单个球面的折射

合集下载

1-3傍轴条件下的单球面折射成像资料

1-3傍轴条件下的单球面折射成像资料

y ' ns ' #
y n's
f ' n' ,代入 #式,得 fn
f x'
x f'
2)
tan(u) h u Q
s
y
n
l -u
tan(u) h u s
P -s
代入#式,得:
y y
nu n u
-i A n’
h -i’ l’
d
u’
O rC
P’ -y’
s’
Q’
拉格朗日—亥姆霍兹不变式
y' y
P Q C ∽ P Q C , yP C s r
y P Cr s
由 物 像 公 式 n ' n n ' n , 变 形 得 : s r n s
s ' s r
s r n s
y' ns' #
y n's
12
1)利用s ( f x),s' ( f ' x'), 牛顿公式xx' ff ',
焦物距x:物方焦点到物点的距离
焦象距x':象方焦点到象点的距离
n -x -f
•P F• -s
n'
f'
x' P’
F• ' •
s'
f f 1 s s
根据上面的定义, 有:s=x+f , s'=x'+f '
代入高斯公式,得
f ' f 1
f 'x' f x
整理得 xx'ff' ---牛顿公式(普适公式)
1-3傍轴条件下的单球面折 射成像

1单球面折射公式

1单球面折射公式
f = 1 = 1 - 1 = 7.5D
f 0.12 1.2
即配戴焦度为7.5D的凸透镜。
32
3、散光眼
散光眼的角膜表面不是球 面,其角膜的各个方向子 午线的半径不相等,点物 发出的光线经角膜折射后 不能形成一清晰的点像, 既散光眼为非对称折射系 统。右图表示散光眼的角 膜及其成像。
散光眼的眼球纵向子午线半径最短,横向子午线的半径最长, 其它方向子午线半径介于二者之间。使得远处的平行光线经 角膜折射后,不能在一点成像。常把一点物看成一条很短的 线条,这就使他看物体时感到模糊不清。
n-n2 1 + 1 = (n -1)( 1 - 1 )
r2 u v
r1 r3 2
二、薄透镜组合
两个或两个以上薄透镜组成的共轴系统, 称为薄透镜组合,简称透镜组。
4
透镜组的成像公式:
二、薄透镜组合
1+1= 1 + 1 u v f1 f2
当υ=∞时,对应的u值即为透镜组的等效焦
距f,则
1= 1+ 1
复习
1、单球面折射公式
n1 + n2 = n2 - n1
2、光焦度 u u
r
f = n2 - n1
r
3、焦距
f1
=
n1 n2 - n1
r
f2
=
n2 n2 - n1
r
1
4、单球面折射成像的高斯公式 :
f1 + f2 = 1
uu
5、 共轴球面系统:逐次成像法
2
6、 薄透镜公式
n1+ n2= n - n1 u v r1
于远视眼的近点较正视眼远些,因此,远视眼在看 眼前较近的物体时,所选择的凸透镜必须将此 物体的虚象成在远视眼的近视点处。

单球面反射和折射

单球面反射和折射

5. 特例
(1)球面反射
n n'
1 1 2 p p' r
平行光线入射,p ,代入物像公式 1 1 2 得 pf'' 2r 2r,f ' 此时对应的像点叫焦点(fpocusp)' r 焦点到顶点的距离— 焦距(focal length)
物像公式为
11 1 p p' f '
(Gauss公式)
1.5 1.0
(8) (1)
1.2
,即成正立、放大的实像。
总的横向放大率
1
2
3
0.5 (
1) 1.2 3
为20cm和15cm,薄透镜折射率为1.5,在凸面 镀银。在球面前方40处的主轴上置一高为1cm 的物,求像的位置和成像的性质。
[解](1)P经凹球面折射成像:
p1=-40cm,n=1.0,n’=1.5,r1=-20cm,代入
n' n n'n p1' p1 r1
1
np1 ' n' p1
1 2
,
1.5 1.0 0.5 p1' 40 20
三、傍轴球面折射的物象关系式
nn'n (u(' u in)) unn('(n'('niu'))') n
p
u
i o
n' h i' c u '
p'
u h p'
r
p
p'
u h p
h
n n nn
p' p r
物像关系式
r
定义 光焦度
Φ n'n r

光在单球面上的折射和反射-四川大学

光在单球面上的折射和反射-四川大学
β =−
x′ f′
y′ f =− y x
从 Q 作 O 点的入射线 QO ,其折射线是 OQ′ 。由图可知,得
ny n′y′ =− −s s′
或 讨论:
β=
y′ ns′ = y n′s
(1) β > 0 时, y′ 与 y 同号。物正立时像也是正立的。即物是实物时,像必定是虚像,反之, 当物是虚物时,像必定是实像。 (2) 当 β < 0 时,物和像在主光轴的异侧,而且当物是实物时,生成的像也是实像,当物是虚 物时,生成的像也是虚像。 总之,当 β > 0 时,物和像一定是一实一虚; 当 β < 0 时,物和像的虚实相同。
n n’ P n n’
P’
P’ P
虚物成实像
虚物成虚像
n′ n n′ − n − = s′ s r f′ f + =1 s′ s xx′ = ff ′
1 1 2 + = s′ s r 1 1 1 + = s′ s f xx′ = f 2
φ=
f′=
n′ r n′ − n n f =− r n′ − n
n′ − n r
φ=
f′ n′ =− f n
β=
ns′ n′s
N
P
F
(e) 轴上物点成像作图法
图 作图法的几个例子
四川大学精品课程《光学》
六.球面反射镜 1.方法:将反射看作是折射的特殊情况 2.球面反射的物像距公式:
1 1 2 + = s′ s r
i = −i′ ; n′ = −n
3. 单球面折射饿球面反射镜公式对比
球面折射和球面反射公式对照表 球面折射成像 球面反射成像 公式 公式 物 像 距 焦距和光焦度 横向放 大率

符号法则、单个折射球面成像

符号法则、单个折射球面成像
的光学问题提供更多可能性。
随着计算机技术的发展,符号法 则的计算效率和精度将得到提升, 为更精确的光学设计提供支持。
符号法则的理论研究将进一步深 入,为解决更复杂的光学问题提
供理论支持。
单个折射球面成像的改进方向
提高成像质量
01
通过优化光学设计和制造工艺,提高单个折射球面成像的清晰
度和分辨率。
扩大应用范围
符号法则的原理
基于几何光学和波动光学的原理,当 光线通过折射球面时,像点的位置和 符号可以通过光线在入射和出射介质 中的速度比值来确定。
符号法则的应用
01
02
03
透镜设计
符号法则是透镜设计中的 基础,用于确定透镜的焦 距、光心位置等参数。
光学仪器制造
符号法则在光学仪器制造 中用于校准和调整光学系 统,确保成像质量。
单个折射球面成像在科学实验中的应用
光学实验
单个折射球面成像在光学实验中 具有重要应用,如透镜成像、光
波导等。
生物显微镜
在生物显微镜中,折射球面成像用 于将微小物体放大以便观察。
天文学观测
在天文学观测中,折射球面成像用 于将遥远星体的光线聚焦并成像。
符号法则与单个折射球面成像在工业生产中的应用
自动化生产线
03
符号法则与单个折射球面 成像的关系
符号法则对单个折射球面成像的影响
确定折射方向
符号法则可以用来判断折射后光 线的方向,从而确定折射球面的 成像位置。
提高成像质量
符号法则有助于理解光线在折射 过程中的变化规律,优化折射球 面的设计,提高成像质量。
单个折射球面成像对符号法则的补充
实际应用验证
单个折射球面成像可以作为符号法则在实际光学系统中的应用实例,验证其正确 性和实用性。

单个球面的折射

单个球面的折射

+ -
UIIiii'
Ui'
U1'
U2'
Um'【U'】
2、近轴区光路计算列表-共轴球面光学系统
球面1(i=1) 球面2 (i=2) 球面i 球面k (i=m)
ni
ni’
ri
Di
- × ÷
li-rurliiii ri×Biblioteka ÷inni ii'
× ÷ +
irurii'ii'
- ldi'i
li+1
+ -
uiiiii’
单个折射球面 光路计算公式
Lk+1= Lk'- dk Uk+1= Uk' k=k+1
k=m


U
'

U
' m
L' L'm
例题-共轴球面光学系统
例题1 一个玻璃球直径为40mm,折射率为1.5, 一束平行光入射到玻璃球上,其汇聚点在什 么位置?如果在玻璃球前25mm处放置一个 高为1mm的物体,试求解像的位置和大小.
(3) 物像参量
(a) 物像高度: y2=y1' ,y3=y2' ,……,ym=y' m-1;
(b) 物像距: l2=l1' -d1,l3=l2' -d2,……,lm=l' m-1'-dm-
1。
n1 n1' n2 n2'
nm nm'
y1
r1
-r2
A
o1 -y1' -y2 o2
rm
///
om

单球面折射成像公式(一)

单球面折射成像公式(一)

单球面折射成像公式(一)单球面折射成像公式及其相关公式1. 折射定律•公式:n1d1+n2d2=n2−n1R•解释:折射定律描述了光线从一个介质经过界面进入另一个介质时的折射行为,其中n1和n2为光线所在介质的折射率,d1和d2为入射光线和折射光线与法线的夹角的正切值,R为介质间的曲率半径。

2. 维梅尔公式•公式:n1v1−n2v2=(n2−n1)R•解释:维梅尔公式是折射定律的一种形式,其中n1和n2为介质的折射率,v1和v2为光线在介质中的光速,R为介质间的曲率半径。

3. 焦距与物距、像距的关系•公式:1f =(n−1)(1r1−1r2)•解释:该公式描述了球面透镜的焦距与物距、像距之间的关系,其中f为焦距,n为透镜的折射率,r1和r2分别为透镜两个表面的曲率半径。

4. 薄透镜成像公式•公式:1f =1d o+1d i•解释:薄透镜成像公式描述了薄透镜对光线的成像行为,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。

5. 球面镜成像公式凸透镜成像公式•公式:1f =1d o+1d i•解释:凸透镜成像公式描述了凸透镜对光线的成像行为,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。

凹透镜成像公式•公式:1f =1d o−1d i•解释:凹透镜成像公式描述了凹透镜对光线的成像行为,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。

6. 求物距、像距和焦距的公式物距公式•公式:1d i −1f=1d o•解释:物距公式描述了物体距离透镜和像距之间的关系,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。

像距公式•公式:1d i +1f=1d o•解释:像距公式描述了物体距离透镜和像距之间的关系,其中f 为透镜的焦距,d o为物体距离透镜的距离,d i为像距。

焦距公式•公式:f=d o⋅d id o+d i•解释:焦距公式描述了透镜的焦距与物距、像距之间的关系,其中d o为物体距离透镜的距离,d i为像距。

第二章球面和共轴球面系统分析

第二章球面和共轴球面系统分析
要讨论成像规律,即像的虚实,成像的位置、正倒和大 小问题,必须计算出光线的走向,所以我们先讨论计算公式。 光线经过单个折射球面的情况如图所示。 包含光轴和物点的平面称为含轴面(纸面)或子午面。 计算的目的:光从何处来,经何处到哪里去(由此得出由物 点发出的光线经过系统后能否交到一点完善成像)?
首要问题:用什么量(怎样)来决定光线在空间中的位置?
对AEC应用正弦定理得 L r r Lr 即 sin I sin U 可求出I sin I sin ( U) r n 据折射定律 sin I ` sin I 可求出I ` n` 对AEC和A`EC应用外角定理 U I U ` I ` U ` U I I ` 可得到U ` sin I ' sin U ' sin I 在A ' EC中 ,利用正弦定律 L ' rr L ' r r sin U
从光轴起算,光轴转向光线(按锐角方向), 顺时针为正,逆时针为负。
入射角、折射角 从光线起算,光线转向法线(按锐角方向), 顺时针为正,逆时针为负。 ③ 光轴与法线的夹角(如) 从光轴起算,光轴转向法线(按锐角方向), 顺时针为正,逆时针为负。
二、实际光线经过单个折射球面的光路计算
已知:折射球面曲率半径r,介质折射率n和n′,及物方坐标L和U。 求:像方L ′和 U ′。
共轴球面系统由许多单个球面构成,当计算出第一面后, 其折射光线就是第二面的入射光线。
U 2 U1; L2 L1 d1
再由相邻两折射球面间的关系,求出下一个球面的折 射光线。
第四节 球面反射镜成像
n n n n 成像公式: l l r

n n
1 1 2 l l r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7-10
(y')
lm'
说明:
y' b b1b 2 b m y
-lm
(1) b>0成正立的像, b<0成倒立的像; (2) |b|>1成放大像, |b|<1成缩小像; (3) b =v’/v 。
2、轴向放大率-放大率
dl
y1
A -l1 o1
n1 r1
n1'
n2 -r2
n2'
nm nm' rm
例题—球面镜成像
例题3 有一个放映机,使用一个凹面反光镜进行 聚光照明,光源经过反光镜反射以后成像 在投影物平面上。光源长10mm,投影物高 为40mm,要求光源像等于投影物高,并且 反光镜离投影物平面距离为600mm,求该 反光镜的曲率半径等于多少?
作业-§7.4共轴球面光学系统
1 7-7
2
已知一透镜的结构参数如下(单位mm):r1= 10,r2=-25,d=7,n1=1.0,n1'=n2= 1.5163,n2'=1.0,在光轴上距透镜前顶点L1 =-140mm处有一点光源,求(1)U=-10的光 路; (2)在近轴近似下,试求该光源的像点的ym'um'
由转面公式可得
nyu =n1y1u1 =n2y2u2=……=nmymum=n'y'u'
1、垂轴放大率-放大率
(y )
y1 A -l1 o1 n1 r1
n1'
n2 -r2
n2' /// d2 dm
nm nm' rm
om -ym'
-y1' -y2 o2 d1 l1' -l2 l2'
+ -
球面i
球面k (i=m)
Lm sinUm
sinI=(L-r)/r*sinU
sinI'=n/n'*sinI· L'r +r*sinI'/sinU' U'=I+U-I' Lm'【L'】 Li+1=Li'-di
Ui Ii Ii '
U i'
U 1'
U2'
Um'【U'】
2、近轴区光路计算列表-共轴球面光学系统
球面1(i=1) 球面2 (i=2) ni ni’ ri Di li ri li-ri ui ri ii ni ni ' ii' ri ui' ri li' di 球面i 球面k (i=m)

× ÷ × ÷ × ÷ +
l1【l】 u1 【 u】
l2
lm um
i=(l-r)/r*u
u2
i'=n/n'*i l'=r+r*i'/u'
-y1' -y2 o2 d1 l1' -l2 d2 l2'
///
dm -lm
om
-ym'
lm'
dl'
dl ' 1 2 m dl
说明: (1) >0,则dl和dl'同号,物像运动方向相同; (2) <0,则dl和dl'异号,物像运动方向相反; (3) =v'// /v//。
n1 y1 A o1 r1
n1'
n2 -r2
n2' /// d2 dm -lm
nm nm' rm om
-y1' -y2 o2 d1 l1' -l2 l'2
-y'm
lm'
-l1
二、拉赫不变量-共轴球面光学系统
由折射球面的拉赫不变量有 n1y1u1=n1'y1'u1' n2y2u2=n2'y2'u2'
§7.5 共轴球面光学系统
一、转面公式 二、拉赫不变量 三、放大率公式 1、垂轴放大率 2、轴向放大率 3、角放大率 四、光路计算 1、一般光路计算列表 2、近轴区光路计算列表 3、一般光路计算流程图
一、转面公式-基本参量-共轴球面光学系统
• 成像时涉及的参量
(1) 光学系统参量 (a) 各球面的曲率半径: r1,r2,……,rm; (b) 各球面两侧的折射率: n1,n1',n2,n2' ,……,nm,nm' ; (c) 相邻两球面顶点的间距: d1,d2,……,dm-1。 (2) 光线参量 孔径角: u1,u1' ,u2,u2' ,……,um,um'。 (3) 物像参量 (a) 物像高度: y1,y1' ,y2,y2' ,……,ym,ym' ; (b) 物像距: l1, l1' , l2, l2 ' , ……,lm, lm' 。
l1'

l i+ 1 ui + ii - ii ’
d1 l2
l2'
d2 l3
lm'【l'】
li+1=li'-di
u'=i+u-i'
um'【u'】
ui'
u1 '
u2 '
3、一般光路计算流程图-共轴球面光学系统
k 1 U1 U , L1 L
单个折射球面 光路计算公式
k=m 否
Lk+1= Lk'- dk Uk+1= Uk' k=k+1
3、角放大率-放大率
u' 1 2 m u
三种放大率的关系
n' 2 b n n n' b b
1、一般光路计算列表-共轴球面光学系统
球面1(i=1) 球面2 (i=2) ni ni’ ri di Li L1【L】 L2 - ri Li-ri × sinUi sinU1【 sinU】 sinU2 ÷ ri sinIi × ni ÷ ni ' sinIi' × ri ÷ sinUi' + ri Li’ L1’ L2’ - di d1 d2 L i+ 1 L2 L3
n1 y1 A -l1 o1 r1
n1'
n2 -r2
n2 ' /// d2 dm
nm nm' rm om
-y1' -y2 o2 d1 l1' -l2 l2'
-ym'
lm'
-lm
一、转面公式-公式-共轴球面光学系统
• 转面公式
(1) 光学系统参量 折射率: n2=n1' ,n3=n2' ,……,nm=n' m-1 。 (2) 光线参数 孔径角: u2=u1' ,u3=u2' ,……,um=u' m-1。 (3) 物像参量 (a) 物像高度: y2=y1' ,y3=y2' ,……,ym=y' m-1; (b) 物像距: l2=l1' -d1,l3=l2' -d2,……,lm=l' m-1'-dm-1。

' U ' Um L' L'm
例题-共轴球面光学系统
例题1 一个玻璃球直径为40mm,折射率为1.5,一 束平行光入射到玻璃球上,其汇聚点在什么 位置?如果在玻璃球前25mm处放置一个高 为1mm的物体,试求解像的位置和大小.
例题—球面镜成像
例题2 一凹球面反射境,半径r=-12cm,当物 距分别为时-24cm,-12cm,-9cm,-2cm, 求像的位置和垂轴放大率。
相关文档
最新文档