中科院物理研究所凝聚态物理专业考研

合集下载

2020-2021年中国人民大学凝聚态物理考研真题、考研参考书、复试线、招生人数

2020-2021年中国人民大学凝聚态物理考研真题、考研参考书、复试线、招生人数

2020-2021年中国人民大学凝聚态物理考研真题、考研参考书、复试线、招生人数育明教育506大印老师联合名校导师及考研状元联合整理2019年9月20日星期日【温馨解析】育明教育从2006年开始办学,校长是北京外国语大学夏教授,北京总部负责人是北京大学政管院博士,主打专业课一对一辅导。

到现在已经有十年的时间,在我们育明教育,每年都有成功学员积累的一些经验可供各位考生参考。

育明教育整合利用历届育明优秀学员的成功经验与高分资料,为每一位学员构建考研成功的基础保障。

我们的辅导包括前期的报考指导,中期的核心参考书的讲解、专题(真题、出题老师论文专著、最新时事)讲解、模拟考(答题技巧框架、创新点的讲解)。

后期还会有教务老师时事根据上课情况,对考生进行查缺补漏,进行答题技巧的辅导。

在我们育明教育,前期咨询师、后期教务与辅导老师三方对您的上课负责,所以每年我们的通过率一直都是有保证的。

班型分专业课一对一和集训营两种。

集训营是包括政治英语的小班课+专业课全程一对一。

小班课全年分四个阶段:寒假,暑假,国庆,最后冲刺(您现在报名可以参加今年和明年两年的),授课老师是人大的教授(也会请海文海天的教授结合讲课)。

专业课一对一是按总课时来规划,保证够用。

上课形式是面授和远程一对一相结合,上课时间和进度主要根据你的进度来安排,第一次上课后会给你做一个导学规划。

数学我们请的是北理工的教授一对一讲(这个是其他机构请不来的),专业课请的是你所报考学校专业的研究生助教和北大博士结合授课(这个也是近几年我们独家尝试的非常合理的方式)。

此外,院校选择也很重要,选择适合自己的院校是成功的关键,但是考生信息有限,很难选择适合自己的院校,在这里,大家可以直接联系我,我免费给大家做规划和咨询。

目录一、2019-2020年考研真题、考研参考书笔记二、2020-2021年院校考研复习技巧三、2020-2021年考研专业课答题技巧内容一、2019-2020年考研真题、考研参考书笔记考研录取分数线:学校名称:中国人民大学专业名称:凝聚态物理总分:301单科=100分数线:45单科》100分数线:80招生专业目录:101思想政治理论201英语一617量子力学836热力学与统计物理考研参考书:量子力学:《量子力学》卷I曾谨言科学出版社配套答案:《量子力学教程习题剖析》孙婷雅编科学出版社另外可以参考下《量子力学考研辅导》史守华著清华大学热力学与统计物理:《热力学与统计物理》汪志诚高等教育出版社配套答案:《热力学统计物理学习辅导书》高等教育出版社专业介绍:物理学堪称自然科学的基础与核心,广大至浩瀚无边的宇宙,精微至微乎其微的基本粒子,都是物理学研究范围所及。

中国工程物理研究院专业介绍

中国工程物理研究院专业介绍

附:招生专业介绍1、基础数学(070101)本专业是博士、硕士学位授予点。

研究方向及导师:偏微分方程的调和分析方法苗长兴(研究员)谌稳固(研究员)本方向主要是借助于调和分析方法与非线性泛函分析方法(例如:算子插值理论、奇异积分算子理论、函数空间理论、振荡积分估计等)来研究波方程、色散波方程(组)的Cauchy问题及散射性理论、低正则性问题等现代数学的核心领域。

采用的方法与技术是Paley—Littlewood分解理论、Strichartz型时空估计及非线性函数在Besov空间中的估计,特别是Bourgain的Fourier 截断方法、Tao的I-能量方法。

这些问题的研究不仅在数学上有重要的理论意义, 同时对物理的研究和认识亦具有重要的指导作用。

专业课考试科目:初试科目:(1)101思想政治理论(2)201英语一(3)360数学分析(4)801高等代数复试科目:泛函分析与数学物理方程初步2、计算数学(070102)本专业是博士、硕士学位授予点。

研究方向及导师:(1)偏微分方程数值解袁光伟(研究员) 邬吉明(研究员)王双虎(研究员)(2)计算流体力学唐维军(研究员) 何长江(研究员)(3)蒙特卡罗方法及其应用邓力(研究员)(4)数值并行算法谷同祥(研究员)方向1研究:(1)辐射流体力学计算方法,包括流体力学计算格式,结构、非结构网格生成与优化;(2)扩散方程的离散方法;(3)边界元方法及奇异积分计算;(4)微分-差分方程或差分方程理论研究;(5)微分方程的高保真离散方法研究;(6)典型问题的高保真数值模拟研究。

方向2主要进行流体力学方程的数值方法研究,特别是多介质流体力学模型,激波捕捉格式,界面捕捉方法,高分辨率差分格式研究,结构和非结构网格有限体积法和有限元方法研究,数值网格生成与自适应研究等。

方向3主要研究内容有:(1)与时间相关的Boltzmann方程(双曲型)的随机模拟;(2)中子、光子耦合输运问题的求解;(3)输运网格几何构造、输运网格与力学网格的重映。

中国科学院长春光学精密机械与物理研究所

中国科学院长春光学精密机械与物理研究所

中国科学院长春光学精密机械与物理研究所简介中国科学院长春光学精密机械与物理研究所(以下简称“长春光机所”)始建于年,是以知识创新和高技术创新为主线,从事基础研究、应用基础研究和工程技术研究以及高新技术产业化的多学科基地型研究所,主要从事发光学、应用光学、光学工程和精密机械与仪器等领域的研究工作。

作为中国科学院规模最大的研究所,本所在多年的发展历程中,在以王大珩院士、徐叙瑢院士等为代表的一批科学家带领下,研制出中国第一台红宝石激光器、第一台大型电影经纬仪等多种先进设备仪器,创造了十几项“中国第一”;先后参与了包括“两弹一星”、“载人航天工程”等多项国家重大工程项目,先后组建和援建了西安光机所、上海光机所、成都光电所、长春光机学院等余家科研机构、大专院校和企业单位,并为其输送了多名各类专业人才。

共有位在本所工作过的优秀科学家当选为中国科学院或中国工程院院士,并涌现出“知识分子的优秀代表”蒋筑英等众多英模人物;近年来,本所先后获得了“全国五一劳动奖状”(连续两次)、“中国载人航天工程突出贡献单位”、“国家科技进步特等奖”等荣誉称号和奖项,为我国国防建设、经济发展和社会进步做出了一系列突出贡献,被誉为“中国光学事业的摇篮”。

邓小平、江泽民、胡锦涛等党和国家几代领导人都曾到本所视察和指导工作。

本所不断凝练和提升创新目标,在国家科技创新战略、中科院知识创新工程等的推动下,近些年来本所在科技创新、产业发展、创新文化、队伍建设与人才培养等方面均取得了长足的进步,特别是本所的核心竞争能力得到不断提升,持续发展能力继续增强。

基础和应用基础研究工作稳步发展,并在各自领域中的学术地位得到了进一步加强,取得了若干具有自主知识产权的创新成果。

高技术研究领域不断开拓,突破了一系列关键技术,完成了一批国家重大任务,取得了以“神舟五号”、“神舟六号”有效载荷等为代表的一批重大科研成果,已成为我国航天光学遥感与测绘设备、机载光电平台及新一代航空遥感设备和靶场大型光测装备的主要研究、生产基地,进一步巩固与增强了本所作为我国大型光测装备主要研制基地的地位,并且在光电对抗、地基空间探测等领域的影响力显著增强。

凝聚态物理专业考研经验

凝聚态物理专业考研经验

凝聚态物理专业考研经验【首先是初试】为了准备初试,我特意在电脑桌面弄一个倒计时,我清楚的记得我是从124天时候开始复习的。

我不是那种很勤奋的人,我属于吊儿郎当,三天打鱼两天晒网的类型。

所以最后才出现这样惨不忍睹的成绩。

希望各位要考好学校的同学切记:坚持是最重要的!我相信很多人考研都跟我一个状态,不过我是最离谱的,在我所有一起考研的朋友们中间,我是最最最懒惰的一个。

自认为自己有点小聪明,就胡作非为。

所以后来我也跟老师说如果我考不上学术型的也是我咎由自取,怎么也要为之前的懒惰付出代价,我不怨人。

所以只说一句:坚持最重要!没有这个,一切免谈。

下面分科说说初试经验一、首先说数学我本身数学基础就是非常扎实的类型。

如果基础不好的孩子,还是肯定要下比我大的功夫才行哦。

虽然我考的是数学二,但是其实我一开始是准备的数学一的。

虽然最后数学成绩出来也不理想,我本来以为起码有130的,选择填空都是全对的,可惜结果确只有123……其实我数学并没用花太多功夫下去,一是自己本身基础很好,不担心;另一方面是我要考量子力学,我是中间改过志愿的,一开始准备的专业课是工程光学,后来改了一下变成考量子力学了,天知道,我本科完全没有学过量子力学,连什么数学物理方法都没有学过的。

所以后面两个半月基本上都把时间交给了量子力学了,数学就是听天由命了,反正数学怎么样都不会差。

下面我说说一开始的数学准备,我觉得无论基础好坏都必须先从课本入手,即便我是基础特别好的,我也是认认真真的把课本全部看了一遍,把课后习题都做了一遍,我觉得这一点非常重要,比任何东西都重要。

复习到后面,我好多同学整天拿着数学来问我,结果我发现他们连最基础的都不知道,虽然他们什么复习全书都过了两三遍了,真不知道他们是怎么过的。

一句话:数学基础最重要。

如果你基础不好,请你老老实实地地把课本过一遍吧,最起码也要把高数课本过一遍,课后题过一遍,自己要做到完全懂了,不懂就去问人。

当我把课本都过完了已经是9月中旬了,我就开始做全书了。

中科大凝聚态物理考研要点与问答

中科大凝聚态物理考研要点与问答

中科大凝聚态物理考研要点与问答鄙人想考中科大的凝聚态物理,想找几个志同道合的研友,大家共同分享资料~如果有考过的学长进来看也希望你们给指点一下啦。

其实很简单了,把量子和普物搞定就可以了,建议报二系的凝聚态,别报微尺度,微尺度很多时候都要求硕博连读,让你感觉很不爽,而且一般说来,凝聚态不大好就业,你要有心理准备,卷子可以到合肥物质科学研究院下,估计现在进不去,你从的考试版的置顶进,可以找到,至于笔记,算了吧,还是多学点东西好,把他指定的参考数都看了,把题做了,就行了。

今年考上微尺度,其实很简单,复试也很好办,随便搞搞就行了凝聚态不好就业我是知道的~不过你建议考二系的凝聚态。

这么说2系比22系的凝聚态要好?还有到哪可以买到科大普物的习题集?2系的凝聚态比22系好多了。

普物复习的时候要很上心才行,判卷蛮严的。

印象里当年我们班好几个考普物的都感觉能考130+,结果出来的分数甚至不及格。

不过那几人都出国了。

不过不知道现在如何。

谢谢啦,看来前段时间弄错了目标,以后就瞄准2系了,呵呵是啊,听我这边考过的学长说普物比量子难多了哥们你是科大的吧,你们那的普物习题集书名叫什么啊?呃,我还真不知道普物习题集叫什么,好象当年用过一本清华版的。

我们学的课本不是普通物理,是力热声光电原子物理这些。

每门都是单独开课的。

似乎学校里有配套习题集复印(电磁学有),如果你时间够,可以用〈物理学大题典〉或〈美国物理题集〉(如果买了题典就不用买这个了。

)其实如果想搞研究的话,选硕博连读也不差。

导师更喜欢要硕博连读生,可以多些时间参与到研究工作中去。

如果想进企业拿高薪。

恐怕选微电子比凝聚态合适。

复试的时候多看看四大力学。

恩,谢谢啦~我们也是单独开的,都是物理专业的~不过我们这教学质量没你们那高啊~呵呵,哪你选的是什么的啊?没选物理了。

第一志愿选择了电子类的,呵呵,我不适合搞研究。

不过考的很糟,调了MSE。

那请问2系的光学专业怎么样啊?难吗?如果明海那个方向的,近代光学要多看。

物理系凝聚态物理研究生课程简介o….doc

物理系凝聚态物理研究生课程简介o….doc
主要参考书:
1,方俊鑫陆栋《固体物理学》(下册)上海科学技术出版社
2,黄昆《固体物理学》高等教育出版社
3,泽仑著、黄译《非晶态固体物理学》北京大学出版社
4,Kittel ,Introduction to solid state physics ,John Wiley &Sons Inc.)
5,Richard Turton, the physics of solids ,Oxforduniversity press 2000
物理
课程名称:凝聚态物理
英文名称:condensed matter physics
课程类型:√讲授课程□实践(实验、实习)课程□研讨课程□专题讲座□其它
考核方式:考查
教学方式:讲授
适用专业:凝聚态物理,光学
适用层次:硕士√博士□
开课学期:秋
总学时/讲授学时:48/48
学分:3
先修课程要求:1.量子力学2.热力学与统计物理3.固体物理
§2.7铁磁性的唯象理论
§2.8交换作用
§2.9巡游电子模型
§2.10自旋波
§2.11反铁磁性和亚铁磁性
第三章超导
§ 3.3两类超导体
§ 3.4金斯堡-朗道理论
§ 3.5同位素效应和电子-声子相互作用
§ 3.6库柏对
§ 3.7超导态的微观图像和特性
课程组教师姓名
职称
专业
年龄
学术专长
魏合林
副教授
凝聚态
42
纳米材料
教学大纲(章节目录):
本课程着重介绍固体物理学专门知识,包括半导体、磁性、超导体、有机固体及非晶态固体物理。强调理论与实践相结合,并吸收固体物理中某些最新研究成果,使学生既能掌握基本理论,又提高分析问题的能力。

2020-2021年中国科学院大学(物理研究所)理论物理考研招生情况、分数线、参考书目及备考经验

2020-2021年中国科学院大学(物理研究所)理论物理考研招生情况、分数线、参考书目及备考经验

一、物理研究所简介中国科学院物理研究所(以下简称“物理所”)前身是成立于1928年的国立中央研究院物理研究所和成立于1929年的北平研究院物理研究所,1950年在两所合并的基础上成立了中国科学院应用物理研究所,1958年9月30日启用现名。

物理所是1998年国务院学位委员会批准的首批物理学博士、硕士学位授予单位之一,现设有物理学、材料科学与工程等2个专业一级学科博士研究生培养点,材料工程、光学工程等2个专业学位硕士研究生培养点,并设有物理学1个专业一级学科博士后流动站,共有在学研究生882人(其中硕士生266人、博士生616人、留学生11人)。

在站博士后65人。

物理所是中国物理学会的挂靠单位;承办的科技期刊有《物理学报》、Chinese Physics Letters、Chinese Physics B和《物理》。

2019年物理所在本科起点的研究生招收中,预计计划招收学术型硕博连读生约110名(含推免生90人),全日制专业学位工程硕士研究生约10名。

二、中国科学院大学理论物理专业招生情况、考试科目三、中国科学院大学理论物理专业分数线2018年硕士研究生招生复试分数线2017年硕士研究生招生复试分数线四、中国科学院大学理论物理专业考研参考书目601高等数学(甲)《高等数学》(上、下册),同济大学数学教研室主编,高等教育出版社,1996年第四版,以及其后的任何一个版本均可。

617普通物理(甲)全国重点大学理科类普通物理教材809固体物理黄昆编著,《固体物理学》,第1版,北京大学出版社,2009年9月1日阎守胜编著,《固体物理基础》,第3版,北京大学出版社,2011年6月1日811量子力学《量子力学教程》曾谨言著(科学出版社 2003年第1版)。

五、中国科学院大学理论物理专业复试原则1.复试一般由报考的研究所或院系组织,在报考的研究所或院系所在地进行。

2.各研究所或院系一般按照参加复试人数与招生计划数不低于120%的比例,按照复试分数线及考生初试成绩,由高到低确定复试考生名单,进行差额复试。

凝聚态物理学校排名

凝聚态物理学校排名

物理类综合派名及介绍,因为凝聚态是物理目前最重要的学科,所以基本上就是凝聚态物理的派名,查不料很多,下面是介绍.学位授予单位代码及名称排名得分80008 中科院物理研究所 1 96.9710001 北京大学2 92.6410284 南京大学3 90.2810358 中国科技大学4 88.0810246 复旦大学5 85.6080140 中科院上海光机所 5 85.6010003 清华大学7 82.5982817 中国工程物理研究院8 81.37北京大学理科专业从建国以来一直是全国高校中最好的,物理学当然也不例外。

说它是是全国最好的物理系(学院)毫不过分。

北大物理最大的特点是各个二级学科方向都很强,尤其理论物理领域远远领先于其他高校,其它的几个二级学科方向也在全国位列三甲,北大物理一共有理论物理,粒子物理和核物理,凝聚态物理,光学四个国家重点学科,多位中科院院士再加上首都科教中心的得天独厚优势,北大物理综合实力在未来一段时间内将仍然能在全国高校中保持领先优势。

南京大学物理系凝聚态物理专业在国内高校中首屈一指,凭借这个优势奠定了他在国内数一数二物理系(学院)的地位。

在这点上很像中科院物理所,在目前物理学界最庞大最热门的分支确立领先优势也就同时确立了在整个中国物理学领域的领先优势。

南大物理共有理论物理,凝聚态物理,声学,无线电物理四个国家重点学科,其中除凝聚态物理外和它的声学专业也是全国高校中最强的。

如果把天文学纳入物理学领域的话,由于比邻紫金山天文台,它的天体物理专业在国内更是一枝独秀。

顺便提一句,我大二的时候曾经有幸听到南大物理系冯端院士所做的报告。

他与中科院半导体所的黄昆院士可以并称为中国固体物理学(凝聚态物理学的核心部分)的泰山北斗。

老先生80余岁的高龄面色苍老却依然精神健铄,说话平缓有力,在报告结束后还十分和蔼认真地回答我这个小辈的问题,学者风范让人肃然起敬。

中国科学技术大学物理专业,光听名字就能大致明白他在物理学界的地位了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中科院物理研究所凝聚态物理专业考研主要研究方向
1、非常规超导电性机理,混合态特性和磁通动力学。

(1)高温超导体输运性质,超导对称性和基态特性研究。

(2)超导体单电子隧道谱和Andreev反射研究。

(3)新型Mott绝缘体金属-绝缘基态相变和可能超导电性探索。

(4)超导体磁通动力学和涡旋态相图研究。

(5)新型超导体的合成方法、晶体结构和超导电性研究。

2、高温超导体电子态和异质结物理性质研究
(1)高温超导体和相关氧化物功能材料薄膜和异质结的生长的研究。

(2)铁电体极化场对高温超导体输运性质和超导电性的影响的研究。

(3)高温超导体和超大磁电阻材料异质结界面自旋极化电子隧道效应的研究。

(4)强关联电子体系远红外物性的研究。

3、新型超导材料和机制探索
(1)铜氧化合物超导机理的实验研究
(2)探索电子—激子相互作用超导体的可能性
(3)高温超导单晶的红外浮区法制备与物理性质研究
4、氧化物超导和新型功能薄膜的物理及应用研究
(1)超导/介电异质薄膜的制备及物性应用研究
(2)超导及氧化物薄膜生长和实时RHEED观察
(3)超导量子器件的研究和应用
(4)用于超导微波器件的大面积超导薄膜的研制
5、超导体微波电动力学性质,超导微波器件及应用。

6、原子尺度上表面纳米结构的形成机理及其输运性质
(1)表面生长的动力学理论;
(2)表面吸附小系统(生物分子,水和金属团簇)原子和电子结构的第一性原理计算;
(3)低维体系的电子结构和量子输运特性(如自旋调控、新型量子尺寸效应等)。

.
7、III-V族化合物半导体材料及其低维量子结构制备和新型器件探索
(1)宽禁带化合物(In/Ga/AlN,ZnMgO)半导体及其低维量子结构生长、物性、微结构以及相互关系的研究,宽禁带化合物半导体新型微电子、光电子器件探索;
(2)砷化镓基、磷化铟基新型低维异质结材料的设计、生长、物性研究及其新型微电子/光电子器件探索;
(3)SiGe/Si应变层异质结材料的制备及物性研究。

8、新颖能源和电子材料薄膜生长、物性和器件物理
(1)纳米太阳能转换材料制备和器件研制;
(2)纳米金刚石薄膜、碳氮纳米管/硼碳氮纳米管的CVD、PVD制备和场发射及发光性质研究;
(3)负电亲和势材料的探索与应用研究;
(4)纳米硅基发光材料的制备与物性研究;
(5)有序氧化物薄膜制备和催化性质。

9、低维纳米结构的控制生长与量子效应
(1)极低温强磁场双探针扫描隧道显微学和自旋极化扫描隧道显微学;
(2)半导体/金属量子点/线的外延生长和原子尺度控制;
(3)低维纳米结构的输运和量子效应;
(4)半导体自旋电子学和量子计算;
(5)生物、有机分子自组装现象、单分子化学反应和纳米催化。

10、生物分子界面、激发态及动力学过程的理论研究
(1)生物分子体系内部以及生物分子-固体界面(主要包括氧化物表面、模拟的细胞表面和离子通道结构)的相互作用的第一原理计算和经典分子动力学模拟;
(2)界面的几何结构、电子结构、输运性质及对生物特性的影响;
(3)纳米结构的低能激发态、光吸收谱、电子的激发、驰豫和输运过程的研究,电子-原子间的能量转换和耗散以及飞秒到皮秒时段的含时动力学过程的研究。

11、表面和界面物理
(1)表面原子结构、电子结构和表面振动;
(2)表面原子过程和界面形成过程;
(3)表面重构和相变;
(4)表面吸附和脱附;
(5)表面科学研究的新方法/技术探索。

12、自旋电子学;
13、磁性纳米结构研究;
14、新型稀土磁性功能材料的结构与物性研究;
15、磁性氧化物的结构与物性研究;
16、磁性物质中的超精细相互作用;
17、凝聚态物质中结构与动态的中子散射研究;
18、智能磁性材料和金属间化合物单晶的物性研究;
19、分子磁性研究;
20、磁性理论。

21、纳米材料和介观物理
研究内容:
发展纳米碳管及其它一维纳米材料阵列体系的制备方法;模板生长和可控生长机理研究;界面结构,谱学分析和物性研究;纳米电子学材料的设计、制备,纳米电子学基本单元器件物理。

22、无机材料的晶体结构,相变和结构-性能的关系
研究内容:
在材料相图相变研究的基础上,探索合成新型功能材料,为先进材料的合成和性能优化提供科学依据;在晶体结构测定的基础上,探讨材料结构-性能之间的内在联系,从晶体结构的微观角度阐明先进材料物理性质的机制,设计合成具有特定功能性结构单元的新型功能材料;发展和完善粉末衍射结构分析方法。

23、电子显微学理论与显微学方法
研究内容:
电子晶体学图像处理理论和方法研究,微小晶体、准晶体的结构测定;系统发展表面电子衍射及成像的理论和实验方法,弹性与非弹性动力学电子衍射的一般理论,高能电子衍射的张量理论,动力学电子衍射数据的求逆方法。

24、高分辨电子显微学在材料科学中的应用
研究内容:
利用高分辨、电子能量损失谱、电子全息等电子显微分析方法,研究金属/半导体纳米线的生长机制及结构与性能间的关系;复杂晶体结构中新型缺陷研究;结合其他物理方法,研究巨磁电阻、隧道结、半导体量子阱/点等薄膜材料的显微结构及其对物理性能的影响;低维材料界面势场的测量及与物理性能的相互关系;磁性材料中磁畴结构、各向异性场与波纹磁畴测定。

25、强关联系统微观结构,电子相分离和轨道有序化研究
研究内容:高温超导体的结构分析;强关联系统的电子条纹相和电子相分离研究;电荷有序化和JT效应;探索低温LORENTZ电子显微术,电子全息和EELS在非常规电子态系统的应用。

26、纳米晶及光电功能晶体生长;
27、纳米离子学的材料、表征与器件;
28、化学法制备纳米功能材料及其化学物理特性;
29、纳米电子器件的构造与物性研究;
30、纳米电子器件的集成与纳米电路特性的研究;
31、强关联电子体系的低温物性研究;
32、凝聚态物质中量子相干行为的研究;
33、低维和纳米材料的电子态性质;
34、非晶、纳米晶在极端条件下的物性;
35、高压及相关过程的固体新材料研究;
36、超导隧道结物理与技术。

37、生物大分子的动力学研究;
38、对颗粒物质的集团动力学性质的研究;
39、溶体及固、液结构和性质的研究;
40、对电流变液的机理研究和应用开发;
41、利用声波波动方程进行的反问题的研究;
42、软物质体系中的分子组装:研究两亲分子在固液界面的组装及其在材料和生命科学中的应用;
43、单分子生物物理:用单分子微操纵技术研究染色质的组装、DNA与蛋白质的相互作用;
44、结构生物学中的衍射相位问题;
45、结构生物学实验分析方法;
46、蛋白质折叠的成核理论和结构预测;
47、蛋白质-蛋白质相互作用。

48、THz远红外时域光谱和成象技术及其应用;
49、量子结构制作与物理表征;
50、功能薄膜材料制备、纳米人工结构的物性与器件。

相关文档
最新文档