隧道翼墙式洞门计算
八字墙翼墙(墙身)砼用量精确通用计算公式推导

八字墙翼墙(墙身)砼用量精确通用计算公式推导
八字墙翼墙(墙身)砼用量精确通用计算公式
推导
*注:因为常用平均面积法、切分法、棱台算法等计算法计算翼墙体积(砼用量),在长大翼墙计算过程中会随着长度增长误差也随着增长,若求精确故不可采用。
以下计算公式,均能精确到0.01m3左右。
一、墙身体积计算公式
如下图所示的涵洞翼墙
令翼墙的顶宽为K、墙背坡为B、填土坡为T、墙高为X、(注:高的一端为X高、低的一端为X低)、翼墙低端基础宽J、基础的厚度为 H, X变量从翼墙的低端变化到翼墙的高端(如图中从1米变化到3.82米),墙长与填土坡T相关,它随墙高增高而增长。
即:墙长=T(X高-X低)。
墙身体积计算公式推导如下:
将(2)式脱出积分公式整理得
二、墙身体积计算例
上图中K=0.46、B=3.75、T=1.5、X低=1、X高=3.82
三、基础体积计算公式
将 (4)式脱出积分公式整理得
四、基础体积计算例
上图中 T=1.5、J=1.18、H=0.6 、X=3.82-1=2.82。
隧道设计衬砌计算范例(结构力学方法)

1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
洞门计算

2.4隧道洞门型式方案比选洞门型式方案比选表2-2洞门型式方案的选择:线路洞门左侧洞门处也属于V级围岩,地势较陡,地质条件较差,纵向推力较大,综合比较决定采用冀墙式洞门。
线路右侧洞门处虽然处属于V级围岩,但其洞口周边地形比较平坦,方便施工,采用了削竹式洞门。
2.4.1洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:1、洞门仰坡坡脚至洞门墙背的水平距离不宜小于1.5m,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于 1.0m,洞门墙顶高出仰坡脚不小于0.5m。
2、洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定。
3、洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保证洞门的稳定。
基底埋入土质地基的深度不小于 1.0m,嵌入岩石地基的深度不小于0.5m;基底标高应在最大冻结线以下不小于0.25m。
基底埋置深度应大于墙边各种沟、槽基底的埋置深度。
4、松软地基上的基础,可采取加固基础措施。
洞门结构应满足抗震要求。
2.4.2 验算满足条件采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性。
验算时应符合表2-3和表2-4(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。
洞门墙设计参数表2-3洞门主要验算规定表2-42.4.3洞门结构设计计算计算参数如下:(1)边、仰坡坡度1:1.5;(2)仰坡坡脚ε=30°,tanε=0.58,tanα=0.1;(3)地层容重γ=17kN/m3;(4)地层计算摩擦角 =40°;(5) 基底摩擦系数0.4;(6) 基底控制应力[σ]=0.25Mpa2.4.3.1建筑材料的容重和容许应力洞门材料选用C25混凝土,容许压应力[σa]=0.5MPa,重度γ'=23KN/ m3。
第6章隧道结构计算

α— 轴向力偏心影响系数。 1 1.5 e0 h
抗拉控制检算
大偏心判断准则:
e0 0.2h
此时承载能力由抗拉强度控制:
KN 1.75Rlbh
6e0 1 h
式中: Rl — 混凝土的抗拉极限强度,
其它符号意义同前。
6.5 衬砌截面强度验算
6.4 隧道洞门计算
1.洞门墙墙身抗压承载能力计算(承载能力极限状态)
2.洞门墙墙身抗裂承载能力计算(正常使用极限状态)
6.4 隧道洞门计算
3.洞门墙地基承载能力计算
4.抗倾覆计算 5.抗滑动计算
6.5 衬砌截面强度验算
6.5.1 检算内容
(1)安全系数检算 (2)偏心检算
6.5.2 适用范围
铁路隧道拼装式衬砌、复合式衬砌 双线隧道整体式衬砌 公路隧道衬砌结构
6.5.3 安全系数检算
(1) 允许安全系数 混凝土和石砌结构的强度安全系数
圬工种类及 荷载组合
破坏原因
混凝土
主 附主 要 加要 荷 荷、 载载
石砌体 主 附主 要 加要 荷 荷、 载载钢筋ຫໍສະໝຸດ 凝土主附主要
加要
荷
荷、
载
载
(钢筋)混凝土或石砌
设围岩垂直压力大于 侧向压力, 则存在拱顶 脱离区,两侧 抗力区。
6.2 结构力学方法
6.2.3 隧道衬砌荷载分类
(1) 主动荷载 主要荷载:围岩压力、支护结构自重、回填土荷载、地下 静水压力及车辆活载等。 附加荷载:冻胀压力、地震力等。 (2) 被动荷载 被动荷载是指围岩的弹性抗力,计算有共同变形理论和局 部变形理论。
直刚法计算流程
隧道洞口类型及适用条件

一.隧道洞门类型及适用条件
1.洞口环框
当洞口石质坚硬稳定〔Ⅰ~Ⅱ级围墙〕,且地势陡峻无排水要求时,可仅修建洞口环框,以起到加固洞口和减少洞口雨后滴水的作用。
2.端墙式〔一字式〕洞门
端墙式洞门适用于地形开阔、石质较稳定〔Ⅱ~Ⅲ级围岩〕的地区,由端墙和洞门顶和排水沟组成。
端墙的作用是抵抗山体纵向推力及支持洞口正面上的仰坡,保持其稳定。
洞门顶排水沟用来将仰坡流下来的地表水聚集后排走。
3.翼墙式〔八字墙〕洞门
当洞门地质较差〔Ⅳ级及以上围岩〕,山体纵向推力较大时,可以在端墙式洞门的单侧或双侧设置翼墙。
翼墙在正面起到抵抗山体纵向推力,增加洞门的抗滑及抗倾覆能力的作用。
两侧面爱护路堑边坡,起挡土墙的作用。
翼墙顶面与仰坡的延长面相一致,其上设置水沟,将洞门顶水沟聚集的地表水引至路堑测沟内排走。
4.柱式洞门
当地势峻峭〔Ⅳ级围岩〕,仰坡有下滑的可能性,又受地质或地形条件的限制,不能设置翼墙时,可在端墙中设置2个〔或4个〕断面较大的柱墩,以增加端墙的稳定性。
5.台阶式洞门
当洞门位于傍山侧坡地区,洞门一侧边仰坡较高时,为了提高靠山侧仰坡起坡点,减少仰坡高度,将端墙顶部改为逐渐升高的台阶形式,
以适应地形的特点,减少洞门圬工及仰坡开挖数量,也能起到美化洞门的作用。
6斜交式洞门
当隧道洞口线路与地面等高线斜交时,为了缩短隧道长度,减少挖方数量,可采纳平行等高线与线性成斜交的洞口。
7.喇叭口式洞口
高速铁路隧道,为减缓高速列车的空气动力学效应,对单线隧道,一般设喇叭口洞口缓冲段,同时兼做隧道洞门。
端墙式洞门计算

3.1 . 洞门结构设计计算3.1 .1 计算参数计算参数如下:(1)边、仰坡坡度 1:0.5;(2)仰坡坡脚& =63.5°, tan& =2,a =6°;(3)地层容重丫 =22kN/m3;(4)地层计算摩擦角© =70 °;( 5) 基底摩擦系数 0.6;(6) 基底控制应力[(T ]=0.8Mpa3.1 .2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为 M10。
(2)容许压应力[(T a]=2.2MPa,重度丫 t=22KN/ m3。
3.1.3 洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=12m;其中基底埋入地基的深度为 1,0m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度 1.38m,洞门翼墙与仰坡间的的水沟深度为0.5m,洞门墙顶高出仰坡坡脚0.7m,洞口仰坡坡脚至洞门墙背的水平距离为1.5m,墙厚2.0m,设计仰坡为1:1,具体见图纸。
3.2. 洞门验算3.2.1 洞门土压力计算根据《公路隧道设计规范》(JTJ026-90),洞门土压力计算图示具体见图 3.2图3-4洞门土压力计算简图最危险滑裂面与垂直面之间的夹角: tan 2tan tan (1 tan 2)(tan tan )(tan tan )(1tan tan ) 2 tan (1 tan ) tan (1 tan tan )式中: 一一围岩计算摩擦插脚& ――洞门后仰坡坡脚;a ——洞门墙面倾角代入数值可得:2 I 2tanw = ta 门7° tan6tan63.5 ^(1 tan 70 )(tan70 tan63.5)(tan70 tan6)(1 tan6 tan63.5)tan63.5(1 tan 70) tan70(1 tan6 tan63.5)=0.266故:w=14.89°根据《公路隧道设计规范》(JTG —2004), 土压力为;1 2E 2 [H 2 h °(h h °)]b(tan tan )(1 tan tan )tan( )(1 tan tan )式中: E ――土压力(kN );h atan tantanw地层重度(kN/m3)入一一侧压力系数;3 -- 墙背土体破裂角;b ――洞门墙计算条带宽度(m ),取b=1m ;E -- 土压力计算模式不确定系数,可取E =0.6把数据代入各式,得:止匕89 tan6)(1 仙6^63.5)=0.0559tan(14.89 63.5 )(1 tan 14.89 tan63.5 )由三角关系可得:h 。
隧道洞门结构-明洞结构

较大,以抵抗山
体的侧向压力。
当基岩层完整,
坡面较陡,地下
水不大,采用重
力式内墙开挖量
较大时,可采用
钢筋混凝土锚杆
式内墙。
64
2.5.3 棚式明洞
3.棚室明洞的类型
(2)刚架式 ◆适用条件:当地形狭 窄,山坡较陡,基岩埋置 较深而上部地基稳定性差 时,为了使基础置于基岩 上且减小基础工程,可采 用刚架架式外墙,有时也 可采用长腿式明洞。
(1)因是在露天施工的,可以采用钢筋混凝土作拱圈。 外边墙体积大时,可以用素混凝土或石料。
(2)明洞顶上回填土是为了缓冲落石对衬砌的冲击而设 的,一般不应小于1.5m。在填土面上应留有不小于1:1.5 的流水坡。
(3)填土的上面及拱顶上方都要做一层粘土隔水层,以 防水渗入。
57
2.5.2 拱式明洞
5
2.4.1 隧道洞门的含义和作用
2.洞门的作用
(3)引离地表流水 地表流水往往汇集在洞口,如不予以排除,将会浸及线 路,妨碍行车安全。修建洞门,可以把流水引入侧沟,保证 了洞口的正常干燥状态。 (4)装饰洞口 洞口是隧道唯一的外露部分,是隧道正面的外观。修建 洞门也可以算是一种装饰。在城市附近的隧道,尤其应当配 合城市的美化,予以艺术处理。
《隧 道 工 程》
第 2 章 隧道主体建筑结构
第2讲
中南大学隧道与地下工程系
1
第 2 章 隧道主体建筑结构
2.1 隧道限界与净空 2.2 隧道衬砌断面设计 2.3 隧道洞身支护结构 2.4 隧道洞门结构 2.5 隧道明洞结构
2
2.4 隧道洞门结构
本节主要内容(重点): ➢隧道洞门的含义和作用 ➢隧道洞门的结构类型 ➢不同类型隧道洞门的结构特征
(整理)隧道设计衬砌计算范例(结构力学方法)

1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章洞门设计4.1洞门设计步骤《规范》关于洞口的一般规定1.洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定。
2.隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定。
3.洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并和路基排水系统综合考虑布置。
4.洞门设计应与自然环境相协调。
4.1.1确定洞门位置洞口位置的确定应符合下列要求1.洞口的边坡及仰坡必须保证稳定。
2.洞口位置应设于山坡稳定、地质条件较好处。
3.位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞。
4.跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选后确定。
5.漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析确定。
6.洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采取防范措施。
7.洞门宜与隧道轴线正交;地质条件较好;做好防护;设置明洞。
洞口地质条件洞口入口端位于山体斜坡下部,斜坡自然坡度约45°左右,隧道轴线与地形等高线在右洞为大角度相交,位置较好,围岩上部为覆盖层为碎石质,厚度为0.6m-1.7m,下部为砂质板岩,全风化岩石厚为0-2.0m强风化岩厚为0-6.4m,砂质板岩与变质砂岩中风化厚度为8.1-15.8m;为软岩,薄层状结构,岩体破碎,软岩互层,主要结构面为层面及节理裂隙面,结构面的不利组合对围岩有影响;地下水以基岩裂隙水为主,围岩为弱透水,可产生点滴状出水,局部可产生线状出水;围岩稳定性差。
4.1.2确定洞门类型洞门类型及适用条件洞门的形式很多,从构造形式、建筑材料以及相对位置等可以划分许多类型。
目前,我国公路隧道的洞门形式有: 端墙式洞门翼墙式洞门环框式洞门台阶式洞门柱式洞门遮光棚式洞门等。
端墙式洞门适用于岩质稳定的Ⅲ级以上围岩和地形开阔的地区,是最常使用的洞门型式翼墙式洞门适用于地质较差的Ⅳ级以下围岩,以及需要开挖路堑的地方。
翼墙式洞门由端墙及翼墙组成。
翼墙是为了增加端墙的稳定性,同时对路堑边坡也起支撑作用。
其顶面一般均设置水沟,将端墙背面排水沟汇集的地表水排至路堑边沟内环框式洞门当洞口岩层坚硬、整体性好(I级围岩)、节理不发育,路堑开挖后仰坡极为稳定,并且没有较大的排水要求时采用台阶式洞门当洞门傍山侧坡地区,洞门一侧边坡较高时,为减小仰坡高度及外露长度,可以将端墙顶部改为逐步升级的台阶形式,以适应地形的特点,减少仰坡土石方开挖量。
遮光棚式洞门当洞外需要设置遮光棚时,其入口通常外伸很远。
遮光构造物有开放式和封闭式之分,前者遮光板之间是透空的,后者则用透光材料将前者透空部分封闭。
但由于透光材料上面容易沾染尘垢油污,养护困难,所以很少使用后者。
形状上又有喇叭式与棚式之分洞门形式的选择按分类,隧道右线属长隧道,基本服从于路线走向,路线与地形等高线基本正交,洞门按受力结构设计。
洞门形式结合实际地形、地质情况选定。
根据洞门所处地段的地形地貌及工程地质条件,遵从“早进洞,晚出洞”的设计原则,并考虑洞门的实用、经济、美观等因素,因此本隧道使用翼墙式洞门(带挡土墙),使用翼墙式洞门。
4.1.3 洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:(1)洞门仰坡坡脚至洞门墙背的水平距离不宜小于1.5m,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于1.0m,洞门墙顶高出仰坡脚不小于0.5m。
(2)洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定。
(3)洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保证洞门的稳定。
基底埋入土质地基的深度不小于1.0m,嵌入岩石地基的深度不小于0.5m;基底标高应在最大冻结线以下不小于0.25m。
基底埋置深度应大于墙边各种沟、槽基底的埋置深度。
(4)松软地基上的基础,可采取加固基础措施。
洞门结构应满足抗震要求。
4.1.4 验算满足条件采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性。
验算时应符合表3.1和表3.2(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。
表4.1 洞门设计计算参数表4.2 洞门墙主要验算规定4.2龙洞翼墙式洞门结构设计计算4.2.1计算参数计算参数如下:(1)边、仰坡坡度1:1.25;(2)仰坡坡脚ε=39°,tanε=0.8,α=9°;(3)地层容重γ=18KN/m3;(4)地层计算摩擦角φ=45°;(5)基底摩擦系数0.4;(6)基底控制应力【σ】=0.3Mpa4.2.2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为M10。
(2)容许压应力【σa】=2.2Mpa,重度γt=22KN/ m3。
4.2.3洞门各部尺寸的拟定根据《公路隧道设计规范》(JTG-2004),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=13.35m;其中基底埋入地基的深度为1.59m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度1.8m,洞门翼墙与仰坡间的的水沟深度为0.5m,洞门墙顶高出仰坡坡脚1.05m,洞口仰坡坡脚至洞门墙背的水平距离为 2.5m,墙厚 2.48m,设计仰坡为1:1.25,具体见图纸。
4.3洞门验算4.3.1洞门土压力计算根据《公路隧道设计规范》(JTG-2004),洞门土压力计算图示具体见图3.2。
图3.2 洞门土压力计算简图最危险滑裂面与垂直面之间的夹角:tan w =式中:ϕ——围岩计算摩擦角; ε——洞门后仰坡坡脚; α——洞门墙面倾角 代入数值可得:tan 0.679934.21oωω===根据《公路隧道设计规范》(JTG —2004),土压力为;2001[()]2E H h h h b γλξ'=+-(tan tan )(1tan tan )tan()(1tan tan )ωααελωϕωε--=+-由三角关系得:tan tan a h ωα'=- tan 1tan tan o a h εαε=-式中: E ——土压力(KN ); γ——地层重度(KN/m 3) λ——侧压力系数; ω——墙背土体破裂角;b ——洞门墙计算条带宽度(m ),取b=1.0m ; ξ——土压力计算模式不确定系数,可取ξ=0.6。
把数据代入各式,得:(tan 34.21tan 9)(1tan 9tan 39)0.1928tan(34.2139)(1tan 34.21tan 39)o o o o o o o o λ--==+-2.5' 4.7937tan 34.21tan 9o oh ==-m2.5tan 39 2.32231tan 9tan 39oo o oh m ⨯==-洞门土压力E :221[(')]21180.1928[13.35 2.3223(4.7937 2.3223)] 1.00.62191.4783o o E H h h h b KNγλξ=+-=⨯⨯⨯+⨯-⨯⨯=kN E E x 7604.178)921.34cos(4783.191)cos(=︒-︒⨯=-⋅=αδkN E E y 6197.68)921.34sin(4783.191)sin(=︒-︒⨯=-⋅=αδ式中:δ——墙背摩擦角 22453033O o δϕ==⨯=4.3.2抗倾覆验算翼墙计算图示如图3.3所示,挡土墙在荷载作用下应绕O 点产生倾覆时应满足下式:001.6yM k M=≥∑∑式中: K 0——倾覆稳定系数,0 1.6k ≥;y M ∑——全部垂直力对墙趾O 点的稳定力矩; 0M ∑——全部水平力对墙趾O 点的稳定力矩;图3.3 墙身计算简图由图3.3可知:墙身重量G :13.35 2.4818 1.0595.9440G KN =⨯⨯⨯=E x 对墙趾的力臂:13.35 4.4533x H Z m === E y 对墙趾的力臂:(tan )/3 2.4813.35tan9/3 3.1848o y Z B H m α=+=+⨯=G 对墙趾的力臂:tan 2.4813.35tan 9 2.297222oG B H Z m α++⨯=== 595.940 2.297268.6197 3.18481587.5529y G y y M G Z E Z KN M=⨯+⨯=⨯+⨯=⋅∑0178.7604 4.45795.4837x x M E Z KN M=⨯=⨯=⋅∑代入上式得:001587.4837 1.9957 1.6795.4837y MK M ===>∑∑ 故抗倾覆稳定性满足要求。
4.3.3抗滑动验算对于水平基底,按如下公式验算滑动稳定性: 1.3c N f K E ⋅=≥∑∑式中: K c ——滑动稳定系数N ∑——作用于基底上的垂直力之和;E ∑——墙后主动土压力之和,取E ∑=E x ;f ——基底摩擦系数,取f=0.4由图3.3得: ()(595.944068.6197) 1.4870 1.3178.7604y c x G E K E ++===> 故抗滑稳定性满足要求。
4.3.4基底合力偏心矩验算设作用于基底的合力法向分力为N ∑,其对墙趾的力臂为Z N ,合力偏心矩为e ,则:1587.5529795.4837 1.1919595.944068.6197y G y y x xn y M M G Z E Z E Z Z G E Nm -⨯+⨯-⨯==+-==+∑∑∑ 2.48 1.19190.0481022n B e Z =-=-=> 合力在中心线的右侧。
0.04810.41336B e =<= 计算结果满足要求。
max 299.1767min 236.76176(595.944068.6197)60.0409(1)(1)2.48 2.48Kpa Kpa N e B B σ+⨯=±=⨯±=∑max 299.1767[]0.3Kpa Mpa σσ=<=,计算结果满足要求。
4.3.5墙身截面偏心矩及强度验算(1)墙身截面偏心矩e0.3M e B N=< 式中: M ——计算截面以上各力对截面形心力矩的代数之后; N ——作用于截面以上垂直力之后。
13.3513.35 2.48()178.7604()68.6197232232312.6534x y H H B M E E KN m =⋅--⋅=⨯--⨯=⋅595.944068.6197664.5637y N G E KN =+=+=将数据代入墙身偏心矩E 的公式,可得:312.65340.47050.30.744664.5637M e B N ===<=,计算结果满足要求。