职高 第8章 平面向量知识点小结
平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。
平面向量有两个重要的基本运算:向量的加法和数乘。
1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。
-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。
-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。
-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。
-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。
4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。
5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。
-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。
6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。
-方向角:向量与x轴的夹角称为它的方向角,用θ表示。
以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。
为了更好地理解和应用平面向量,需要进行大量的练习和实践。
平面向量复习基本知识点及经典结论总结

平面向量复习基本知识点及经典结论总结平面向量是数学中常见的概念,它是一种具有大小和方向的量。
本文将对平面向量的基本知识点及经典结论进行总结,以帮助读者复习和理解。
一、基本知识点1.定义:平面向量是具有大小和方向的量,可用有向线段来表示。
通常用字母a、b、c等表示向量,用小写字母表示有向线段的长度,用大写字母表示向量的大小。
2.向量的表示方法:在平面直角坐标系中,可以用坐标表示一个向量。
设平面向量a的起点为原点O(0,0),终点为点A(x,y),则向量a的表示为a=(x,y)。
3.向量的加法:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a+b可以表示为(a,b)=(x1+x2,y1+y2)。
4.向量的数量积:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a和b的数量积为a·b=x1×x2+y1×y25.向量的模长:向量a的模长表示为,a,可通过勾股定理求得,即,a,=√(x^2+y^2)。
二、经典结论1.平面向量共线:如果有两个向量a和b,且b与a同方向或反方向,那么向量a和b共线;如果b与a不同方向,那么向量a和b不共线。
2. 平面向量定比分点:如果有两个向量a = (x1,y1)和b = (x2,y2),且存在一个实数k,使得x2 = kx1,y2 = ky1,则向量a和b的终点共线,并且b在a的延长线上(如k>1)或b在a的连线上(如0<k<1)。
3.向量共线定理:如果有三个向量a,b,c,且c=λa+μb,则向量c与向量a和b共线。
4.平面向量的线性运算:设有三个向量a,b,c,和两个实数λ、μ,那么有以下性质成立:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)λ(μa)=(λμ)a=μ(λa)=λ(μa)(乘法结合律)(4)λ(a+b)=λa+λb(分配律)(5)(λ+μ)a=λa+μa(分配律)5.向量共线的判定方法:(1)数量积:如果两个向量a和b的数量积a·b=0,则向量a和b垂直;如果a·b>0,则向量a和b夹角小于90°;如果a·b<0,则向量a和b夹角大于90°。
平面向量知识点归纳总结

平面向量知识点归纳总结平面向量是数学中的一个重要概念,它在几何、物理、工程等领域中具有广泛的应用。
本文将对平面向量的定义、运算、性质和常见应用进行归纳总结。
一、平面向量的定义平面向量是具有大小和方向的量,用箭头表示。
一个平面向量由起点和终点确定,可以用有序对表示。
例如,向量AB表示从点A指向点B的有向线段,记作AB。
二、向量的表示方法1. 坐标表示:平面向量可以用坐标表示,一个平面上的向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的分量。
2. 线段表示:向量的起点和终点可以表示为两个点的坐标,向量本身可以表示为连接这两个点的线段。
三、向量的运算1. 加法运算:向量的加法运算满足平行四边形法则。
设有向量A和B,它们的和记作A + B,可以通过将A的终点与B的起点相连,得到一条新的有向线段,该线段的起点为A的起点,终点为B的终点。
新的线段即为向量A + B。
2. 数乘运算:向量的数乘运算满足分配律和结合律。
设有向量A和实数k,它们的数乘记作kA,向量kA的长度是向量A长度的k倍,方向与A相同(当k>0时)或相反(当k<0时)。
3. 减法运算:向量的减法可以通过将减数取负后与被减数进行加法运算得到。
即A - B = A + (-B)。
4. 零向量:零向量是长度为0的向量,记作0。
任何向量与零向量相加等于该向量本身。
四、向量的性质1. 平移不变性:向量在平面上进行平移操作时,大小和方向保持不变。
2. 相等性:两个向量相等,当且仅当它们的起点和终点重合。
3. 平行性:两个向量平行,当且仅当它们的方向相同或相反。
4. 共线性:三个或三个以上的向量共线,当且仅当它们在同一条直线上或平行于同一条直线。
5. 长度:向量的长度可以利用勾股定理计算得到,即向量AB的长度为√(x2 - x1)² + (y2 - y1)²。
6. 单位向量:长度为1的向量称为单位向量。
五、向量的应用1. 向量的分解:一个向量可以被分解成x轴和y轴上的两个分量。
平面向量知识点归纳总结

平面向量是指在平面上具有大小和方向的量。
下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。
●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。
2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。
3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。
●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。
4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。
●向量的减法:a - b = (a₁- b₁, a₂- b₂)。
●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。
5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。
●计算公式为a ·b = a₁* b₁+ a₂* b₂。
●点积满足交换律:a ·b = b ·a。
●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。
6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。
●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。
●矢量积满足反交换律:a ×b = - (b ×a)。
●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。
7.平行向量和共线向量:●平行向量指方向相同或相反的向量。
●共线向量指在同一直线上的向量。
●如果两个向量平行,则它们的叉积为零。
8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。
●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。
(完整版)职高第8章平面向量知识点小结

平面向量知识点小结1. 有向线段:具有 叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB u u u r,应注意:始点一定要写在终点的前面,2. 已知AB u u u r ,线段AB 的 叫做有向AB u u u r 线段AB u u u r的长(或模),的长度记作: .有向线段包含三个要素: 、 、 .3. 向量:具有 和 的量叫做向量,只有大小和没有方向的向量叫做 .有向线段的长度表示向量的 ,有向线段的方向表示向量的方向.用有向线段AB u u u r 表示向量时,我们就说向量AB u u u r.另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a r 、b r 、c r、…等.4. 相等向量: 的有向线段表示同一向量或相等的向量.向量a r 和b r同向且等长,即a r 和b r相等,记作5. 零向量:长度等于零的向量叫做 ,记作 .零向量的方向 .6. 平行向量(共线向量):两个向量的方向 则称两个向量平行,平行向量也称 (另一种理解:如果表示两个向量的有向线段所在的直线互相平行或重合为共线向量.向量a r 平行于向量b r ,记作a r ∥b r. 与任一个向量共线(平行).7. 相反向量:与向量a r 等长且 的向量叫做向量a r的相反向量,记作 .显然, ()0a a +-=r r r.8. 单位向量:长度等于1的向量,叫做 .与向量a r同方向的单位向量通常记作 .9. 已知向量a r 、b r ,在平面上任取一点A,作AB a =u u u r r ,BC b =u u u r r,作向量AC u u u r ,则向量 叫做向量a r 与b r 的和(或和向量),记作a r +b r ,即a r +b r== .这种求两个向量和的作图法则,叫做向量求和的三角形法则.10. 已知向量a r 、b r ,在平面上任取一点A,作AB a =u u u r r ,AD b =u u u r r,如果A 、B 、D 不共线,则以AB 、AD 为邻边作平行四边形ABCD,则对角线上的向量AC u u u r= = .这种求两个向量和的作图法则,叫做向量求和的平行四边形法则.11. 已知向量a r 、b r ,在平面上任取一点O,作OA a =u u u r r ,OB b =u u u r r ,则b r +BA u u u r =a r ,向量BA u u u r 叫做向量a r 与b r 的差,并记作a r -b r ,即BA u u u r== .12. 由向量的减法推知:(1) 如果把两个向量的始点放在一起,则这两个向量的差是减向量的终点到 的向量;(2) 一个向量BA u u u r等于它的终点相对于点O 的位置向量OA u u u r 减去它的始点相对于点O 的位置向量OB uuu r;(3) 一个向量减去另一个向量,等于加上这个向量的 .13. 向量加法满足如下运算律: (1) ; (2)14. 数乘向量的一般定义:实数λ和向量a r 的乘积是一个向量,记作a λr.当0λ>时,a λr 与a r同方向,a a λλr r ││ =│ ∣│ │ ; 当0λ<时,a λr 与a r反方向,a a λλr r ││ =│ ∣│ │ ; 当0λ=或0a =r r 时,000a λ⋅=⋅=r r r. ;15. 数乘向量满足以下运算律:(1)1a r =a r ,(-1)a r =a -r ; (2)()()a a λμλμ=r r()a a a λμλμ+=+r r r ; (4)()a b a b λλλ+=+r r r r .16. 平行向量基本定理:如果向量0b ≠r r,则a b r r ∥的充分必要条件是,存在唯一的实数λ,使 .17. 设1212(,),(,)a a a b b b ==r r则→a ∥→b ⇔18. 一般地,在平面直角坐标系中,对任意向量→a ,都有且只有一对实数1a ,2a 使得 。
平面向量的数学知识点总结

平面向量的数学知识点总结一、向量的定义及基本性质1. 向量的定义向量是具有大小和方向的量,用箭头表示。
在平面坐标系中,向量可以用有序数对表示。
向量通常用小写粗体字母表示,如a、b。
2. 向量的相等两个向量相等的条件是它们的大小和方向都相同。
即向量a=b当且仅当|a|=|b|且a与b的方向相同。
3. 向量的加法向量的加法满足交换律和结合律。
即a+b=b+a,(a+b)+c=a+(b+c)。
4. 向量的数乘向量的数乘满足结合律和分配律。
即k*(a+b)=k*a+k*b,(k+m)*a=k*a+k*m。
5. 向量的减法向量的减法可以用加法和数乘表示。
即a-b=a+(-1)*b。
6. 向量的数量积向量的数量积(又称点积、内积)是向量的一种乘法。
定义为a·b=|a|*|b|*cos(θ),其中θ为a和b之间的夹角。
7. 向量的性质(1)向量的模长:|a|=√(a1²+a2²);(2)向量的共线:如果向量a与向量b共线,那么它们的数量积为0,即a·b=0;(3)向量的夹角:cos(θ)=a·b/(|a|*|b|)。
二、平面向量的坐标表示1. 平面向量的坐标表示平面向量可以用有序数对表示。
如向量a可以表示为(a1,a2)。
2. 平面向量的坐标运算(1)向量的加法:a+b=(a1+b1,a2+b2);(2)向量的数乘:k*a=(k*a1,k*a2);(3)向量的减法:a-b=a+(-1)*b。
三、向量的线性运算1. 向量的线性相关性如果存在不全为0的实数λ1、λ2,使得λ1a+λ2b=0,则向量a与向量b线性相关。
2. 向量的线性无关性如果向量a与向量b线性无关,那么不存在不全为0的实数λ1、λ2,使得λ1a+λ2b=0。
3. 向量的线性表示对于线性无关的n个向量a1、a2、…、an,可以表示任意向量b的线性组合。
即存在唯一的实数λ1、λ2、…、λn,使得b=λ1a1+λ2a2+…+λnan。
平面向量知识点总结归纳

平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。
平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。
一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。
2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。
平行向量的模长相等。
3. 零向量:所有分量都为零的向量称为零向量,用0→表示。
零向量的模长为0。
4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。
二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。
向量加法满足交换律和结合律。
2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。
向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。
3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。
4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。
内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。
5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。
外积的结果是一个向量。
三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。
2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。
3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。
4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。
5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。
四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。
2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。
平面向量知识点总结

平面向量知识点总结平面向量是二维空间中的向量,它在数学中有着广泛的应用。
在平面向量的研究中,我们需要了解平面向量的定义、运算法则、坐标表示、线性相关与线性无关、向量的模和方向、向量的投影、平行四边形法则、平面向量的夹角、向量的数量积等内容。
本文将对这些内容进行详细的总结,以帮助读者更好地理解平面向量的相关知识。
1. 定义:平面向量是一个具有大小和方向的量。
它可以用一个有向线段来表示,也可以用它的坐标来表示。
平面向量的定义包括初始点和终点,表示为AB。
2. 运算法则:平面向量有加法和数乘两种运算方式。
向量的加法规则是将两个向量的横纵坐标分别相加,得到一个新的向量。
向量的数乘规则是将向量的横纵坐标分别与给定的实数相乘,得到一个新的向量。
3. 坐标表示:平面向量可以用坐标表示,即用其横纵坐标表示向量的位置。
设向量AB的坐标为(a, b),则向量AB的终点的坐标为(A.x + a, A.y + b),其中A.x和A.y分别为点A 的横纵坐标。
4. 线性相关与线性无关:若存在一组实数k1, k2, ... , kn,使得k1v1 + k2v2 + ... + knvn = 0,则向量组V1, V2, ... , Vn是线性相关的。
否则,向量组V1, V2, ... , Vn是线性无关的。
线性无关的向量组在平面向量的研究中具有重要的作用。
5. 向量的模和方向:向量的模表示向量的大小,即向量的长度。
向量的方向表示向量的朝向,即向量的角度。
向量的模可以用勾股定理计算,即v的模等于√(x^2 + y^2),其中x 和y分别为向量v的横纵坐标。
6. 向量的投影:向量的投影指的是一个向量在另一个向量上的投影长度。
设向量A在向量B上的投影为P,且向量A 和向量B的夹角为θ,则投影P的长度等于A在B上的模乘以cosθ。
7. 平行四边形法则:平行四边形法则是用来计算两个向量的和的规则。
根据平行四边形法则,两个向量的和等于以这两个向量为邻边的平行四边形的对角线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量知识点小结
1. 有向线段:具有 叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,应注意:始点一定要写在终点的前面,
2. 已知AB ,线段AB 的 叫做有向AB 线段AB 的长(或模),的长度记作: .有向线段包含三个要素: 、 、 .
3. 向量:具有 和 的量叫做向量,只有大小和没有方向的向量叫做 .有向线段的长度表示向量的 ,有向线段的方向表示向量的方向.用有向线段
AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…
等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.
4. 相等向量: 的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作
5. 零向量:长度等于零的向量叫做 ,记作 .零向量的方向 .
6. 平行向量(共线向量):两个向量的方向 则称两个向量平行,平行向量也称 (另一种理解:如果表示两个向量的有向线段所在的直线互相平行或重合为共线向量.向量a 平行于向量b ,记作a ∥b . 与任一个向量共线(平行).
7. 相反向量:与向量a 等长且 的向量叫做向量a 的相反向量,记作 .显然, ()0a a +-=.
8. 单位向量:长度等于1的向量,叫做 .与向量a 同方向的单位向量通常记作 .
9. 已知向量a 、b ,在平面上任取一点A,作AB a =,BC b =,作向
量AC ,则向量 叫做向量a 与b 的和(或和向量),记作a +b ,即a +b = = .这种求两个向量和的作图法则,叫做向量求和的三角形法则. 10. 已知向量a 、b ,在平面上任取一点A,作AB a =,AD b =,如果A 、B 、D 不共线,则以AB 、AD 为邻边作平行四边形ABCD,则对角线上的向量AC = = .这种求两个向量和的作图法则,叫做向量求和的平行四边形法则.
11. 已知向量a 、
b ,在平面上任取一点O,作OA a =,OB b =,则b +BA =a ,向量BA 叫做向量a 与b 的差,并记作a -b ,即BA =
= .
12. 由向量的减法推知:
(1) 如果把两个向量的始点放在一起,则这两个向量的差是减向量的终点到 的向量;
(2) 一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ;
(3) 一个向量减去另一个向量,等于加上这个向量的 .
13. 向量加法满足如下运算律: (1) ; (2) 14. 数乘向量的一般定义:实数λ和向量a 的乘积是一个向量,记作a λ.
当0λ>时,a λ与a 同方向,
a a λλ││ =│ ∣│ │ ; 当0λ<时,a λ与a 反方向,
a a λλ││ =│ ∣│ │ ; 当0λ=或0a =时,000a λ⋅=⋅=. ;
15. 数乘向量满足以下运算律:(1)1a =a ,(-1)a =a -; (2)()()a a λμλμ=
()a a a λμλμ+=+; (4)()a b a b λλλ+=+.
16. 平行向量基本定理:如果向量0b ≠,则a b ∥的充分必要条件是,存在唯一的实数λ,使 .
17. 设1212(,),(,)a a a b b b ==则→
a ∥→
b ⇔
18. 一般地,在平面直角坐标系中,对任意向量→
a ,都有且只有一对实数1a ,2a 使得 。
其中1a 叫做向量在x 轴上的坐标,2a 叫做向量在y 轴上的坐标(1a ,
2a )叫做向量→
a 在平面直角坐标系中的坐标,记作: .
19. 相等的向量对应的坐标相等.如果→a =(1a ,2a ),→b =(1b ,2b ),则→a =→
b ⇔
20. 向量的直角坐标:任意向量AB 的坐标等于 的坐标减去 的
坐标,即若A 11(,)x y 、B 22(,)x y ,则→
AB =→
OB -→
OA = = .
21.向量的坐标运算公式:设1212(,),(,)a a a b b b ==,则:
→
a +→
b = =
→
a -→
b = =
→
a λ = =
22.向量的长度(模)公式:若12(,)a a a =,则;→
a =
若A 11(,)x y ,B 22(,)x y ,则→
AB = .
23.中点公式:若A 11(,)x y ,B 22(,)x y ,点M(x,y)是线段AB 的中点,则
24. 已知→a 与→b 为非零向量,则 叫做→a 与→
b 的内积,也称为数量积或点积,记作 即: 25. 设→a 与→b 为两个非零向量,则→a ⊥→
b ⇔ ||→
→
•b a ⇔ →→
•a a =
→
→•b a cos = 26.→
a =(1a ,2a ),→
b =(1b ,2b ),则→
→
•a a =
→
a ⊥→
b ⇔
→
→
•b a cos =。