点最近的节点,并更新其周围节点的距离。
通过不断选择距离最近的节点,并更新距离,直到找到终点节点或所有节点都被访问完毕,即可得到起始节点到终点节点的最短路径。
二、算法的实现步骤下面将详细介绍Dijkstra算法的实现步骤。
1. 创建一个空的顶点集合visited和距离集合distance,并初始化起始节点的距离为0,其他节点的距离为无穷大。
2. 选择起始节点,并将其加入visited集合。
3. 遍历起始节点的邻居节点,计算起始节点到每个邻居节点的距离,并更新distance集合。
4. 在distance集合中选择距离起始节点最短的节点,将其加入visited 集合。
5. 重复步骤3和步骤4,直到终点节点被加入visited集合或所有节点都被访问完毕。
6. 根据visited集合和distance集合,可以得到起始节点到终点节点的最短路径。
三、Dijkstra算法的Python实现下面将使用Python语言实现Dijkstra算法,并解决一个具体的例子。
首先,创建一个图的类,包含节点和边的信息,并定义一些基本的方法。
其中,节点信息包括标识符、邻居节点和距离,边的信息包括起始节点、终点节点和权重。
pythonclass Graph:def __init__(self):self.nodes = []self.edges = []def add_node(self, node):self.nodes.append(node)def add_edge(self, start, end, weight):edge = (start, end, weight)self.edges.append(edge)接下来,实现Dijkstra算法的主要函数,用于求解最短路径。
最短路径问题dijkstra求解过程

Dijkstra算法是一种用于求解最短路径问题的常用算法,适用于带权有向图。
以下是Dijkstra 算法的求解过程:
初始化:将起始节点标记为当前节点,并将起始节点到所有其他节点的距离初始化为无穷大(表示暂时未知)。
将起始节点到自身的距离设置为0,表示起始节点到自身的最短路径长度为0。
遍历所有节点:
选择当前节点的邻接节点中,距离最小且尚未被访问的节点。
更新该邻接节点的最短路径长度。
如果经过当前节点到达该邻接节点的路径比当前记录的最短路径更短,则更新最短路径长度。
继续遍历未访问的节点,直到所有节点都被访问。
重复步骤3,直到所有节点都被访问或者没有可达节点。
最终得到起始节点到其他节点的最短路径长度。
在Dijkstra算法的求解过程中,使用一个距离表(distances)来记录起始节点到各个节点的当前最短路径长度,一个访问表(visited)来标记节点是否已被访问。
同时,使用优先队列(例如最小堆)来选取下一个距离最小且尚未被访问的节点。
具体的实现可以使用迭代或递归的方式,根据实际情况来选择合适的数据结构和算法实现。
在实际编程中,可能还需要考虑处理边的权重、处理节点的邻接关系和路径记录等细节。
Dijkstra算法要求图中的边权重非负,且无法处理负权边的情况。
对于含有负权边的图,可以考虑使用其他算法,如Bellman-Ford算法或SPFA(Shortest Path Faster Algorithm)等。
最短路径——dijkstra算法代码(c语言)

最短路径——dijkstra算法代码(c语⾔)最短路径问题看了王道的视频,感觉云⾥雾⾥的,所以写这个博客来加深理解。
(希望能在12点以前写完)()⼀、总体思想1.初始化三个辅助数组s[],dist[],path[]s[]:这个数组⽤来标记结点的访问与否,如果该结点被访问,则为1,如果该结点还没有访问,则为0;dist[]:这个数组⽤来记录当前从v到各个顶点的最短路径长度,算法的核⼼思想就是通过不断修改这个表实现; path[]:这个数组⽤来存放最短路径;2.遍历图,修改上⾯的各项数组,每次只找最短路径,直到遍历结束⼆、代码实现1void dijkstra(Graph G, int v)2 {3int s[G.vexnum];4int dist[G.vexnum];5int path[G.vexnum];6for(int i = 0; i < G.vexnum; i++)7 {8 s[i] = 0;9 dist[i] = G.edge[v][i];10if(G.edge[v][i] == max || G.edge[v][i] == 0)11 {12 path[i] = -1;13 }14else15 {16 path[i] = v;17 }18 s[v] = 1;19 }2021for(int i = 0; i < G.vexnum; i++)22 {23int min = max;24int u;25for(int j = 0; j < G.vexnum; j++)26 {27if(s[j] != 1 && dist[j] < min)28 {29 min = dist[j];30 u = j;31 }32 }33 s[u] = 1;34for(int j = 0; j < G.vexnum; j++)35 {36if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])37 {38 dist[j] = dist[u] + G.edge[u][j];39 path[j] = u;40 }41 }42 }43 }三、代码解释先⾃⼰定义⼀个⽆穷⼤的值max#define max infdijkstra算法传⼊的两个参为图Graph G;起点结点 int v;⾸先我们需要三个辅助数组1int s[G.vexnum];//记录结点时是否被访问过,访问过为1,没有访问过为02int dist[G.vexnum];//记录当前的从v结点开始到各个结点的最短路径长度3int path[G.vexnum];//记录最短路径,存放的是该结点的上⼀个为最短路径的前驱结点初始化三个数组1for(int i = 0; i < G.vexnum; i++)2 {3 s[i] = 0;//⽬前每个结点均未被访问过,设为04 dist[i] = G.edge[v][i];//dist[]数组记录每个从v结点开到其他i结点边的长度(权值)5if(G.edge[v][i] == max || G.edge[v][i] == 0)6 {7 path[i] = -1;8 }//如果v到i不存在路径或者i就是v结点时,将path[i]设为-1,意为⽬前v结点不存在路径到i9else10 {11 path[i] = v;12 }//反之,若v到i存在路径,则v就是i的前驱结点,将path[i] = v13 s[v] = 1;//从遍历起点v开始,即已经访问过顶点s[v]=114 }开始遍历数组并且每次修改辅助数组以记录⽬前的情况,直⾄遍历结束1for(int i = 0; i < G.vexnum; i++)2 {3int min = max;//声明⼀个min = max⽤来每次记录这次遍历找到的最短路径的长度(权值)4int u;//声明u来记录这次历找到的最短路径的结点5for(int j = 0; j < G.vexnum; j++)//开始遍历找⽬前的最短路径6 {7if(s[j] != 1 && dist[j] < min)8 {9 min = dist[j];10 u = j;11 }//找出v到结点j的最短路径,并且记录下最短路径的结点u = j12 }13 s[u] = 1;//找到结点u,即已访问过u,s[u] = 114for(int j = 0; j < G.vexnum; j++)//开始遍历修改辅助数组的值15 {16if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])17 {18 dist[j] = dist[u] + G.edge[u][j];19 path[j] = u;20 }//如果v→j的路径⽐v →u→j长,那么修改dist[j]的值为 dist[u] + G.edge[u][j],并且修改j的前驱结点为path[j] = u21 }22 }遍历结束后,数组dist[]就是存放了起点v开始到各个顶点的最短路径长度最短路径包含的结点就在path数组中例如我们得到如下的path[]数组1 path[0] = -1;//0到⾃⼰⽆前驱结点2 path[1] = 0;//1的前驱为结点0,0⽆前驱结点,即最短路径为0 →13 path[2] = 1;//2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →24 path[3] = 0;//3的前驱为结点0,0⽆前驱结点,即最短路径为0 →35 path[4] = 2;//4的前驱结为点2,2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →2 →4 dijkstra对于存在负权值的图不适⽤,明天再更新Floyd算法叭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算最短路径的Dijkstra算法的编程实现
实验环境: C++
为了进行网络最短路径路径分析,需将网络转换成有向图。
如果要计算最短路径,则权重设置为两个节点的实际距离,Dijkstra算法可以用于计算从有向图中任意一个节点到其他节点的最短路径。
算法描述:
1)用带权的邻接矩阵来表示带权的n个节点的有向图,road[i][j]表示弧< vertex i, vertex j>的权值,如果从vertex i到vertex j不连通,则road road[i][j]=无穷大=9999。
引进一个辅助向量Distance,每个Distance[i]表示从起始点到终点vertex i的最短路径长度。
设起始点为first,则Distance[i]= road[first][i]。
令S为已经找到的从起点出发的最短路径的终点的集合。
2)选择vertex j使得Distance[j]=Min{ Distance[i]| vertexi∈V-S},vertex j就是当前求得的一条从起始点出的的最短路径的终点的,令S=S∪{ vertex j}
3)修改从起始点到集合V-S中任意一个顶点vertex k的最短路径长度。
如果Distance[j]+ road[j][k]< Distance[k],则修改Distance[k]为:Distance[k]= Distance[j]+ road[j][k]。
4)重复2,3步骤操作共n-1次,由此求得从起始点出发到图上各个顶点的最短路径长度递增的序列。
算法复杂度为O(n2)。
程序代码如下:
#include <stdio.h>
#include "Dijkstra.h"
int main()
{
int Graph_list_search[max][max]={{0,3,2,5,9999,9999},
{9999,0,9999,2,9999,9999},
{9999,9999,0,1,9999,9999},
{9999,9999,9999,0,9999,5},
{9999,9999,5,3,0,1},
{9999,9999,9999,9999,9999,0}};
printf_edge(Graph_list_search);
Dijkstra(Graph_list_search,0,5);
return 0;
}
以上部分粘贴到记事本以Dijkstra.cpp保存
#define max 6
int find_minimum_route(int route[100],int visit[100],int *position,int vertex_number)
{
int i;
int tag=0;
int temp;
i=0;
temp=9999;
while(i<vertex_number)//route[i]!='\0'
{
if((temp>route[i])&&visit[i]==0)
{
temp=route[i];
*position=i;
tag=1;
}
i++;
}
if(tag=1)return temp;
else
{
*position=vertex_number;
return 9999;
}
}
void Dijkstra(int Graph_list_search[max][max],int first,int end){ int i;
int Graph_minimum_Distance[max];
int Graph_visit[max];
int Graph_minimum_road[max][max];
for(i=0;i<max;i++)
{
Graph_minimum_Distance[i]=Graph_list_search[first][i];
Graph_visit[i]=0;
for(int w=0;w<max;++w)
Graph_minimum_road[i][w]=0;//store the road
if(Graph_minimum_Distance[i]<9999){
Graph_minimum_road[i][first]=1;
Graph_minimum_road[i][i]=1;
}
}
int position;
int minimum_Distance;
Graph_minimum_Distance[first]=0;
Graph_visit[first]=1;
for(int h=1;h<max;h++){
minimum_Distance=find_minimum_route(Graph_minimum_Distance,Graph_visi t,&position,max);
Graph_visit[position]=1;
for(i=0;i<max;i++){
if(Graph_visit[i]==0){
if(Graph_minimum_Distance[i]>minimum_Distance+Graph_list_search[posit ion][i]){
Graph_minimum_Distance[i]=minimum_Distance+Graph_list_search[position ][i];
for(int j=0;j<max;j++)
Graph_minimum_road[i][j]=Graph_minimum_road[position][j]; Graph_minimum_road[i][i]=1;
}
}
}//while(i<max)
}
printf("The minimum road is(vertex%d->vertex%d):\n",first,end); for(i=0;i<max&&printf("->");i++){
if(Graph_minimum_road[end][i]==1)printf("vertex%d",i);
}
printf("\n");
}
void printf_edge(int Graph_list_search[max][max])
{
printf("The example edge is:\n");
for(int i=0;i<max;i++){
for(int j=0;j<max;j++)
printf("%d ",Graph_list_search[i][j]);
printf("\n");
}
}
以上部分粘贴到记事本以Dijkstra.h保存在同一文件夹
运行结果:。