(完整版)《圆柱、圆锥、圆台和球》参考教案
《圆柱、圆锥、圆台和球》参考教案

《圆柱、圆锥、圆台和球》参考教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.1.3圆柱、圆锥、圆台和球第一课时教学目标:1.能根据几何结构特征理解空间旋转体形成过程;2.认识圆柱、圆锥、圆台和球的结构特征;3.掌握圆柱、圆锥、圆台和球的截面及它们之间的关系.教材分析及教材内容的定位:教材先让学生思考圆柱、圆锥、圆台、球的生成规律,然后给出它们的定义,让学生初步理解“旋转体”的概念.教学中可结合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程,引导学生思考圆柱、圆锥、圆台、球的结构特征;也可以类比棱柱、棱锥、棱台的生成过程认识圆柱、圆锥、圆台的结构特征;类比圆的定义得出球面的定义.教学重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台和球的概念.教学难点:难点是区分一个旋转体由哪些基本几何体构成.教学方法:观察、发现、探究.探究学习为主,发挥同学之间合作关系。
教学过程:一、问题情境1.复习棱柱、棱锥、棱台的有关概念.小结:移——缩——截.2.旋转会产生什么样的结果呢?仔细观察下面的几何体,它们有什么共同特点或生成规律?二、学生活动通过观察、思考、交流、讨论得出结论. 三、建构数学1.圆柱、圆锥、圆台的概念;第二课时教学目标:1、理解球面、球体和组合体的基本概念。
2、掌握球的截面的性质。
3、掌握球面距离的概念。
教学重点:球的截面的性质及应用,会求球面上两点之间的距离教学过程:复习引入1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。
2、通过篮球、排球、足球等等球体的形象引出课题.新授1、球的概念:球也可以由一个平面图形旋转得到。
半圆以它的直径为旋转轴,旋转所成的曲面叫球面。
球面所围成的几何体叫球体,简称球。
指出球心、半径、直径。
值得注意的是:1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。
2)球面的概念可以用集合的观点来描述。
《圆柱、圆锥、圆台、球、简单组合体》教案、导学案、课后作业

《8.1 基本几何图形》教案第2课时圆柱、圆锥、圆台、球、简单组合体【教材分析】立体几何是研究三维空间中物体的形状、大小、位置关系的一门数学学科,而三维空间是人们生存发展的现实空间,学习立体几何对我们更好地认识客观世界,更好地生存与发展具有重要意义。
在立体几何初步部分,学生将先从对空间几何体观察入手、认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系。
本节内容既是义务教育阶段“空间与图形”课程的延续和提高,也是后续研究空间点、线、面位置关系的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
【教学目标与核心素养】课程目标1.认识圆柱、圆锥、圆台、球的结构特征.2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.数学学科素养1.数学抽象:简单组合体概念的理解;2.逻辑推理:圆柱、圆锥、圆台、球的结构特点;3.直观想象:判断空间几何体;4.数学运算:球的相关计算、最短距离等;5.数学建模:通过平面展开图将空间问题转化为平面问题解决,体现了转化的思想方法.【教学重点和难点】重点:掌握圆柱、圆锥、圆台、球的结构特征;难点:旋转体的相关计算.【教学过程】一、情景导入上节课学了常见的多面体:棱柱、棱锥、棱台,那么常见的旋转体有哪些?又有什么结构特点?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本101-104页,思考并完成以下问题1、旋转体包含哪些图形?2、圆柱、圆锥、圆台、球是怎样定义的?又有什么结构特点?3、什么是简单组合体,特点是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究一、常见的旋转体1、圆柱:定义:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
1.1.圆柱、圆锥、圆台和球-苏教版必修2教案

1.1.圆柱、圆锥、圆台和球-苏教版必修2教案一、教学目标1.掌握圆柱、圆锥、圆台和球的基本概念和特征。
2.理解圆柱、圆锥、圆台和球的三视图和投影。
3.能够应用相关知识求解实际问题。
二、教学重点1.圆柱、圆锥、圆台和球的基本概念和特征。
2.圆柱、圆锥、圆台和球的三视图和投影。
三、教学难点1.圆柱、圆锥、圆台和球的相似关系。
2.圆柱、圆锥、圆台和球的表面积和体积的计算。
四、教学方法1.讲授法:结合教材对相关概念和知识进行解析和讲解。
2.演示法:通过具体的实例引导学生理解与应用相关知识。
3.实践法:让学生参与到相关问题的求解中,培养其应用知识解决实际问题的能力。
五、教学内容与进度安排1. 圆柱1.圆柱的定义和特征。
2.圆柱的各种投影。
3.圆柱的表面积和体积的计算。
4.圆柱的应用实例。
2. 圆锥1.圆锥的定义和特征。
2.圆锥的各种投影。
3.圆锥的表面积和体积的计算。
4.圆锥的应用实例。
3. 圆台1.圆台的定义和特征。
2.圆台的各种投影。
3.圆台的表面积和体积的计算。
4.圆台的应用实例。
4. 球1.球的定义和特征。
2.球的各种投影。
3.球的表面积和体积的计算。
4.球的应用实例。
六、教学评估1.在学习过程中,及时反馈学生表现和掌握程度,对于表现出色的学生予以鼓励。
2.对于掌握程度较低的学生,及时进行巩固对基础知识的讲解,帮助他们更好地理解相关知识。
3.针对学生掌握程度和能力的不同,进行针对性的个性化评价,为学生提供有效的帮助和指导。
(完整版)《圆柱、圆锥、圆台和球》参考教案

1.1.3 圆柱、圆锥、圆台和球第一课时教课目的:1.能依据几何构造特色理解空间旋转体形成过程;2.认识圆柱、圆锥、圆台和球的构造特色;3.掌握圆柱、圆锥、圆台和球的截面及它们之间的关系.教材剖析及教材内容的定位:教材先让学生思虑圆柱、圆锥、圆台、球的生成规律,而后给出它们的定义,让学生初步理解“旋转体”的看法.教课中可联合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程,指引学生思虑圆柱、圆锥、圆台、球的构造特色;也能够类比棱柱、棱锥、棱台的生成过程认识圆柱、圆锥、圆台的构造特色;类比圆的定义得出球面的定义.教课重点:让学生感觉大批空间实物及模型、归纳出圆柱、圆锥、圆台和球的看法.教课难点:难点是划分一个旋转体由哪些基本几何体构成.教课方法:察看、发现、研究.研究学习为主,发挥同学之间合作关系。
教课过程:一、问题情境1.复习棱柱、棱锥、棱台的有关看法.小结:移——缩——截.2.旋转会产生什么样的结果呢?认真察看下边的几何体,它们有什么共同特色或生成规律?经过察看、思虑、沟通、议论得出结论.三、建构数学1.圆柱、圆锥、圆台的看法;2.圆柱、圆锥、圆台的有关看法(轴、高、底面、母线);思虑:圆柱、圆锥、圆台之间有何关系?(指引学生从看法的形成和构造特征来剖析三者之间的关系)3.球面及球的看法;半圆绕着它的直径所在的直线旋转一周而形成的曲面叫做球面,球面围成的几何体叫做球体.球面也能够看作空间中到一个定点的距离等于定长的点的会合4.球的有关看法(球心、球半径、球的表示);5.旋转面、旋转体的看法(指引学生总结).四、数学运用1.例题.例1 将直角梯形 ABCD 绕 AB 边所在的直线旋转一周,由此形成的几何体是有哪些简单的几何体构成的?D CA B例 2以下几何体是由哪些简单几何体构成的?图 2图1例3(课本 P12 例 1)把一个圆锥截成一个圆台,已知圆台的上下底面半径是1∶4,母线长为 4cm,求圆锥的母线长.2.练习.(1)①如图 1 将平行四边形 ABCD 绕 AB 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?②如图 2 钝角三角形 ABC 绕 AB 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?D C A BA BC(图 1)(图2)(2)以下命题中的说法正确的有________①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④圆锥侧面睁开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径.⑤在圆柱的上下底面上各取一点,这两点的连线是圆柱的母线五、重点归纳与方法小结本节课学习了以下内容:1.圆柱、圆锥、圆台和球的有关看法;2.圆柱、圆锥、圆台和球的构造特色;3.圆柱、圆锥、圆台和球的应用.第二课时教课目的: 1、理解球面、球体和组合体的基本看法。
《圆柱、圆锥、圆台》示范课教学设计【高中数学教案】

《圆柱、圆锥、圆台》教学设计◆教学目标理解圆柱、圆锥、圆台、球的定义和结构特征,能识别和区分这些几何体;掌握圆柱、圆锥、圆台的侧面积和表面积公式,能运用公式解决简单的实际问题.◆教学重难点◆教学重点:圆柱、圆锥、圆台的定义、结构特征、侧面积和表面积.教学难点:能够根据圆柱、圆锥、圆台的结构特征识别和区分几何体.◆课前准备PPT课件.◆教学过程一、问题导入问题1:从生活中的一些物体抽象出圆柱、圆锥、圆台.师生活动:生活中的一些物体抽象出圆柱、圆锥、圆台.设计意图:以生活中的实物为出发点,引导学生通过观察,分析、抽象概括出圆柱、圆锥、圆台、球的概念.从而发展学生的逻辑推理、数学建模和直观想象的核心素养.引语:要解决这个问题,就需要进一步学习旋转体.(板书:旋转体)【新知探究】1.分析实例,感知圆柱、圆锥、圆台问题2:如图所示,观察它们的结构,总结出形成圆柱、圆锥、圆台的方式.师生活动:学生分析,给出答案.追问:如何定义旋转体?(让学生自由发挥,分组讨论,一起判断,教师点评.)预设的答案:圆柱:以矩形的一边所在直线为旋转轴,将矩形旋转一周而形成的曲面所围成的几何体称为圆柱.如图(1).圆锥:以直角三角形一直角边所在直线为旋转轴,将直角三角形旋转一周而形成的曲面所围成的几何体称为圆锥.如图(2).圆台:以直角梯形垂直于底边的腰所在直线为旋转轴,将直角梯形旋转一周而形成的曲面所围成的几何体称为圆台.如图(3).旋转体:(1)定义:用类似圆柱、圆锥、圆台的形成方式构成的几何体都是旋转体.(2)有关概念:旋转轴称为旋转体的轴,在轴上的边(或它的长度)称为旋转体的高.垂直于轴的边旋转而成的圆面称为旋转体的底面,不垂直于轴的边旋转而成的曲面称为旋转体的侧面.无论旋转到什么位置,不垂直于轴的边都称为母线.轴截面:在旋转体中,通过轴的平面所得到的截面通常简称为轴截面.如圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.设计意图:培养学生分析和归纳的能力. 发展学生数学抽象和直观想象的核心素养.2.在大量实例感知的基础上,总结出圆柱、圆锥、圆台的侧面积、表面积公式.问题3:如何定义、计算圆柱、圆锥、圆台的侧面积、表面积?师生活动:学生分析,给出答案.预设的答案:旋转体的侧面积:旋转体侧面的面积称为旋转体的侧面积.旋转体的表面积:侧面积与底面积之和称为旋转体的表面积(全面积).为了求圆柱、圆锥、圆台的表面积,分别需要知道哪些条件?怎样求出它们的表面积?圆柱的底面积、侧面积、表面积底面积:S底=πr2、侧面积:S侧=2πrl、表面积:S=2πr2+2πrl圆锥的底面积、侧面积、表面积底面积:S底=πr2、侧面积:S侧=2πrl、表面积:S=πr2+πrl圆台的底面积、侧面积、表面积上底面面积:S上底=πr′2、下底面面积:S下底=πr2、侧面积:S侧=π(r+r′)l、表面积:S=πr2+πr′2+π(r+r′)l设计意图:培养学生分析和归纳的能力.【巩固练习】例1. 写出圆台中任意两条母线的位置关系,任意一条母线与底面的位置关系,以及两个底面的位置关系.师生活动:学生分析解题思路,给出答案.预设的答案:圆台中任意两条母线都相交,任意一条母线与底面都相交,两个底面相互平行.设计意图:学生经历抽象过程、发展学生数学抽象、数学运算、逻辑推理的核心素养.例2. (1)圆柱′的底面直径为4,母线长为6,则该圆柱的侧面积为________,表面积为________.(2)如图,圆锥的底面半径为1,高为3,则圆锥的侧面积为________.师生活动:学生分析解题思路,给出答案.预设的答案:(1)24π32π;(2)2π设计意图:通过观察与分析,获得锥、柱的相关概念,提高学生的数学抽象、数学建模及逻辑推理的核心素养.【课堂小结】问题:(1)圆柱、圆锥、圆台的关系有哪些?(2)与旋转体的轴截面有关的计算有哪些?(3)如何计算圆柱、圆锥、圆台的侧面积?师生活动:学生尝试总结,老师适当补充.预设的答案:1.圆柱、圆锥、圆台的关系如图所示.2.旋转体的轴截面中有母线、底面半径、高等主要元素,因而,在涉及这些元素的计算时,通常利用轴截面求解.在圆台的轴截面中,将等腰梯形的两腰延长,在三角形中可借助相似求解.这种立体问题平面化是解答旋转体中计算问题最常用的方法.3.圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解有关问题的关键.设计意图:以生活中的实物为出发点,引导学生通过观察,分析、抽象概括出圆柱、圆锥、圆台、球的概念.从而发展学生的逻辑推理、数学建模和直观想象的核心素养.布置作业:【目标检测】1. 正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥设计意图:旋转体概念辨析2. 关于圆台,下列说法正确的是________.①两个底面平行且全等;②圆台的母线有无数条;③圆台的母线长大于高;④两底面圆心的连线是高.设计意图:进一步掌握圆台的有关概念.3. 一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm.设计意图:进一步掌握圆锥的有关计算.4. 已知一个圆柱的轴截面是一个正方形且其面积是Q ,求此圆柱的底面半径. 设计意图:进一步掌握圆柱的有关计算.设计意图:进一步掌握球的表面积的有关计算. 参考答案: 1.D 连接正方形的两条对角线知对角线互相垂直,故绕对角线旋转一周形成两个圆锥.2.②③④ 圆台的上底面和下底面是两个大小不同的圆,则①不正确,②③④正确.3.103 如图是圆锥的轴截面,则SA =20 cm .∠ASO =30°,∴AO =10 cm ,SO =10 3 cm.4.设圆柱底面半径为r ,母线为l ,则由题意得⎩⎪⎨⎪⎧2r =l ,2r·l =Q ,解得r =Q 2. 所以此圆柱的底面半径为Q 2.。
圆柱和圆锥教案(优秀6篇)

圆柱和圆锥教案(优秀6篇)圆柱和圆锥教案篇一单元教学要求:1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
进一步培养学生的空间观念,使学生能举例说明。
圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
教学要求:1、使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2、使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。
进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点:认识圆柱的侧面。
教学过程:一、复习旧知1、提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?2、引入新课。
出示事先准备的圆柱形的一些物体。
提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。
通过学习要认识它的特征。
(板书课题)二、教学新课1、认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。
提问:谁来说一说圆柱有哪些特征?2、认识圆柱各部分名称。
高中数学教学优秀教案(精选4篇)

高中数学教学优秀教案(精选4篇)高中数学教案篇一1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2、能根据几何结构特征对空间物体进行分类。
3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
1、情景导入教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2、展示目标、检查预习3、合作探究、交流展示(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?5、典型例题例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
基本几何图形第2课时圆柱圆锥圆台球(教学设计)

8.1 基本几何图形第2课时圆柱、圆锥、圆台、球一、内容和内容解析内容:圆柱、圆锥、圆台、球的结构特征.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第八章第1节第2课时的内容.教材先让学生思考圆柱、圆锥、圆台、球的生成规律,然后给出它们的定义,让学生初步理解“旋转体”的概念。
教学中可结合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程.通过学习有关旋转体的结构特征,培养直观想象、逻辑推理、数学运算的数学素养.二、目标和目标解析目标:(1)理解圆柱、圆锥、圆台和球的结构特征.(2)了解简单组合体的概念及结构特征.(3)经历从物体到几何体的抽象过程,体验研究几何体的方法,提升直观想象和数学抽象素养.目标解析:(1)利用实物模型或信息技术,通过观察、分析、比较、归纳,抽象圆柱、圆锥、圆台和球的组成要素及其位置关系;会对它们进行分类与表示;能判断一个物体所表示的几何体是否为圆柱、圆锥、圆台和球;能从联系的角度认识圆柱、圆锥、圆台和球的联系与区别.(2)结合章引言与本节课的学习,能说出立体几何的主要内容,感受直观感知、操作确认、思辨论证的立体几何学习方法.在圆柱、圆锥、圆台和球的结构特征的抽象过程中,反复经历“实物→立体图形”的过程,提升数学抽象和直观想象的素养.基于上述分析,本节课的教学重点定为:圆柱、圆锥、圆台和球的组成元素的形状、位置关系,抽象概括出它们的结构特征.三、教学问题诊断分析1.教学问题一:本节课所学的各种几何体,学生大多在以前已经有所认识,但以往的认识往往停留在直观感知水平,只知道某种几何体是“这样的一个”,而不清楚是“怎样的一个”.本节课是要从结构特征的角度对它们进行描述,这就需要从几何体的形成方式及面、棱、顶点、母线等要素及其位置关系等角度去把握几何体的结构特征,从而能说清楚各种几何体概念.这是一个“确定研究对象”的过程,也是我们学习立体几何的出发点.2.教学问题二:在本节课的学习过程中,学生往往能借助初中所学知识,通过观察实物抽象出空间几何体,但要上升到用数学语言去描述它们则比较困难.教学时可先让学生做一些柱体、锥体、台体、球体的模型,通过观察他们自己所做的模型,结合教科书,再讨论得出空间几何体的结构特征.另外,面对众多的几何体,找到合理的标准将其分类,是学生学习时可能遇到的另一个学习障碍.这需要教师逐步引导,明确分类时要考虑物体的内部结构和外部特征,从而确定分类的标准.基于上述情况,本节课的教学难点定为:圆柱、圆锥、圆台和球的结构特征的抽象.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、分析、比较、归纳抽象圆柱、圆锥、圆台和球的组成要素及其位置关系,应该为学生创造积极探究的平台.因此,在教学过程中使用实物模型.可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视圆柱、圆锥、圆台和球的组成要素及其位置关系的抽象过程,让学生体会到从特殊到一般是数学抽象的基本过程.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计教学环节问题或任务师生活动设计意图创设情境,生成问题观察下列实物图教师1:提出问题1.学生1:它们不是由平面多边形围成的.教师2:提出问题2.学生2:可以由某些平面图形旋转而成.教师3:提出问题3.学生3:上述几何体可由半圆、直角梯形、直角三角形以适当的一边所在直线为轴旋转而成.通过观察图片,引入本节新课。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.3圆柱、圆锥、圆台和球
第一课时
教学目标:
1.能根据几何结构特征理解空间旋转体形成过程;
2.认识圆柱、圆锥、圆台和球的结构特征;
3.掌握圆柱、圆锥、圆台和球的截面及它们之间的关系.
教材分析及教材内容的定位:
教材先让学生思考圆柱、圆锥、圆台、球的生成规律,然后给出它们的定义,让学生初步理解“旋转体”的概念.教学中可结合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程,引导学生思考圆柱、圆锥、圆台、球的结构特征;也可以类比棱柱、棱锥、棱台的生成过程认识圆柱、圆锥、圆台的结构特征;类比圆的定义得出球面的定义.
教学重点:
让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台和球的概念.
教学难点:
难点是区分一个旋转体由哪些基本几何体构成.
教学方法:
观察、发现、探究.探究学习为主,发挥同学之间合作关系。
教学过程:
一、问题情境
1.复习棱柱、棱锥、棱台的有关概念.
小结:移——缩——截.
2.旋转会产生什么样的结果呢?
仔细观察下面的几何体,它们有什么共同特点或生成规律?
二、学生活动
通过观察、思考、交流、讨论得出结论.三、建构数学
1.圆柱、圆锥、圆台的概念;
第二课时
教学目标:1、理解球面、球体和组合体的基本概念。
2、掌握球的截面的性质。
3、掌握球面距离的概念。
教学重点:球的截面的性质及应用,会求球面上两点之间的距离教学过程:
复习引入
1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。
2、通过篮球、排球、足球等等球体的形象引出课题.
新授
1、球的概念:球也可以由一个平面图形旋转得到。
半圆以它的直径为旋转轴,旋转所成的曲面叫球面。
球面所围成的几何体叫球体,简称球。
指出球心、半径、直径。
值得注意的是:
1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。
2)球面的概念可以用集合的观点来描述。
球面是
由点组成的,球面上的点有什么共同的特点呢?与定点
的距离等于定长的所有点的集合(轨迹)叫球面。
如果
点到球心的距离小于球的半径,这样的点在球的内部.
否则在外部.
3)球的表示:用表示球心的字母表示球,比如,球O.
2、球的截面的性质:用一个平面去截球,得到一个截面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小
圆.
球的截面有什么性质呢?连接球心与截
面圆心,连线OO 1与截面圆O 1会有什么关系
呢?
1)球心与截面圆心的连线垂直于截面。
2)设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=22d R 3、练习一:
判断正误:(对的打√,错的打×)
(1)半圆以其直径为轴旋转所成的曲面叫球。
( )
(2)到定点的距离等于定长的所有点的集合叫球。
( )
(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面。
()
(4)经过球面上不同的两点只能作一个大圆。
()
(5)球的半径是5,截面圆的半径为3,则球心到截面圆所在平面的距离为4。
()
4、关于地球的几个概念:地球可以近似的看作一个球体,为了描述地球上某地的地理位置,我们在地球上规定了经线、纬线、南极、北极等概念。
5、球面距离:假如我们要坐飞机从北京到巴西去,选择怎样的航线航程最短呢?我们把球面上过两点的大圆,在这两点之间的劣弧的长叫球面上两点间的球面距离。
因此,飞机、轮船都尽可能以大圆弧为航线航行。
6、例1我国首都北京靠近北纬40度。
(1)求北纬40°纬线圈的半径约为多少千米。
(2)求北纬40度纬线的长度约为多少千米(地球半径
约为6370千米)。
7、练习二:
1)填空
(1)设球的半径为R,则过球面上任意两点的截面圆中,最
大面积是。
(2)过球的半径的中点,作一个垂直于这条半径的截面,则
这截面圆的半径是球半径的。
(3)在半径为R的球面上有A、B两点,半径OA、OB的夹角是n°(n≤180,求A、B两点的球面距离。
2)地面上,地球球心角1′所对的大圆弧长约为1海里,一海里约是多少千米?3)思考题:地球半径为R,A、B是北纬45°纬线圈上两点,它们的经度差是90°,求A、B两地的球面距离。
8、组合体
请举出一些由柱、锥、台组合而成的几何体的实例
课堂练习:
小结:
a)半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。
球面所围成的几
何体叫做球体.
b) 以过球心的平面截球面,截面圆叫大圆。
以不经过球心的平面截球面,
截面圆叫小圆.
c) 球心和截面圆心的连线垂直于截面,由勾股定理,有:22d R r -=. d) 把地球看作一个球时,经线就是球面上从北极到南极的半个大圆。
赤道
是一个大圆,其余的纬线都是小圆.
球面距离是球面上过两点的大圆在这两点之间的劣弧的长度.
课后作业:略。